2013—2014初一数学第二学期期末复习试卷(苏外)

合集下载

2013—2014学年度七年级第二学期期末调研考试数学试题(含答案)

2013—2014学年度七年级第二学期期末调研考试数学试题(含答案)

2013—2014学年度七年级第二学期期末调研考试数 学 试 卷(人教版)注意:本试卷共8页,满分为120分,考试时间为120分钟.一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点到直线的距离是指……………………………………………………………( ) A .从直线外一点到这条直线的垂线 B .从直线外一点到这条直线的垂线段 C .从直线外一点到这条直线的垂线的长 D .从直线外一点到这条直线的垂线段的长2.如图,将直线l 1沿着AB 的方向平移得到直线l 2,若∠1=50°, 则∠2的度数是…………………………………………( ) A .40° B .50° C .90° D .130°3.下列语句中正确的是…………………………………………………………( ) A .-9的平方根是-3 B .9的平方根是3 C .9的算术平方根是±3 D .9的算术平方根是34.下列关于数的说法正确的是……………………………………………………( ) A .有理数都是有限小数 B .无限小数都是无理数 C .无理数都是无限小数 D .有限小数是无理数5.点(-5,1)所在的象限是……………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.将点A (2,1)向左平移2个单位长度得到点A ′,则点A ′的坐标是………( ) A .(0,1) B .(2,-1) C .(4,1) D .(2,3)7.下列调查中,适宜采用全面调查方式的是……………………………………( ) A .对我国首架大陆民用飞机各零部件质量的检查A Bl 1l 212 (2题图)B .调查我市冷饮市场雪糕质量情况C .调查我国网民对某事件的看法D .对我市中学生心理健康现状的调查8.二元一次方程3x +2y =11………………………………………………………( ) A .任何一对有理数都是它的解 B .只有一个解 C .只有两个解 D .有无数个解9.方程组⎩⎨⎧=+=+32y x y x ■,的解为⎩⎨⎧==■y x 2,则被遮盖的两个数分别为…………( )A .1,2B .5,1C .2,3D .2,410.如图是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对食品支出费用判断正确的是…………………………………………………………( )A .甲户比乙户多B .乙户比甲户多C .甲、乙两户一样多D .无法确定哪一户多11.如图,点O 在直线AB 上,OC 为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别为x ,y ,那么下列求出这两个角的度数的方程是………………………( )A .⎩⎨⎧-==+10180y x y xB .⎩⎨⎧-==+103180y x y xC .⎩⎨⎧+==+10180y x y x D .⎩⎨⎧-==1031803y x y12.5名学生身高两两不同,把他们按从高到低排列,设前三名的平均身高为a 米,后两名的平均身高为b 米.又前两名的平均身高为c 米,后三名的平均身高为d 米,则………………………………………………………………………………( ) A .2b c +>2b a + B .2b a +>2b c + C .2b c +=2ba +D .以上都不对ABC1 2O (11题图)二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.在同一平面内,已知直线a 、b 、c ,且a ∥b ,b ⊥c ,那么直线a 和c 的位置关系是___________. 14.下列说法中①两点之间,直线最短;②经过直线外一点,能作一条直线与这条直线平行; ③和已知直线垂直的直线有且只有一条;④在平面内过一点有且只有一条直线垂直于已知直线. 正确的是:_______________.(只需填写序号)15.11在两个连续整数a 和b 之间,a <11<b ,那么b a 的立方根是____________. 16.在实数3.14,-36.0,-66,0.13241324…,39 ,-π,32中,无理数的个数是______. 17.一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是_________.18.某空调生产厂家想了解一批空调的质量,把仓库中的空调编上号,然后抽取了编号为5的倍数的空调进行检验.你认为这种调查方式_____________.(填“合适”或“不合适”)19.如图,围棋盘放置在某个平面直角坐标系内,如果白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋的坐标应该是_________________.20.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为________元.(19题图)(20题图)三、解答题(共72分.解答应写出文字说明、证明过程或演算步骤) 21.解下列方程组或不等式(组):(1,2小题各4分,3小题6分, 共14分)(1)⎩⎨⎧-=+=+;62,32y x y x(2)⎩⎨⎧=-=+;2463,247y x y x(3)解不等式组,并把它的解集表示在数轴上:3(1)7251.3x x xx --⎧⎪⎨--<⎪⎩≤, ① ②22.(本题8分)如图,CD 平分∠ACB ,DE ∥BC ,∠AED =80°,求∠EDC 的度数.23.(本题6分)小刘是快餐店的送货员,如果快餐店的位置记为(0,0),现有位置分别是A (100,0),B (150,-50),C (50, 100)三位顾客需要送快餐,小刘带着三位顾客需要的快餐从快餐店出发,依次送货上门服务,然后回到快餐店.请你设计一条合适的送货路线并计算总路程有多长.(画出坐标系后用“箭头”标出)ADB CE24.(本题10分)已知:如图,AD ⊥BC 于D ,EG ⊥BC 于G ,AE =AF .求证:AD 平分∠BAC .25.应用题(本题10分)某校为了解七年级学生体育测试情况,以七年级(1)班学生的体育测试成绩为样本,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下)(1)请把条形统计图补充完整;(2)样本中D 级的学生人数占全班学生人数的百分比是__________; (3)扇形统计图中A 级所在的扇形的圆心角度数是__________;(4)若该校七年级有500名学生,请你用此样本估计体育测试中A 级和B 级的学生人数约为多少人.(24题图)FE ACBGD3 2 1C BD A 46% 20%24%如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?(1)如图,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON 的度数.(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数.(3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数.(4)从(1)(2)(3)的结果能看出什么规律?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计一道以线段为背景的计算题,写出其中的规律来?AMBONC2-1-0 1参考答案题号 1 2 3 4 5 6 7 8 9 10 1112 答案DBDCBAADBDB A12∵a >d ,∴2a +2b <2c +2d , ∴a +b <c +d ,∴<, 即>,故选B .二、填空题 13.a ⊥c ; 14.②,④; 15.4; 16.3; 17.(3,2);18.合适 点拨:因为这样使得该抽样调查具有随机性、代表性. 19.(-3,-7); 20.440. 三、解答题: 21.(1)解:由①得:y =-2x +3……③ ③代入② x +2(-2x +3)=-6 x =4………………………………………………………………………………2分把x =4代入③得 y =-5 ∴原方程组解为 ⎩⎨⎧-==54y x ………………4分(2)解:①×3+②×2得: 27x =54x =2把x =2代入①得:4y =-12y =-3………………………………………………………………………2分 ∴原方程组解为 ⎩⎨⎧-==32y x ……………………………………………4分(3)解:解不等式①,得2x -≥; 解不等式②,得12x <-.在同一条数轴上表示不等式①②的解集,如图所示:…………………………2分……………………………………4分所以,原不等式组的解集是122x -<-≤.……………………………………6分 22.解:∵ DE ∥BC ,∠AED =80°,∴ ∠ACB =∠AED =80°. ………………………………………4分 ∵ CD 平分∠ACB , ∴ ∠BCD =21∠ACB =40°,……………………………………6分 ∴ ∠EDC =∠BCD =40°.…………………………………………8分 23.解:合适的路线有四条,如图所示是其中的一条, 即向北走100 m ,再向东走50 m 到C ;接着向南走 100 m ,再向东走50 m 到A ;接着向东走50 m ,再向 南走50 m 到B ;接着向西走150 m ,再向北走50 m 回到O .尽可能少走重复路段.如图所示,所走的路线 长最短,共为600 m. …………………………………6分 24.证明:∵AD ⊥BC 于D ,EG ⊥BC 于G∴AD ∥EG ,………………………3分 ∴∠2=∠3, ∠1=∠E , ………………5分 ∵AE =AF ∴∠E = ∠3,∴∠1 = ∠2,……………………………8分 ∴AD 平分∠BAC .………………………10分 25.解:(1)条形图补充如图所示.………………3分(2)10%……………………………………5分 (3)72°……………………………………7分 (4)500×(46%+20%)=330(人).………………10分26.解:(1)设工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨.则依题意,得:⎩⎨⎧=+=+.97200)120110(2.1,15000)1020(5.1x y x y …………………………………6分DB七年级(下)数学期末试卷 第11页(共8页) 解这个方程组,得:⎩⎨⎧==.300,400y x ∴工厂从A 地购买了400吨原料,制成运往B 地的产品300吨. ……………………………………………………………9分(2)依题意,得:300×8000-400×1000-15000-97200=1887800∴批产品的销售款比原料费与运输费的和多1887800元. ……………………12分27.解:(1)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12×120°-12×30°=45°; ……………………………………………………………2分(2)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(α+30°)-12×30°=12α; ……………………………………………………………4分(3)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(90°+β)-12β=45°;……6分 (4)∠MON 的大小等于∠AOB 的一半,而与∠BOC 的大小无关;……………9分(5)如图,设线段AB =a ,延长AB 到C ,使BC =b ,点M ,N 分别为AC ,BC 的中点,求MN 的长.规律是:MN 的长度总等于AB 的长度的一半,而与BC 的长度无关.…………12分。

初中数学 江苏省13—14学年第二学期初一数学期终考试模拟考试卷及答案六

初中数学 江苏省13—14学年第二学期初一数学期终考试模拟考试卷及答案六
(2) 如图②,若把△ABC纸片沿DE折叠,使点A落在四边形BCED的外部点 的位置,此时∠A与∠1、∠2之间的等量关系是______________________(说明理由);(4分)
(3) 如图③,若把四边形ABCD沿EF折叠,使点A、D落在四边形BCFE的内部点 、 的位置,请你探索此时∠A、∠D、∠l与∠2之间的数量关系______________________.(2分)
试题28:
下列多项式中,能运用公式法因式分解的是( )
A.x2-xyB.x2+xyC.x2+y2D.x2-y2
试题29:
下列方程组中,是二元一次方程组的是( )
A. B. C. D.
试题30:
(1) 如图①,把△ABC纸片沿DE折叠,使点A落在四边形BCED的内部点 的位置,试说明2∠A=∠1+∠2;(4分)
问题(2): 已知 是 的三边长,满足 ,且 是 中最长的边,求 取值范围.
试题2:
如图,已知∠ABC+∠ECB=1800,∠P=∠Q,
(1)AB与ED平行吗?为什么?
(2)∠1与∠2是否相等?说说你的理由.
试题3:
推理填空:
如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.
试题26:
如上面右图,直角△ADB中,∠D=90°,C为AD上一点,且∠ACB的度数为(5x-10)°,则x的值可能是( )
A、10 B、20 C、30 D、40
试题27:
如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,∠EOD= ∠AOC,则∠BOC为( )
A.120° B.130° C.140° D.150°
因为∠BAC=70°
所以∠AGD=_______

2013-2014学年江苏省镇江市枫叶国际学校七年级下期末数学试卷【苏科版】

2013-2014学年江苏省镇江市枫叶国际学校七年级下期末数学试卷【苏科版】

镇江枫叶国际学校初小学2013-2014学年度第二学期七年级数学期末测试题(A)命题人:陈昌浩 考试时间:100分钟 满分:120分一、填空题(每题2分,满分24分,答对12题即可得满分)1、如图,要判定AB ∥CD ,可以添加的条件是 (写一个即可).2、如图,∠2=60°,∠3=100°,∠4=80°,则∠1= .3、七边形的内角和为 ,外角和为 .4、一个三角形三边长都为整数,其中两边长分别是6和11,则第三边长可以为 .(写一个即可)5、计算:=⋅÷a a a 35 ;()=35a .6、计算:=+2)3(x ;=+-)2)(2(a a .7、分解因式:=-22153ab b a ;=+-2296n mn m .第1题 第2题 第8题 8、如图,△ABC 平移得到△A'B'C',已知∠B=60°,∠C ' =40°,∠A= . 9、编写一个关于x ,y 二元一次方程组,使这个方程组的解为⎩⎨⎧==21y x ,这个方程组可以为 . 10、对于二元一次方程52=+y x ,用含有x 的代数式表示y ,可得=y .11、甲型H7N9禽流感病毒的直径约为0.0000000081米,0.0000000081用科学记数法表示为 .12、不等式组⎩⎨⎧>>13x x 的解集为 ;不等式组⎩⎨⎧-<-<13x x 的解集为 .13、已知单项式825b a nm --与单项式n m b a 553+是同类项,则=+n m 43 .14、已知5,2==n ma a,则=+n m a .15、若不等式组⎩⎨⎧-><1x ax 的整数解只有4个,则a 应满足的条件为 .二、单项选择(每小题3分,满分15分,答对5题可得满分) 16、下列计算正确的是( ) A. ()633282y x xy -=- B.633a a a =+ C. 824a a a =⋅ D. ()923a a =17、下列四个选项中,∠1与∠2是内错角的是( )18、下列命题中,真命题有( )(1)若a ∥c ,b ∥c ,则a ∥b ; (2)两直线平行,同旁内角相等; (3)对顶角相等; (4)内错角相等,两直线平行; (5)三角形的一个外角等于与它不相邻的两个内角的和. A .2个 B .3个 C .4个 D .5个 19、一个多边形内角和是1260°,则这个多边形的边数为( ) A. 6 B. 7 C. 8 D. 920、把不等式组⎩⎨⎧≥+<+17231x x 的解集在数轴上表示正确的是( )21、学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,设共有x 学生,y 辆汽车,可列方程( ) A. ⎩⎨⎧=-=+y x y x 62502845 B.⎩⎨⎧=-=+x y xy 62502845 C.⎩⎨⎧=-=+x y xy 12502845 D. ⎩⎨⎧=-=+yx yx 12502845三、解答题(满分81分)22、(8分)计算①)32(432423+-⋅-ab b a b a ②)4)(23(2222y x xy xy y x --23、(6分)计算022)52(331-+-⎪⎭⎫ ⎝⎛-π ()33232322xy y x xy ⋅-24、(6分)先化简再求值)2(5)3)(3()3(22xy x y x y x y x ---++-,其中23,34=-=y x .学号: 姓名: 班级: ☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★ 密封线内不要答题 ☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆25、(10分)解方程组⎩⎨⎧=+=-13y x y x ⎩⎨⎧-=+=-74723y x y x26、(10分)解不等式(组),并把解集在数轴上表示。

2013—2014学年度七年级下学期期末考试数学模拟试卷(3套含答案)

2013—2014学年度七年级下学期期末考试数学模拟试卷(3套含答案)

最大最全最精的教育资源网课题: 8.2 二元一次方程组的解法(3)【学习目标】(1)学会使用方程变形,再用加减消元法解二元一次方程组.(2)解决问题的一个基本思想:化归,马上“未知”化为“已知”,将“复杂”转为“简单”。

【学习重、难点】1、用加减消元法解系数绝对值不相等的二元一次方程组2、使方程变形为较适合的形式,而后加减消元【自主学习】一、回想、复习1、方程组4x10 y11, (1)中,方程( 1)的 y 的系数与方程(2)的 y 的系数, 15x10 y 8.(2)由①+②可消去未知数,进而获得,把 x=代入中,可得 y=.m n36,(1)中,方程(1)的 m的系数与方程( 2)的 m的系数, 2、方程组50.(2)m 2n由()○()可消去未知数.3 、用加减法解方程组2x y40, (1) x y22.(2)4、用加减消元法解二元一次方程组的基本思路仍旧是消元.两个二元一次方程中,同一个未知数的系数_______或______ 时,把这两个方程的两边分别 _______或 ________,就能 ________这个未知数,获得一个____________方程,这类方法叫做 ________________,简称 _________。

【合作研究】1、下边的方程组直接用(1)+(2),或( 1) - ( 2)还可以消去某个未知数吗?2a b8,(1)3a2b 5.(2)仍用加减消元法怎样消去此中一个未知数?2a b8 两边都乘以,获得:()23察看:(2 )和( 3)中的系数,将这两个方程的两边分别,就能获得一元一次方程。

◆基本思路:将将原方程 的两个方程化 有一个未知数的系数同样或许相反 的两个方程,再将两个方程两 分 相减或相加 ,消去此中一个未知数, 获得一元 一次方程。

【 范解答】:解:( 1)×2 得:⋯⋯( 3)( 1) +( 3)得:将 代入 得:因此原方程的解 :【达 】x y (2)x y(1)3y 17 5x y7 1、用加减消元法解以下方程2 x4( x 2 y) 123x 2 y 64x 2y14(4) x 3 y202x 3y8(1)(2)(4) 3 y 17 y 7(3)7 y 1003x 5 2 y2x 5x 3x5 y 7 x 5x 3y202x 3y 8(3)7 y 100 (4)7 x 53x 5 y。

塘桥中学2013-2014学年第二学期初一数学期末复习综合试卷(2)及参考答案

塘桥中学2013-2014学年第二学期初一数学期末复习综合试卷(2)及参考答案

2013-2014学年第二学期初一数学期末复习综合试卷(2)姓名命题:汤志良;审核:孟颖;分值:130分;一、选择题:(本题共10小题,每小题3分,共30分)1.(2013.咸宁)下列运算正确的是…………………………………………………………………………( )A .623a a a ÷=;B .2232a b a b -=;C .()23624a a -=;D .()222a b a b +=+; 2.下列从左到右的变形中,是分解因式的是……………………………………………………………( )A. ()()2339a a a +-=-;B. ()()25231x x x x +-=-++;C. ()22a b ab ab a b +=+;D. 211x x x x ⎛⎫+=+ ⎪⎝⎭; 3.已知△ABC 的三个内角∠A 、∠B 、∠C 满足关系式∠B+∠C=3∠A ,则此三角形……………………( )A. 一定有一个内角为45°;B. 一定有一个内角为60°;C. 一定是直角三角形;D. 一定是钝角三角形;4.(2013.泰安)下列图形:其中所有轴对称图形的对称轴条数之和为………………………………( )A .13;B .11;C .10;D .8;5.(2012.遂宁)若关于x 、y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围是……………………………………………………………………………………………………………( )A .a >2 ;B .a <2;C .a >4;D .a <4;6.(2013.盘锦)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是………………………………………………………………………………………………( )A .30°;B .20°;C .15°;D .14°;7.(2012.梅州)如图,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上,将△ABC 沿着DE 折叠压平,A 与A ′重合,若∠A=75°,则∠1+∠2=……………………………………( )A .150°;B .210°;C .105°;D .75°;8.(2011•绍兴)如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于第6题图 第7题图第8题图A .7;B .14 ;C .17 ;D .20;9.如图,已知∠AOB 的大小为α,P 是∠AOB 内部的一个定点,且OP=2,点E 、F 分别是OA 、OB 上的动点,若△PEF 周长的最小值等于2,则α=……………………………………………………………………( )A .30°;B .45°;C .60°;D .90°;10.如图,在Rt △ABC 中,∠ACB=90°,CD 、CE 分别是斜边AB 上的高与中线,CF 是∠ACB 的平分线.则∠1与∠2的关系是……………………………………………………………………………………………( )A .∠1<∠2 ;B .∠1=∠2;C .∠1>∠2;D .不能确定;二、填空题:(本题共10小题,每小题3分,共30分)11.命题“互为相反数的两个数的平方相等”的逆命题是 .12.(2013.永州)钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑屿,面积约为0.0008平方公里.请用科学记数法表示飞濑屿的面积约为 _____________平方公里.13.(2013.荆门)若等腰三角形的一个角为50°,则它的顶角为 .14. 若327x =,232y =,则23x y += .若23x y -=,则24y x÷= . 15.(2012.遵义)已知5x y +=,6xy =,则22x y += .16. 不等式组⎪⎩⎪⎨⎧->--≥-311312x x 的整数解是 .17.(2013.邵通)如图,AF=DC ,BC ∥EF ,只需补充一个条件: ,就得△ABC ≌△DEF .18.(2012.梧州)如图,在△ABC 中,AB=AD=DC ,∠BAD=32°,则∠BAC= °.19.如图,在四边形ABCD 中,∠A=90°,AD=4,连接BD ,BD ⊥CD ,∠ADB=∠C.若P 是BC 边上一动点,则DP 长的最小值为 .20.已知关于x 的不等式组20521x a x -≥⎧⎨->⎩只有四个整数解,则实数a 的取值范围是 .三、解答题:(本题共12题,共70分)第18题图第19题图第9题图第10题图第17题图21.计算:(本题满分6分)(1)()1220112542--⎛⎫⎛⎫-+-⨯- ⎪ ⎪⎝⎭⎝⎭; (2)()()()2323262324x y x y x y -+-+;22.(本题满分6分)将下列各式因式分解(1)2x(a -b)-4(b -a)(2)3a 2-2723. (本题满分6分) 解不等式:(1)2192136x x -+-≤; (2)解不等式组()3242113x x x x -≥-⎧⎪⎨+>-⎪⎩,并在数学轴上表示出它的解集;24.(本题满分6分)(1 )已知1639273m m ⨯⨯=,求m 的值.(2)已知以2m a =,4n a =,32k a =,求32m n k a+-的值.25. (本题满分4分)先化简,再求值:已知213x -=,求代数式()()23237x x x -++-的值.26. (本题满分4分)(2012.温州)如图,在方格纸中的三个顶点及A 、B 、C 、D 、E 五个点都在小方格的顶点上.现以A 、B 、C 、D 、E 中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与△PQR 全等;(2)在图乙中画出一个三角形与△PQR 面积相等但不全等27. (本题满分6分)如图,点C 、E 分别在直线AB 、DF 上,CF 和BE 相交于点O ,CO=FO ,EO=BO .(1)求证:△COB ≌△FOE ;(2)若∠ACE=70°,求∠DEC 的度数.28. (本题满分5分)如图,AB=AC ,∠BAC=120°,AD ⊥AB ,AE ⊥AC .(1)在Rt △ACE 中,∠C= °,CE= AE ;(2)求证:△ADE 是等边三角形.29. (本题满分6分)已知关于x 、y 的方程组3951x y a x y a +=+⎧⎨-=-⎩的解是一对正数. (1)求a 的取值范围;(2)化简445a a +--.30. (本题满分6分)(2012•泉州模拟)上海某宾馆客房部有三人普通间和二人普通间,每间收费标准如表所示.世博会期间,一个由50名女工组成的旅游团人住该宾馆,她们都选择了三人普通间和二人普通间,且每间正好都住满.设该旅游团人住三人普通间有x 间. (1)该旅游团人住的二人普通间有 间(用含x 的代数式表示); (2)该旅游团要求一天的住宿费必须少于4500元,且入住的三人普通间不多于二人普通间.若客房部能满足该旅游团的要求,那么该客房部有哪几种安排方案?31. (本题满分7分)如图,△ABC 的两条高AD 、BE 相交于H ,且AD=BD ,试说明下列结论成立的理由.(1)∠DBH=∠DAC ;(2)BH=AC ;(3)如果BC=14,AH=2,AC=10,求HE 的长度.32. (本题满分8分)将两个全等的直角三角形ABC和DBE按图(1)方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:CF=EF;(2)若将图(1)中的△DBE绕点B按顺时针方向旋转角a,且0°<a<60°,其他条件不变,如图(2).请你直接写出AF+EF与DE的大小关系:AF+EF DE.(填“>”或“=”或“<”)(3)若将图(1)中△DBE的绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图(3).请你写出此时AF、EF与DE之间的关系,并加以证明.2013-2014学年第二学期初一数学期末复习综合试卷(2)参考答案一、选择题:1.C ;2.C ;3.A ;4.B ;5.D ;6.C ;7.A ;8.C ;9.A ;10.B ;二、填空题:11.平方相等的两个数互为相反数;12. 4810-⨯ ;13.50°或80°;14.21,18;15.13;16.-1,0,1,2,3;17.∠A=∠D (答案不唯一);18.69°;19.4;20. 64a -≤<-;三、解答题:21.(1)-4;(2)6221x y ;22.(1)()()22a b x -+;(2)()()333a a +-;23.(1)2x ≥-;(2)14x <≤,数轴略;24.(1)3m =;(2)4; 25.14;26. 解:(1)如图所示: (2)如图所示:27.(1)证明:如图,在△COB 和△FOE 中,12BO EO CO FO =⎧⎪∠=∠⎨⎪=⎩,∴△COB ≌△FOE ;(2)解:如图,由(1)△COB ≌△FOE ,∴∠B=∠3,∴AB ∥DF ,∴∠ACE+∠DEC=180°,∴∠DEC=180°-70°=110°.28.解:(1)∵AB=AC ,∠BAC=120°,∴∠B=∠C=30°,∵CE ⊥AC ,∴CE=2AE .故答案为:30°,2.(2)∵∠B=∠C=30°,AD ⊥AB ,AE ⊥AC .∴∠ADB=∠AEC=60°,∴∠ADB=∠AEC=∠EAD=60°,∴△ADE 是等边三角形.29.(1)15a -<<;(2)51a -;30.解:(1)由题意可得,住在二人间的人数为:(50-3x ),又∵二人间也正好住满, 故可得二人间有:5032x -; (2)依题意得:503240200450025032x x xx -⎧+⨯<⎪⎪⎨-⎪≤⎪⎩,解得18103x <≤,∵x 为整数,∴x=9或x=10, 当x=9时,5032x -=232(不为整数,舍去);当x=10时,5032x -=10. 答:客房部只有一种安排方案:三人普通间10间,二人普通间10间.31. 解:(1)∵AD ,BE 是△ABC 的高∴∠ADC=∠BEC=90°,∴∠DBH+∠C=90°,∠DAC+∠C=90°∴∠DBH=∠DAC ;(2)由(1)题已得∠DBH=∠DAC ,∵在△BDH 和△ADC 中,BDH ADC BD ADDBH DAC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDH ≌△ADC (ASA ),∴BH=AC ; (3)由(2)题已证△BDH ≌△ADC ,∴HD=DC (设长度为x ),设AD=BD=y , ∵BC=14,AH=2,AC=10, ∴x+y=14,y-x=2.解得x=6,y=8,∵12×AC×BE=12×BC ×AD , ∴10×BE=14×8,解得BE=11.2,∴HE=BE-BH=11.2-10=1.2.32. (1)证明:连接BF ,∵△ABC ≌△DBE ,∴BC=BE ,∵∠ACB=∠DEB=90°,在Rt △BCF 和Rt △BEF 中, BC BE BF BF =⎧⎨=⎩,∴Rt △BCF ≌Rt △BEF ,∴CF=EF ; (2)AF+EF=DE ;故答案为:=;(3)证明:连接BF ,∵△ABC ≌△DBE ,∴BC=BE ,∵∠ACB=∠DEB=90°,∴△BCF 和△BEF 是直角三角形,在Rt △BCF 和Rt △BEF 中, BC BE BF BF=⎧⎨=⎩,∴△BCF ≌△BEF ,∴CF=EF ;∵AC=DE , ∴AF=AC+FC=DE+EF .。

江苏省江阴暨阳中学2013-2014学年第二学期初一数学期末试卷(含答案)

江苏省江阴暨阳中学2013-2014学年第二学期初一数学期末试卷(含答案)

初一数学期末考试试卷(2014.6)(满分100分,时间120分钟)一、选择题(本大题共10小题,每小题2分,共20分.) 1.下列运算正确的是( )A .42226)3(y x xy =B .xx 2121=- C .527)()(x x x =-÷-D .523523x x x =+2.已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为 ( ) A .41021-⨯千克 B .6101.2-⨯千克 C .5101.2-⨯千克 D .4101.2-⨯千克 3.如图,能判定EB ∥AC的条件是( )A .∠C =∠ABEB .∠A =∠EBDC .∠C =∠ABCD .∠A =∠ABE 4.不等式x 2-≤6的解集在数轴上表示正确的是 ( )A .B .C .D . 5.若152)2)(3(2-+=-+mx x n x x ,则 ( )A .5,1=-=n mB .5,1-==n mC .5,1-=-=n mD .5,1==n m 6.如图,△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =22°,则∠BDC等于( )A .44°B .60°C .67°D .77°7.如图,A 、B 两点在数轴上表示的数分别是a 、b ,则下列式子中一定成立的是 ( ) A .0>-b a B .a ab 3< C .b a 2121->- D .b ab -> 8.如图,面积为6cm 2的△ABC 纸片沿BC 方向平移至△DEF 的位置,平移的距离是BC长的2倍,则△ABC纸片扫过的面积为( )A .18cm 2B .21cm 2C .27cm 2D .30cm 2第6题图 第7题图第3题图 第8题图 班级 姓名 考试号 .…………………………………………………………………………………………………………………………………………………10.下列说法:①一个多边形最多有3个锐角; ②n 边形有2)3(-n n 条对角线;③三角形的三条高一定交于一点;④当x 为任意有理数时,1062+-x x 的值一定大于1;⑤方程73=+y x 有无数个整数解.其中正确的有 ( )A .2个B .3个C .4个D .5个 二、填空题(本大题共10小题,每空2分,共26分)11.计算:⑴122014--=____________;⑵)1(22-x x =____________. 12.分解因式:42-y =____________.13.若一个多边形的内角和是外角和的2倍,则这个多边形的边数为____________. 14.命题“互为相反数的两个数的和为零”的逆命题是___________________________________. 15.已知32=+b a ,1-=ab ,则⑴2)(b a -=____________;⑵)3)(3(--b a =____________.16.已知6=mx,3=n x ,则n m x -=____________, n m x x -÷-2)(=____________.17.若不等式组⎩⎨⎧>-<-ax x 012的解集是21<x ,则a 的取值范围是____________.18.如图,一个长方体的表面展开图中四边形ABCD 是正方形,则原长方体的体积是____________.19.一次生活常识竞赛一共有25道题,答对一题得4分,不答得0分,答错一题扣2分,小明有2题没答,竞赛 成绩要超过74分,则小明至多答错____________道题. 20.若二元一次方程组⎩⎨⎧=++=+my x m y x 232的解x ,y 的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m 的值为____________. 三、解答题(本大题共8小题.共54分) 21.计算:(本题满分6分)⑴ 4322222)(23)(5a a b a b a b a ÷-+⋅-- ⑵2)2(2)32)(32(x y y x y x -----22.分解因式:(本题满分6分)⑴ 4824324-+-x x ⑵ )4()1(2)1(622b a x x a ----23.(本题满分8分)⑴解方程组:⎪⎩⎪⎨⎧-=+-=+-1532322y x y x ⑵解不等式组:⎪⎩⎪⎨⎧+≤-+<-2353)1(213xx x x 并写出它的D21EFDBA D A CB EF所有整数解.24.(本题满分6分)在正方形网格中,每个小正方形的 边长都为1个单位长度,△ABC 的三个顶点的位置 如图所示,现将△ABC 平移后得△EDF ,使点B 的 对应点为点D ,点A 对应点为点E .(1)画出△EDF ; (2)线段BD 与AE 有何关系?____________;(3)连接CD 、BD ,则四边形ABDC 的面积为_______.25.(本题满分6分)如图,AD ∥BC ,∠A =∠C ,BE 、DF 分别平分∠ABC 和∠CDA . 求证:BE ∥DF26.(本题满分7分)如图,△ABC 中,AD 是高,BE 平分∠ABC . (1)若∠EBC =32°,∠1∶∠2=1∶2,EF ∥AD ,求∠FEC 的度数;(2)若∠2=50°,点F 为射线CB 上的一个动点,当△EFC 为钝角三角形时,直接写出∠FEC 的取值范围.27.(本题满分7分)如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM =30°,∠OCD =45°.(1)将图①中的三角板OMN 沿BA 的方向平移至图②的位置,MN 与CD 相交于点E , 求∠CEN 的度数; 班级 姓名 考试号 .…………………………………………………………………………………………………………………………………………………(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数;(3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第_____________________秒时,直线MN恰好与直线CD 垂直.(直接写出结果)D28.(本题满分8分)某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000立方米海水,淡化率为70%.每淡化1立方米海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/立方米的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果保留整数)?初一数学期末试题答案 2014.6 一选择题⒈ C ⒉C ⒊ D ⒋A ⒌D ⒍ C ⒎ C ⒏D ⒐ B ⒑ B二 填空题11. 0.5 ;x x 223- 12. )2)(2(-+y y 13. 6 14. 两个和为零的数互为相反数 15. 944;6 16. 2 ;108 17. a ≤21- 18. 12 19. 2 20. 2 三解答题21. ⑴原式=2242465a b a b a --………………( 2)=224a b a -- ………………( 3 )⑵原式=)44(2492222x xy y x y +---………………( 2 )=xy x y 8622+- ………………( 3 )22. ⑴原式=)168(324+--x x ………………( 1 ) =22)4(3--x ………………( 2 ) =22)2()2(3-+-x x ………………( 3 )⑵原式=[])4(26)1(2b a a x --- ………………( 1 )=)84()1(2b a x +- ………………( 2 ) =)2()1(42b a x +- ………………( 3 )23.⑴由①得823-=-y x ③ ………………( 1 ) ②-③得y=1 ………………( 2 ) 将y=1代入②得x=-2 ………………( 3 )∴⎩⎨⎧=-=12y x ………………( 4 )⑵由①得x <3 ………………( 1 ) 由②得x ≥-1 ………………( 2 )∴-1≤x <3 ………………( 3 ) ∴整数x=-1,0,1,2 ………………( 4 )24.⑴画图略 ;………………( 2 ) ⑵ BD ∥═AE ;………………( 4 )⑶6 ………………( 6 )25.⑴∵AD ∥BC∴∠A+∠ABC=180°;∠C+∠ADC=180°………………( 1) ∵∠A=∠C∴∠ABC=∠ADC ………………( 2 ) ∵BE 、DF 分别平分∠ABC 和∠CDA∴∠EBC=21∠ABC, ∠EDF==21∠ADC ∴∠EBC=∠EDF ………………( 4 )∵AD ∥BC∴∠DFC=∠EDF∴∠EBC=∠DFC ………………( 5 ) ∴BE ∥DF ………………( 6 )26.⑴∵BE 平分∠ABC ∴∠ABC=2∠EBC=64° ………………( 1 ) ∵AD 是高 ∴AD ⊥BC ∴∠ADB=90°∴∠1=90°−∠ABC=26° ………………( 2 ) ∵∠1∶∠2=1∶2 ∴∠2=2∠1=52° ………………( 3 ) ∵EF ∥AD∴∠FEC=∠2=52° ………………( 4 )⑵90°<∠FEC <140°; 0°<∠FEC <50°………………( 7 ) ( 做对一个答案仅得1分)27⑴∠CEN=180°-∠ONM −∠NCD=180°-30°-45°=105°………………( 1 ) ⑵∵∠N=∠BON =30°∴MN ∥CO ………………( 2 ) ∴∠CEN+∠OCD =180°∴∠CEN =180°−∠OCD =135° ………………( 3 ) ②5.5秒,11.5秒 ………………( 7 ) ( 做对一个答案得2分)28.解:(1)设年降水量为x 万m 3,每人年平均用水量为ym 3,由题意得,, ………………( 1 )解得:.答:年降水量为200万m 3,每人年平均用水量为50m 3.………………( 3 )(2)设该镇居民人均每年需用水z m 3水才能实现目标, 由题意得,12000+25×200=20×25z , 解得:z=34,50﹣34=16m 3.答:设该镇居民人均每年需节约16 m 3水才能实现目标.………………( 5 )(3)设该企业n 几年后能收回成本,由题意得,[3.2×5000×70%﹣(1.5﹣0.3)×5000]×﹣40n≥1000,………………( 6 )解得: 29188n ∴最小整数n=9答:至少9年后企业能收回成本. ………………( 8)。

2014学年第二学期期末考试初一数学学科考试试卷2016

2014学年第二学期期末考试初一数学学科考试试卷2016

2014学年第二学期期末考试初一数学学科考试试卷 (2015.6)(考试时间90分钟)考生注意:1.本试卷含四个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共4小题,每小题3分,满分12分)【下列各题的四个结论中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置】1.下列说法错.误.的是………………………………………………………( ▲ ) (Aa 可以是正数、负数和零 ; ( B )实数a 的立方根有一个; (C2±; (D5-的立方根. 2.如图,直线1l //2l ,140∠=,275∠=,则3∠的度数……………( ▲ ) (A )70; (B )65; (C )60; (D )55.3.如果点P (,a b )到y 轴的距离为2,那么……………………………( ▲ ) (A )a =2; (B )a =2±; (C )b =2; (D )b =2±.4.如图,90E F ∠=∠=,B C ∠=∠,AE=AF ,下列结论不.正确的是( ▲ ) (A )CD =DN ; (B )∠1=∠2; (C )BE =CF ; (D )△ACN ≌△ABM .二.填空题(本大题共12题,每小题3分,满分36分) 【请将结果直接填入答题纸的相应位置】 5.6的平方根是 ▲ .6.如果x =4,那么x = ▲ .7.比较大小:13(64)- ▲ 15-.8.2015年4月18日,上海自然博物馆新馆开馆。

新馆坐落于上海静安雕塑公园内,从规划到建成历经九年,总建筑面积约为44517平方米。

若将44517保留三个有效数字,则可第4题图第2题图ED CBA表示为 ▲ .9.已知点P (4m -,2)与点Q (4,2)关于y 轴对称,那么m = ▲ . 10.若等腰三角形一边的长为4,周长为17,则它的底边长为 ▲ .11.如图,在ABC ∆中,已知50=∠B ,70C ∠=,BC AE ⊥于E ,AD 平分BAC ∠,则DAE ∠的度数为 ▲ 度.12.如图,已知AD=DB=BC ,∠C =25º,那么∠ADE = ▲ 度.13.已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE 为 ▲ 度.14.如图,在△ABC 中,OB 、OC 分别是∠ABC 和∠ACB 的角平分线,过点O 作EF ∥BC ,交AB 、AC 于点E 、F ,如果AB =10,AC =8,那么△AEF 的周长为 ▲ .15.等腰三角形一腰上的高与另一腰的夹角为40°,那么这个等腰三角形的顶角为 ▲ 度.16.如图a 是长方形纸带,∠DEF =25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是 ▲ 度.三.解答题(本大题共4题,每小题5分,满分20分) 17.计算:06511(3)()8π--+÷-.182(2- .F EOCBA第14题图第11题图第12题图DAB第16题图1920.如图,在直角坐标平面内,已知点A 的坐标是(0,3),点B 的坐标是(3,2)-- (1)图中点C 的坐标是 ▲ .(2)点C 关于x 轴对称的点D 的坐标是 ▲ . (3)如果将点B 沿着与x 轴平行的方向向右平移3个单位得到点B ',那么A 、B '两点之间的距离是 ▲ .(4)图中四边形ABCD 的面积是 ▲ .四、解答题(本大题共5题,第21~23每小题各6分,第24、25每小题各7分,满分32分)21.如图,已知CD // BE ,且D E ∠=∠,试说明AD ∥CE 的理由.22.如图,已知△ABC 中,AB AC =,O 是△ABC 内一点,且OB =OC ,试说明AO BC ⊥的理由.23.如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证: (1)∠A =∠D .(2) △OEF 是等腰三角形.24.如图,在△ABC 中,AM=CM ,AD=CD ,DM//BC ,试判断△CMB 的形状,并说明理由.25.如图,以△ABC 的三边为边,在BC 的同侧分别作三个等边三角形,即△ABC ,△BCE ,△ACF .(1)求证:DE =AF .(2)当∠BAC =150°时,∠1+∠2等于多少度?(3)当△ABC 为等边三角形时,∠DAF 等于多少度?FOABDE CFABDE C12CDAM2014学年第二学期七年级数学学科期末练习卷答案要点与评分标准(2015年6月)(考试时间90分钟 满分100分)一、选择题(本大题共4小题,每小题3分,满分12分) 1.C ; 2.B ; 3.B ; 4.A .二、填空题:(本大题共12题,每题3分,满分36分)5.; 6.16; 7.<; 8.44.4510⨯ ; 9.0; 10.4; 11.10; 12. 75; 13.60; 14.18; 15.50或130 16. 105三、解答题:(本大题共4题,每小题5分,满分20分) 17.解:06511(3)()8π--+÷-=18……………………………(4分)=7………………………………………(1分)18.2(2--2(54)=--……………………………(2分)29=-+2分)11=-………………………………………………(1分)19.213362333=⨯÷………………………………(3分)49163+-=………………………(1分) 239==………………………(1分)20.(1)(3,-2)……………………………(1分)(2) (3,2)……………………………(1分) (3) 5 ……………………………(1分) (4) 21 ……………………………(2分)四、解答题:(本大题共5小题,第21~23每小题6分,第24、25每小题7分,满分32分) 21. 如图,已知CD // BE ,且D E ∠=∠,试说明AD ∥CE 的理由. 解:∵CD // BE (已知)∴B ACD ∠=∠(两直线平行,同位角相等) …………………(2分) ∵D E ∠=∠(已知)又∵180BCE E B ∠+∠+∠=︒180A D ACD ∠+∠+∠=︒(三角形内角和为180︒)…………………(2分)∴BCE A ∠=∠…………………(1分)∴AD ∥CE (同位角相等, 两直线平行) …………………(1分)(注:其他解法酌情分步给分)22. 如图,已知△ABC 中,AB AC =,O 是△ABC 内一点,且OB =OC ,试说明AO BC ⊥的理由.解:联结AO 并延长交BC 于点D …………………(1分)在△AOB 和△AOC 中 AO AO B C AC O AB O ===⎧⎪⎨⎪⎩∴△AOB ≌△AOC (SSS )………………………(2分)∴∠CAO =∠BAO (全等三角形的对应角相等)…………………(1分) 又∵AB=AC (已知) ………………(1分)∴AD BC ⊥(等腰三角形三线合一)………………(1分) 即AO BC ⊥(注:其他解法酌情分步给分)23.如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证: (1)∠A =∠D .(2) △OEF 是等腰三角形.解:∵BE =CF (已知)∴BF =CE (等式性质)…………………………(1分) 在△ABF 和△DCE 中 B C BF A C E D C B ∠=∠==⎧⎪⎨⎪⎩∴△ABF ≌△DCE (SAS )…………………………(2分) ∴∠A =∠D …………………………(1分)∠OEF =∠OFE (全等三角形的对应角相等) …………………………(1分) ∴OE=OF (等角对等边)…………………………(1分) 即△OEF 是等腰三角形.24.如图,在△ABC 中,AM=CM ,AD=CD ,DM//BC ,试判断△CMB 的形状,并说明理由. 解:△CMB 是等腰三角形.…………………………(1分) ∵AM=CM ,AD=CD (已知) ∴∠AMD =∠CMD (等腰三角形三线合一) ……………………(2分)∵DM//BC (已知)∴∠MCB =∠CMD (两直线平行,内错角相等) ………………………(1分) ∠B =∠AMD (两直线平行,同位角相等) ………………………(1分)∴∠B =∠MCB (等量代换) ………………………(1分) ∴MC=MB (等角对等边)…………………………(1分)即△CMB 是等腰三角形. (注:其他解法酌情分步给分)FOAB DE CC DA M25.如图,以△ABC 的三边为边,在BC 的同侧分别作三个等边三角形,即△ABD ,△BCE ,△ACF .(1)求证:DE =AF .(2)当∠BAC =150°时,∠1+∠2等于多少度?(3)当△ABC 为等边三角形时,∠DAF 等于多少度?解: (1)∵△ABD ,△BCE ,△ACF 是等边三角形(已知)∴AB=AD ,BE=BC ,AC=AF (等边三角形三边相等)∠DBA =∠EBC =60°(等边三角形每个内角为60°)……………………(1分) ∴∠DBE =∠ABC (等式性质)……………………(1分)在△DBE 和△ABC 中 AB AD DBE ABC BE BC =∠=∠=⎧⎪⎨⎪⎩∴△DBE ≌△ABC (SAS )∴DE =AC.(全等三角形的对应边相等) ……………………(1分) ∵AC=AF (已证)∴DE =AF .(等量代换) ……………………(1分)(2)如(1)同理可证△FEC ≌△ABC ,∴∠2=∠ABC (全等三角形的对应角相等) ……………………(1分) 由(1)证得△DBE ≌△ABC ∴∠1=∠ACB∴∠1+∠2=∠ACB+∠ABC=180°-∠BAC=180°-150°=30°……………………(1分)(3)当△ABC 为等边三角形时,点E 、A 重合,且点D 、A 、F 共线, 所以∠DAF=180°. ……………………(1分)FAB DE C12。

2013-2014学年度第二学期七年级数学期末试卷(最新)

2013-2014学年度第二学期七年级数学期末试卷(最新)

211133x ax +-+>2013-2014学年度第二学期人教版七年级数学期末模拟试卷(最新版)一、填空题(每题3分、共30分)1. 下列实数722,π-,14159.3,21中无理数有( ) A.2个 B.3个 C.4个 D.5个2. 下列各组数中互为相反数的是( )A.-2-2C.-2 与12-D.2与2-3.为了了解某校1500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来说,下面说法正确的是( )(A)1500名学生的体重是总体 (B)1500名学生是总体(C)每个学生是个体 (D)100名学生是所抽取的一个样本 解集是x <35,则a 应满足( ) 4. 不等式的A.5a >B.5a =C.5a >-D.5a =-5. 点M (a ,a-1)不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 6、下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行。

(2)过一点有且只有一条直线与已知直线垂直。

(3)在同一平面内,两条直线的位置关系只有相交、平行两种。

(4)不相交的两条直线叫做平行线。

(5)有公共顶点且有一条公共边的两个角互为邻补角。

A. 1个 B. 2个 C. 3个 D. 4个7、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y=kx+b 的解,则k 与b 的值为( )(A )21=k ,b=-4;(B )21-=k ,b=4;(C )21=k ,b=4;(D )21-=k ,b=-4 8.三角形A’B’C’是由三角形ABC 平移得到的,点A (-1,-4)的对应点为A ’(1,-1),则点B (1,1)的对应点B ’、点C (-1,4)的对应点C ’的坐标分别为( ) A 、(2,2)(3,4) B 、(3,4)(1,7) C 、(-2,2)(1,7) D 、(3,4)(2,-2)9.不等式组的解集是x >2,则m 的取值范围是( ).(A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥110.如右图所示,点E 在AC 的延长线上,下列条件中能判断CD AB //( )A. 43∠=∠B. 21∠=∠C. DCE D ∠=∠D.180=∠+∠ACD D二、填空题(每题3分,共24分)11、在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是 .12.如果一个数的平方根是6+a 和152-a ,则这个数为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档