【湘教版】七年级数学下册:1.1《建立二元一次方程组》教案
湘教版七年级数学下册教案:1.1 二元一次方程组

(续表)例 6 已知⎩⎪⎨y =1是方程组⎩⎪⎨bx +y =1的解,则a +b 的值为多少?活动四: 课堂 总结 反思【当堂训练】1.下列方程组中,属于二元一次方程组的是( )A .⎩⎪⎨⎪⎧x +y =2,y +z =3B .⎩⎪⎨⎪⎧x +y =5,xy =6 C .⎩⎪⎨⎪⎧a +2b =15,a -2b =13 D .⎩⎪⎨⎪⎧m -n =7,m +1n=52.二元一次方程x -2y =1有无数个解,下列四组值中不是该方程的解的是( )A .⎩⎪⎨⎪⎧x =0,y =-12 B .⎩⎪⎨⎪⎧x =1,y =1 C .⎩⎪⎨⎪⎧x =1,y =0 D .⎩⎪⎨⎪⎧x =-1,y =-1 3.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解是( )A .⎩⎪⎨⎪⎧x =1,y =2B .⎩⎪⎨⎪⎧x =1,y =-2C .⎩⎪⎨⎪⎧x =2,y =1D .⎩⎪⎨⎪⎧x =0,y =-1 4.根据题意列方程组:小明从邮局买了面值50分和80分的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚? 巩固所学知识,了解学生对本课所学知识的掌握情况,发现不足,查漏补缺,从而达到巩固提高的目的.【课堂总结】 布置作业:1.教材P 4练习T 1,T 2,T 3.2.教材P 5习题1.1A 组T 1,T 2,T 3.布置作业,专题突破.框架图式总结,更容易形成知识网络.二元一次方程组学案一、课前预习1. 什么叫二元一次方程?什么叫二元一次方程组?2. 什么叫二元一次方程的解?什么叫二元一次方程组的解?如何检验方程组的解?二、例题欣赏 例1.已知⎩⎨⎧-=-=+)2(1)1(82y x y x ,在下列四组数值中哪些是方程(1)的解?哪些是方程(2)的解?哪些是方程组的解?①⎩⎨⎧==32y x ;②⎩⎨⎧==21y x ;③⎩⎨⎧==24y x ;④⎩⎨⎧==43y x 。
例2.某班共有学生49人,一天该班某男生因事请假,当天的男生人数恰好为女生人数的一半,若设该班男生人数为x ,女生人数为y ,则可列出方程组为( )A)⎩⎨⎧+==-)1(249x y y x B)⎩⎨⎧+==+)1(249x y y x C)⎩⎨⎧-==-)1(249x y y x D)⎩⎨⎧-==+)1(249x y y x三、课堂练习 1.以⎩⎨⎧-==11y x 为解的二元一次方程组为( )A)⎩⎨⎧=-=+10y x y x B)⎩⎨⎧-=-=+10y x y x C)⎩⎨⎧=-=+20y x y x D)⎩⎨⎧-=-=+20y x y x2.某校七年级学生到礼堂开会,若每条长凳坐5人,则少10条长凳;若每条长凳坐6人,则多余2条长凳;如果设学生人数为x ,长凳的条数为y ,则可列方程组为( ) A)⎩⎨⎧⨯+=⨯-=2665105y x y x B)⎩⎨⎧+=-=26105y x y x C)⎩⎨⎧⨯-=⨯+=2665105y x y x D ⎩⎨⎧-=+=26105y x y x四、课后练习1.在下列四个方程中是二元一次方程的为( ) A)6)3(5+=-x x B)23=-x xy C)6232=+-y x D)315=+y x2.在下列方程组中是二元一次方程组的有( )①⎪⎩⎪⎨⎧-=-=+-2)(312y y x xy x ;②⎩⎨⎧=+=-2y x xy y x ; ③⎩⎨⎧=+=+212z y y x ;④⎪⎩⎪⎨⎧=-=-=+02223y x y x y x ;⑤⎩⎨⎧==20y x ;⑥⎩⎨⎧+==x y x 23 A)6个 B)5个 C)4个 D)3个 3.方程组⎩⎨⎧-=+=-4272y x y x 的解为( )A)⎩⎨⎧=-=23y x B)⎩⎨⎧-==51y x C)⎩⎨⎧-==20y x D)⎩⎨⎧-==32y x4.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售,该公司的加工能力是:每天可以精加工6吨或粗加工16吨;现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工,则可列方程组为( )A)⎩⎨⎧=+=+15616140y x y x B)⎩⎨⎧=+=+15166140y x y x C)⎩⎨⎧=+=+14061615y x y x D)⎩⎨⎧=+=+14016615y x y x5.写出满足方程92=+y x 的一组整数值为________________五、课后提高练习6.如图示表示有若干盆花组成的形如三角形的图案,每条边(包括两个顶 点)有)1(>n n 盆花,每个图案中花盆的总数为S ,按此规律推断,以n S ,为未知数的二元一次方程为__________________ 7.已知方程0132312=+---n m n y x是二元一次方程,则=m _______,=n ______8.已知方程组⎩⎨⎧==+3x n y x 和⎩⎨⎧=+=+my x y x 283具有相同的解,求n m ,的值。
1.1建立二元一次方程组-湘教版七年级数学下册教案

1.1 建立二元一次方程组-湘教版七年级数学下册教案一、教学目标1.了解二元一次方程组的定义和基本特点;2.掌握建立二元一次方程组的方法,能够独立解决相关问题;3.通过实际问题的讨论、分析和解决,培养学生的逻辑思维能力和应用能力。
二、教学重点和难点1.重点:建立二元一次方程组的方法;2.难点:二元一次方程组中未知数的概念、方程组的概念和应用。
三、教学内容1.二元一次方程组的定义;2.建立二元一次方程组的方法;3.二元一次方程组的解法;4.实际问题的应用。
四、教学过程1. 二元一次方程组的定义通过课堂讨论,让学生了解二元一次方程组的概念,强调其中的未知数和系数的含义和关系。
2. 建立二元一次方程组的方法通过教师的示范,让学生掌握建立二元一次方程组的方法,包括常见的两种情况:相加法和代入法。
在示范过程中,让学生自行尝试解决部分问题,并让学生相互交流讨论,加深对方法的理解和掌握。
3. 二元一次方程组的解法让学生通过例题和练习,掌握二元一次方程组的解法。
重点包括用消元法求解和用代入法求解。
在解题过程中,加强对未知数和系数之间关系的理解。
4. 实际问题的应用通过实际问题的讨论和分析,让学生掌握二元一次方程组在实际问题中的应用。
重点关注二元一次方程组解法的推理过程和实际问题解决的方法。
五、教学方法本课程采用讲解、示范、演练、讨论等多种教学方法,着重培养学生的逻辑思维能力和应用能力。
六、教学评估通过课堂练习和书面作业,检验学生掌握教学内容的程度和应用能力的提高。
七、教学后记本节课的授课任务主要是让学生掌握二元一次方程组的基本概念、建立二元一次方程组的方法和二元一次方程组的解法。
在授课过程中,让学生通过实际问题的讨论和分析,加深对知识点的理解和应用能力的提高。
同时,要求学生在课后跟进完成相关作业,巩固所学知识和应用能力。
新湘教版七年级数学下册《1章 二元一次方程组 1.1 建立二元一次方程组》教案_5

建立二元一次方程组一、教学目标1、了解二元一次方程,二元一次方程的概念的含义,会检验所给的一组未知数的值是否为二元一次方程及二元一次方程组的解。
2、通过对本节课的学习,提高分析问题、解决问题的能力,通过问题情境得出二元一次方程及方程组,通过探究代入数值检验来学习一元二次方程组的解。
3、通过实际问题的分析,学生能体会到方程组是刻画现实世界的一个有效模型,同时培养学生探究、创新的精神。
二、重难点1、重点:二元一次方程(组)和它的解的概念。
2、难点:根据实际问题列二元一次方程。
三、过程(一)问题导入开学报名,初二的胡一天和他小学一年级的妹妹胡三月共交学费172元,胡一天比他妹妹多交了158元,请问,胡一天和胡三月所交学费各是多少?(请列方程解答)预设回答:①解:设:胡一天所交学费是x元,则胡三月所交学费是(172-x)元。
X-(172-x)=158 解得:x=165;胡三月学费:165-158=7(元)(二)课堂新授1、一元一次方程(组)(1)问:以上的应用题还有其他的解法吗?如果设两个未知数,可以怎么列式?(2)学生自主探索(3)列出二元一次方程:解:设:胡一天交了学费x元;胡三月交了学费y元。
得到x+y=172 ①;x-y=158 ②(板书)(4)说一说a.观察方程①和②各含有几个未知数?预设回答:每个方程都含有两个未知数,每一项中未知数的次数都是1。
b.什么叫一元一次方程吗?仿照一元一次方程的定义,你能给这两个方程起个名字吗?预设回答:方程只含有一个未知数,并且未知数的次数是1的方程,叫做一元一次方程。
这个方程可以取名为二元一次方程。
c.请你说说什么样的方程叫二元一次方程?归纳二元一次方程的定义:如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程。
(P3)(板书:二元一次方程)注意:定义中未知数的项的次数是1,是指含未知数项的次数为1,而不是指2个未知数的次数都是1,且方程左右两边都是整式。
湘教版七下数学1.1建立二元一次方程组说课稿

湘教版七下数学1.1建立二元一次方程组说课稿一. 教材分析湘教版七下数学1.1建立二元一次方程组是初中数学中一个重要的概念。
它不仅巩固了学生之前所学的代数知识,而且为之后学习更高阶的数学奠定了基础。
本节课主要让学生掌握二元一次方程组的定义,了解其应用场景,并学会如何建立二元一次方程组。
教材通过丰富的例题和练习题,帮助学生深入理解二元一次方程组的概念和运用。
二. 学情分析七年级的学生已经具备了一定的代数基础,对一元一次方程有了初步的认识。
但在解决实际问题时,他们往往还不能灵活运用所学的知识。
因此,在教学过程中,教师需要关注学生的认知水平,引导他们将实际问题转化为数学问题,进一步建立二元一次方程组。
三. 说教学目标1.知识与技能:让学生掌握二元一次方程组的定义,了解其表示方法,学会如何建立二元一次方程组。
2.过程与方法:通过解决实际问题,培养学生将问题转化为数学问题的能力,提高学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生合作、探究的精神,使学生感受到数学在生活中的重要性。
四. 说教学重难点1.重点:二元一次方程组的定义及其表示方法。
2.难点:如何将实际问题转化为二元一次方程组,并灵活运用解二元一次方程组的方法。
五. 说教学方法与手段本节课采用情境教学法、案例教学法和小组合作学习法。
情境教学法可以帮助学生将实际问题转化为数学问题;案例教学法可以让学生通过分析、讨论,深入理解二元一次方程组的概念;小组合作学习法可以培养学生的团队精神和沟通能力。
此外,利用多媒体课件辅助教学,可以提高课堂效率,增加课堂趣味性。
六. 说教学过程1.导入:通过生活实例引入二元一次方程组的概念,激发学生的学习兴趣。
2.新课导入:讲解二元一次方程组的定义及其表示方法,让学生理解并掌握基本概念。
3.案例分析:分析实际问题,引导学生将问题转化为二元一次方程组,并求解。
4.练习巩固:让学生通过练习题,加深对二元一次方程组的理解。
湘教版七年级数学下册1.1建立二元一次方程组教学设计

湘教版七年级数学下册1.1建立二元一次方程组教学设计一. 教材分析湘教版七年级数学下册1.1建立二元一次方程组,是学生在学习了二元一次方程的基础上,进一步学习如何将实际问题转化为二元一次方程组。
这一节内容既是对前面知识的巩固,也为后面学习二元一次方程组的解法打下基础。
因此,在教学设计中,要让学生通过实例感受二元一次方程组的意义,理解其应用价值。
二. 学情分析七年级的学生已经学习了二元一次方程,对基本的方程概念有所了解。
但在解决实际问题时,还不能很好地将问题转化为方程组。
因此,在教学过程中,要注重引导学生将实际问题与方程组联系起来,提高他们的数学应用能力。
三. 教学目标1.了解二元一次方程组的定义,理解其表示的意义。
2.学会如何将实际问题转化为二元一次方程组。
3.提高学生的数学应用能力,培养他们的逻辑思维。
四. 教学重难点1.重难点:如何将实际问题转化为二元一次方程组。
2.难点:理解二元一次方程组在实际问题中的应用价值。
五. 教学方法1.采用问题驱动法,引导学生通过解决实际问题,学习二元一次方程组。
2.使用案例分析法,分析实际问题,让学生理解二元一次方程组的含义。
3.利用小组讨论法,让学生在小组内共同探讨如何将实际问题转化为方程组,提高他们的合作能力。
六. 教学准备1.准备相关的实际问题,用于引导学生学习二元一次方程组。
2.准备PPT,展示案例分析的过程,让学生更直观地理解。
3.准备练习题,巩固学生对二元一次方程组的掌握。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用数学方法解决问题。
例如,给出一个购物问题,让学生思考如何用数学方法表示这个问题。
2.呈现(10分钟)展示PPT,分析实际问题,引导学生将其转化为二元一次方程组。
通过这个过程,让学生理解二元一次方程组的含义。
3.操练(10分钟)让学生分组讨论,尝试解决其他实际问题,并将问题转化为二元一次方程组。
教师在这个过程中给予适当的引导和指导。
初中数学湘教版七下课件1.1《建立二元一次方程组》

《建立二元一次方程组》教学设计百寿中学秦宏一、教材分析1.教材的地位和作用二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。
本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。
通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。
2.教学目标知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。
会在实际问题中列二元一次方程组。
情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3.重点、难点重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际生活中二元一次方程组的应用。
二、教学方法结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
三、学习方法我设置并提出一系列问题,引导学生自主探究,合作式学习,让学生主动从事观察、实验、猜想、验证、推理等数学活动过程,从而使学生形成自己的思维方法与能力。
进而实现突出教学重点,突破教学难点,激发学生的学习兴趣,提高学生的数学思维和参与度。
四、教学过程数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。
为有序、有效地进行教学,本节课我主要安排以下教学环节:(1)复习旧知,温故知新(动脑筋)我们家1月份的天然气费和水费共60元,其中天然气比水费多20元,你知道天然气费和水费各是多少吗?设计意图:方程是本节课深入研究二元一次方程组的认知基础,从学生已有知识体系出发,设置实际的问题,这样设计有利于引导学生顺利地进入学习情境。
湘教版七年级数学下册1.1建立二元一次方程组说课稿

湘教版七年级数学下册1.1建立二元一次方程组说课稿一. 教材分析湘教版七年级数学下册1.1建立二元一次方程组是本册教材的起始章节,主要目的是让学生掌握二元一次方程组的概念、解法和应用。
本节内容通过引入实际问题,让学生学会用二元一次方程组来解决问题,培养学生运用数学知识解决实际问题的能力。
教材从生活实例出发,引导学生发现并提出问题,通过合作交流,探究解决问题的方法,从而达到理解并掌握二元一次方程组的目的。
二. 学情分析学生在七年级上册已经学习了方程和方程组的有关知识,对一元一次方程和一元一次方程组有一定的认识和理解,具备了一定的数学思维能力。
但七年级学生的抽象思维能力还在发展中,对于二元一次方程组的理解可能会有一定的困难。
因此,在教学过程中,我将以学生已有的知识为基础,引导学生逐步深入理解二元一次方程组的概念和应用。
三. 说教学目标1.知识与技能目标:让学生理解二元一次方程组的概念,掌握二元一次方程组的解法,能够运用二元一次方程组解决实际问题。
2.过程与方法目标:通过合作交流,培养学生的团队协作能力和语言表达能力,提高学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:让学生体验数学与生活的紧密联系,增强学生学习数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 说教学重难点1.教学重点:二元一次方程组的概念、解法及应用。
2.教学难点:二元一次方程组的解法,以及如何将实际问题转化为二元一次方程组。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、案例教学法等,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合数学软件或在线教学平台,提高教学效果。
六. 说教学过程1.导入新课:通过生活实例引入二元一次方程组的概念,激发学生的学习兴趣。
2.探究新知:引导学生合作交流,探讨二元一次方程组的解法,让学生在实践中掌握知识。
3.巩固新知:通过例题和练习,让学生巩固所学知识,提高解题能力。
湘教版数学七年级下册1.1《建立二元一次方程组》教学设计

湘教版数学七年级下册1.1《建立二元一次方程组》教学设计一. 教材分析《建立二元一次方程组》是湘教版数学七年级下册第一章第一节的内容。
本节课主要让学生掌握二元一次方程组的定义,了解二元一次方程组在实际问题中的应用,培养学生运用数学知识解决实际问题的能力。
教材通过生活中的实际问题引入二元一次方程组,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
二. 学情分析七年级的学生已经学习了初一数学的基本知识,对一元一次方程有一定的掌握。
但在解决实际问题时,还不能很好地将问题转化为数学模型。
因此,在教学过程中,要注重引导学生将实际问题转化为二元一次方程组,培养学生运用数学知识解决实际问题的能力。
三. 教学目标1.知识与技能:让学生掌握二元一次方程组的定义,学会用消元法解二元一次方程组。
2.过程与方法:通过实际问题引入二元一次方程组,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,激发学生学习数学的兴趣。
四. 教学重难点1.重点:二元一次方程组的定义,消元法解二元一次方程组。
2.难点:将实际问题转化为二元一次方程组,运用消元法解方程组。
五. 教学方法1.情境教学法:通过实际问题引入二元一次方程组,让学生感受数学与生活的联系。
2.引导发现法:引导学生发现二元一次方程组的解法,培养学生独立思考的能力。
3.合作学习法:分组讨论,让学生在合作中学习,提高学生的沟通与协作能力。
六. 教学准备1.课件:制作课件,展示实际问题及解题过程。
2.练习题:准备适量练习题,巩固所学知识。
3.黑板:准备黑板,用于板书解题过程。
七. 教学过程1.导入(5分钟)利用课件展示实际问题,引导学生思考如何用数学模型解决这些问题。
例如,描述两个人分别用不同速度行走,问他们相遇的时间。
通过这个问题,引出二元一次方程组的概念。
2.呈现(10分钟)讲解二元一次方程组的定义,解释什么是二元一次方程组,以及它的解法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建立二元一次方程组
【教学三维目标】
1、了解二元一次方程,二元一次方程组和它的一个解含义。
会检验一对对数是不是某个二元一次方程组的解。
2、让学生了解未知知识与已学知识的相关联系,参与、感受知识的形成过程。
3、激发学生学习新知的渴望和兴趣。
【教学重点】
1、设两个未知数列方程。
2、检验一对数是不是某个二元一次方程组的解
【教学过程】 一、预学
学一学:阅读教材P 2 -4的内容,回答下面问题。
1. 填空:
若设该学生家1月份总水费为x 元,则天然气费为_____元。
可列一元一次方程为__________做好后交流,并说出是怎样想的?
2.想一想,是否有其它方法?(引导学生设两个未知数)。
设该学生家1月份的水费为x 元,天然气为y 元。
列出满足题意的方程,并说明理由。
还有没有其他方法?
3 .本题中,设一个未知数列方程和设两个未知数列方程哪能个更简单?
二、探究
知识点1、二元一次方程二元一次方程组的概念
1,下列方程中,是二元一次方程的是( )
A .3x -2y=4z
B .6xy+9=0
C .1x +4y=6
D .4x=24
y - 2,由两个二元一次方程组成方程组一定是二元一次方程组?
如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足什么条件?
三、精导
观察此列方程。
.46=+y x 4 6.5=+y x ()6.51213,4.461213=-=+y x y x
说一说它们有什么特点?讲二元一次方程概念。
由学生叙述特点,老师总结归纳。
选一选:
1.下列方程中,是二元一次方程的是( )
A .3x -2y=4z
B .6xy+9=0
C .1x +4y=6
D .4x=24
y - 2、下列方程组中,是二元一次方程组的是( ) (A)⎪⎩
⎪⎨⎧=+=+9114y x y x (B)⎩⎨⎧=+=+75z y y x (C) ⎩⎨⎧=-=6231y x x (D)⎩⎨
⎧=-=-1y x xy y x
知识点2、二元一次方程组的解、解方程组的概念 1、 二元一次方程组的一个解。
2、 解方程组。
检测练习
1.下列各式,属于二元一次方程的个数有( ) ①xy+2x -y=7; ②4x+1=x -y ; ③1x
+y=5; ④x=y ; ⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x
2.下列方程组中,是二元一次方程组的是( )
A .228423119 (23754624)
x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 3.二元一次方程5a -11b=21 ( )
A .有且只有一解
B .有无数解
C .无解
D .有且只有两解
四、提升
1、已知2,3
x y =-⎧⎨=⎩是方程x -ky=1的解,那么k=_______.
2、二元一次方程x+y=5的正整数解有______________.
3、以57
x y =⎧⎨
=⎩为解的一个二元一次方程是_________.
五、课堂小结
通过本节课学习你学到了什么?
六、作业
P5 习题1.1 A1,2,3。