高中数学 第二章 数列 2.5 等比数列的前n项和(二)学案 新人教A版必修5

合集下载

高中数学 2.5等比数列的前n项和(2)导学案 新人教版必修5

高中数学 2.5等比数列的前n项和(2)导学案 新人教版必修5

1. 进一步熟练掌握等比数列的通项公式和前项和公式;复习2:等比数列的通项公式. n a = = .二、新课导学 ※ 学习探究探究任务:等比数列的前n 项和与通项关系 问题:等比数列的前n 项和 n S =1231n n a a a a a -+++++, 1n S -=1231n a a a a -++++ (n ≥2),∴ 1n n S S --= , 当n =1时,1S = .反思:等比数列前n 项和n S 与通项n a 的关系是什么?※ 典型例题例1. 等比数列前n 项,前2n 项,前3n 项的和分别是n S , 2n S ,3n S ,求证:n S ,2n n S S -,32n n S S -也成等比.变式:在等比数列中,已知248,60n n S S ==,求3n S . ※ 动手试试练1. 等比数列{}n a 中,301013S S =,1030140S S +=,求20S . 练2. 求数列1,1+2,1+2+22,1+2+22+23,…的前n 项和S n . 三、当堂检测1. 等比数列{}n a 中,33S =,69S =,则9S =( ). A. 21 B. 12 C. 18 D. 242. 在等比数列中,14a =,q =2,使4000n S >的最小n 值是( ). A. 11 B. 10 C. 12 D. 93. 计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”.如(1101)2表示二进制的数, 将它转换成十进制的形式是32101212021213⨯+⨯+⨯+⨯=,那么将二进制数 A. 922- B. 821- C. 822- D. 721-4. 在等比数列中,11a =,512n a =-,341n S =-,则q = ,n = .5. 等比数列的前n 项和12nn s =-,求通项n a .6. 设a 为常数,求数列a ,2a 2,3a 3,…,na n,…的前n 项和;中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

§2.5等比数列前n项和公式教学设计

§2.5等比数列前n项和公式教学设计

§2.5等比数列前n项和教学设计永吉四中数学郎苗一、教材分析1、教学内容:《等比数列的前n项和》是高中数学人教A版《必修5》第一章《数列》第5节的内容,教学大纲安排本节内容授课时间为两课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导过程并充分揭示公式的结构特征、内在联系及公式的简单应用.2、教材分析:《等比数列的前n项和》是数列这一章中的一个重要内容,就知识的应用价值上看,它是从大量数学问题和现实问题中抽象出来的一个模型,在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等,另外公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.就内容的人文价值来看,等比数列的前n项和公式的探究与推导需要学生观察、归纳、证明,这有助于培养学生的创新思维和探索精神,同时也是培养学生应用意识和数学能力的良好载体.二、学情分析1、知识基础:前几节课学生已学习了等差数列求和,等比数列的定义及通项公式等内容,这为过渡到本节的学习起着铺垫作用.2、认知水平与能力:高二学生初步具有自主探究的能力,能在教师的引导下独立、合作地解决一些问题,但从学生的思维特点看,很容易把本节内容与等差数列前n项和公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有所不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生也往往容易忽略,尤其是在后面使用的过程中容易出错.3、任教班级学生特点:我班学生基础知识还行、思维较活跃,应该能在教师的引导下独立、合作地解决一些问题.三、目标分析教学目标依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标:1.知识与技能理解用错位相减法推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能简单的应用公式.2.过程与方法在推导公式的过程中渗透类比,方程,特殊到一般的数学思想、方法,优化学生思维品质.3.情感态度与价值观通过故事引入,学生自主探索公式,激发他们的求知欲,体验错位相减法所折射出的数学方法美及学好数学的必要性.教学重、难点1.重点:等比数列的前n项和公式的推导和公式的简单应用.2.难点:由研究等比数列的结构特点推导出等比数列的前n项和公式四、教学模式与教法、学法教学模式:本课采用“探究—发现—应用”教学模式.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法引导.学生的学法:突出探究、发现与应用五、教学过程设计数列。

人教A版高中数学必修第二册全册学案

人教A版高中数学必修第二册全册学案

人教A版高中数学必修第二册全册学案人教A版高中数学必修第二册全册学案一、学案概述本学案是以人教A版高中数学必修第二册全册教材为基础,为学生提供全面的学习指导。

旨在帮助学生更好地掌握教材中的知识点,提高学习效率和学习成绩。

二、知识梳理本学案按照教材章节顺序,对各章节知识点进行了梳理。

对于每个知识点,学案提供了相关例题和解析,以便学生加深对知识点的理解和掌握。

第一章集合与函数1.1 集合及其表示方法 1.2 集合之间的关系 1.3 函数及其表示方法 1.4 函数的性质第二章三角函数2.1 正弦、余弦、正切函数的定义与性质 2.2 三角函数的图像及变换方法 2.3 三角函数的应用第三章数列3.1 数列的概念与分类 3.2 等差数列和等比数列的通项公式 3.3 数列的前n项和公式 3.4 数列的应用第四章平面几何4.1 点、线、面的基本概念和性质 4.2 三角形、四边形的性质和判定方法 4.3 多边形、圆、扇形、弓形的性质和面积计算方法 4.4 几何图形的作图方法第五章概率与统计5.1 概率的基本概念和计算方法 5.2 统计的基本概念和方法 5.3 中心极限定理的应用三、学习建议1、学生应根据个人学习情况,制定合理的学习计划,逐步掌握各章节知识点。

2、对于每个知识点,学生应通过多种方式进行练习,例如课堂练习、课后作业、自主解题等,加深对知识点的理解和掌握。

3、学生应注意知识点的归纳和总结,形成自己的知识体系。

4、学生应积极参加课堂讨论和提问,与老师和同学交流学习心得,提高学习效果。

四、总结归纳本学案对人教A版高中数学必修第二册全册教材进行了全面的知识梳理和学习指导,旨在帮助学生更好地掌握教材中的知识点,提高学习效率和学习成绩。

学生应根据个人学习情况,制定合理的学习计划,通过多种方式进行练习,注意知识点的归纳和总结,积极参加课堂讨论和提问,提高学习效果。

外研版高中英语必修3全册学案版本外研版高中英语必修3全册学案版本外语教学与研究出版社出版的《高中英语必修3》是一本针对高中英语教学的教材,旨在帮助学生掌握英语语言知识,提高英语应用能力。

高中数学第二章数列2.5等比数列的前n项和第1课时等比数列的前n项和aa高二数学

高中数学第二章数列2.5等比数列的前n项和第1课时等比数列的前n项和aa高二数学
第十五页,共五十页。
• 『规律总结(zǒngjié)』 在等比数列{an}的五个量a1,q,an,n,Sn 中,a1,q是最基本的元素,当条件与结论间的联系不明显时 ,均可以用a1,q列方程组求解.
第十六页,共五十页。
〔跟踪练习1〕 (2015·重庆文,16)已知等差数列{an}满足a3=2,前3项和S3=92. (1)求{an}的通项公式; (2)设等比数列{bn}满足b1=a1,b4=a15,求{bn}的前n项和Tn.
!果真是这样吗?我们一起来帮他算一算.
第六页,共五十页。
• 1.等比数列(děnɡ bǐ shù liè)的前n项和公式
已知量 公式
首项、公比与项数
Sn=__a_1_n1_a-_1 _q_n_q=1 ___1_-__q____q≠1
首项、末项与公比 Sn=__a_1-_n_aa_1 _nq_q=1
第三十一页,共五十页。
(2)由(1),得bn=an+k及{bn}是公比为2的等比数列,得 Tn=b111--22n=b1(2n-1), 由bn=an+k得Tn=Sn+nk,∴Sn=b1(2n-1)-nk. ∵S6=T4,S5=-9, ∴6331bb11- -65kk= =1-5b91,, 解得k=8.
新课标导学
数学
必修5 ·人教A版
第一页,共五十页。
第二章
数列(shùliè)
等比数列 的前 项和 2.5
(děnɡ bǐ shù liè)
n
课时 第1
(kèshí)
等比数列的前n项和
第二页,共五十页。
1
自主预习学案
2
互动探究学案
3
课时作业学案
第三页,共五十页。
自主预习(yùxí)学案

新人教A版高中数学教材目录(必修+选修)【很全面】

新人教A版高中数学教材目录(必修+选修)【很全面】

人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。

高中数学第二章数列25等比数列的前n项和第1课时等比数列前n项和的求解课件新人教A版必修

高中数学第二章数列25等比数列的前n项和第1课时等比数列前n项和的求解课件新人教A版必修
解:一方面,借款 10 000 元,将此借款以相同的条 件存储 6 个月,则它的本利和为 S1=104(1+0.01)6=104 ×1.016(元).
另一方面,设每个月还贷 a 元,分 6 个月还清,到贷 款还清时,其本利和为
S2=a(1+0.01)5+a(1+0.01)4+…+a=
a[(1+1.001.0-1)1 6-1]=a(1.016-1)×102(元). 由 S1=S2,得 a=11.0.0116×6-1102. 因为 1.016≈1.061,所以 a=11.0.06611×-1102≈1 739. 故每月应支付 1 739 元.
=12+121-1-1212n-1-22nn-+11 =32-22nn++13, 所以 Sn=3-2n2+n 3. 答案:3-2n2+n 3
类型 1 等比数列求和公式的基本运算 [典例 1] 在等比数列{an}中: (1)S2=30,S3=155,求 Sn; (2)a1+a3=10,a4+a6=54,求 S5; (3)a1+an=66,a2an-1=128,Sn=126,求 q. 解:(1)由题意知aa11((11++qq)+=q2)30=,155,
[变式训练] 在等比数列{an}中:
(1)若 a1= 2,an=16 2,Sn=11 2,求 n 和 q; (2)已知 S4=1,S8=17,求 an.
解:(1)由 Sn=a11--aqnq得 112=Βιβλιοθήκη 2-16 1-q2q,
所以 q=-2,
又由 an=a1qn-1 得 16 2= 2(-2)n-1, 所以 n=5.
又 Sn=a11--aqnq=126, 所以 q 为 2 或12. 归纳升华 1.在等比数列{an}的五个量 a1,q,an,n,Sn 中, 已知其中的三个量,就能求出另两个量,这是方程思想 与整体思想在数列中的具体应用. 2.在解决与前 n 项和有关的问题时,首先要判断公 比 q 是否等于 1,若两种情况都有可能,则要分类讨论.

高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修5

高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修5

高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修51.等比数列{a n}的各项都是正数,若a1=81,a5=16,则它的前5项和是( B )(A)179 (B)211 (C)248 (D)275解析:由16=81×q4,q>0得q=,所以S5==211.故选B.2.在等比数列{a n}中,若a4,a8是方程x2-4x+3=0的两根,则a6的值是( A )(A)(B)-(C)±(D)±3解析:依题意得,a4+a8=4,a4a8=3,故a4>0,a8>0,因此a6>0(注:在一个实数等比数列中,奇数项的符号相同,偶数项的符号相同),a6==.故选A.3.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1等于( C )(A)(B)-(C)(D)-解析:设等比数列{a n}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,所以q2=9,又a5=a1q4=9,所以a1=.故选C.4.等比数列{a n}中,a3=3S2+2,a4=3S3+2,则公比q等于( C )(A)2 (B)(C)4 (D)解析:因为a3=3S2+2,a4=3S3+2,所以a4-a3=3(S3-S2)=3a3,即a4=4a3,所以q==4,故选C.5.等比数列{a n}的前n项和S n=3n-a,则实数a的值为( B )(A)0 (B)1 (C)3 (D)不存在解析:法一当n≥2时,a n=S n-S n-1=3n-3n-1=2·3n-1,==3.又a1=S1=3-a,a2=2×3=6,则=.因为{a n}是等比数列,所以=3,得a=1.故选B.法二由等比数列前n项和公式知,3n系数1与-a互为相反数,即-a=-1,则a=1.故选B.6.在14与之间插入n个数组成等比数列,若各项和为,则数列的项数为( B )(A)4 (B)5 (C)6 (D)7解析:设公比为q,由等比数列的前n项和公式及通项公式得解之,得则数列的项数为5.故选B.7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( C )(A)24里(B)12里(C)6里(D)3里解析:记每天走的路程里数为{a n},易知{a n}是公比q=的等比数列,S6=378,S6==378,所以a1=192,所以a6=192×=6,故选C.8.设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析:由3S1,2S2,S3成等差数列知,4S2=3S1+S3,可得a3=3a2,所以公比q=3,故等比数列通项a n=a1q n-1=3n-1.答案:3n-19.在等比数列{a n}中,已知a1+a2+a3=1,a4+a5+a6=-2,则该数列的前15项和S15= .解析:记b1=a1+a2+a3,b2=a4+a5+a6,…,b5=a13+a14+a15,依题意{b n}构成等比数列,其首项b1=1,公比为q==-2,则{b n}的前5项和即为{a n}的前15项和S15==11.答案:1110.在等比数列{a n}中,公比q=,且log2a1+log2a2+…+log2a10=55,则a1+a2+…+a10= .解析:据题意知log2(·q1+2+…+9)=log2(·q45)=55,即=2100.又a n>0,所以a1=210,所以S10=211-2.答案:211-211.已知等比数列前20项和是21,前30项和是49,则前10项和是.解析:由S10,S20-S10,S30-S20成等比数列,所以(S20-S10)2=S10·(S30-S20),即(21-S10)2=S10(49-21).所以S10=7或S10=63.答案:7或6312.已知数列{a n} 的前n项和为S n,a1=1,S n=2a n+1,求S n的值.解:因为S n=2a n+1,所以n≥2时,S n-1=2a n.因为a n=S n-S n-1=2a n+1-2a n,所以3a n=2a n+1,所以=.又因为S1=2a2,所以a2=,所以=,所以{a n}从第二项起是以为公比的等比数列.所以S n=a1+a2+a3+…+a n=1+=()n-1.13.知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.解:(1)设等差数列{a n}的公差为d,由题意得d===3,所以a n=a1+(n-1)d=3n(n=1,2,…).设等比数列{b n-a n}的公比为q,由题意得q3===8,解得q=2.所以b n-a n=(b1-a1)q n-1=2n-1.从而b n=3n+2n-1(n=1,2,…).(2)由(1)知b n=3n+2n-1(n=1,2,…).数列{3n}的前n项和为n(n+1),数列{2n-1}的前n项和为=2n-1.所以数列{b n}的前n项和为n(n+1)+2n-1.14.已知数列{a n}满足a1=1,a n+1=3a n+1.(1)求证是等比数列,并求{a n}的通项公式;(2)求证++…+<.证明:(1)由a n+1=3a n+1得a n+1+=3(a n+).又a1+=,所以是首项为,公比为3的等比数列.所以a n+=,因此{a n}的通项公式为a n=.(2)由(1)知=.因为当n≥1时,3n-1≥2×3n-1,所以≤.于是++…+≤1++…+=(1-)<.所以++…+<.15.数列{a n}中,已知对任意n∈N*,a1+a2+a3+…+a n=3n-1,则+++…+等于( B )(A)(3n-1)2(B)(9n-1)(C)9n-1 (D)(3n-1)解析:因为a1+a2+…+a n=3n-1,n∈N*,n≥2时,a1+a2+…+a n-1=3n-1-1,所以当n≥2时,a n=3n-3n-1=2·3n-1,又n=1时,a1=2适合上式,所以a n=2·3n-1,故数列{}是首项为4,公比为9的等比数列.因此++…+==(9n-1).故选B.16.已知S n是等比数列{a n}的前n项和,若存在m∈N*,满足=9,=,则数列{a n}的公比为( B )(A)-2 (B)2 (C)-3 (D)3解析:设公比为q,若q=1,则=2,与题中条件矛盾,故q≠1.因为==q m+1=9,所以q m=8.所以==q m=8=,所以m=3,所以q3=8,所以q=2.故选B.17.设各项都是正数的等比数列{a n},S n为前n项和且S10=10,S30=70,那么S40= .解析:依题意,知数列{a n}的公比q≠-1,数列S10,S20-S10,S30-S20,S40-S30成等比数列,因此有(S20-S10)2=S10(S30-S20),即(S20-10)2=10(70-S20),故S20=-20或S20=30;又S20>0,因此S20=30,S20-S10=20,S30-S20=40,故S40-S30=80,S40=150.答案:15018.已知等差数列{a n}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{b n}的第2项,第3项,第4项.(1)求数列{a n}与{b n}的通项公式;(2)设数列{c n}对于任意n∈N*均有+++…+=a n+1成立,求c1+c2+c3+…+c2 015+c2 016的值. 解:(1)依题意得b2=a2=a1+d,b3=a5=a1+4d,b4=a14=a1+13d,由等比中项得(1+4d)2=(1+d)(1+13d),解得d=2或d=0(舍去),因此a n=1+2(n-1)=2n-1,b2=3,b3=9,b4=27,故数列{b n}是首项为1,公比为3的等比数列.因此b n=3n-1.(2)因为+++…+=a n+1,所以当n≥2时,+++…+=a n,两式作差得=a n+1-a n=d,又d=2,故c n=2×3n-1,又=a2,所以c1=3,因此数列c n=。

人教A版高中数学必修5第二章 数列2.5 等比数列的前n项和导学案(2)

人教A版高中数学必修5第二章 数列2.5 等比数列的前n项和导学案(2)

高中数学 2.5等比数列的前n 项和(2)学案新人教A 版必修5学习目标1. 进一步熟练掌握等比数列的通项公式和前n 项和公式;2. 会用公式解决有关等比数列的1,,,,n n S a a n q 中知道三个数求另外两个数的一些简单问题.学习重难点1.重点: 通项公式和前n 项和公式的掌握2.难点:等比数列的1,,,,n n S a a n q 中知三求二的应用一、课前回顾复习1:等比数列的前n 项和公式.当1q ≠时,n S = = 当q =1时,n S = 复习2:等比数列的通项公式. n a = = .二、新课探究 ※ 学习研究探究任务:等比数列的前n 项和与通项关系 问题:等比数列的前n 项和n S =1231n n a a a a a -+++++L , 1n S -=1231n a a a a -++++L (n ≥2),∴ 1n n S S --= , 当n =1时,1S = . 反思:等比数列前n 项和n S 与通项n a 的关系是什么?※ 试一试习1 数列{}n a 的前n 项和1n n S a =-(a ≠0,a ≠1),试证明数列{}n a 是等比数列.变式:已知数列{}n a 的前n 项和n S ,且142n n S a +=+, 11a =,设12n n n b a a +=-,求证:数列{}n b 是等比数列.习2 等比数列前n 项,前2n 项,前3n 项的和分别是n S ,2n S ,3n S ,求证:n S ,2n n S S -,32n n S S -也成等比.变式:在等比数列中,已知248,60n n S S ==,求3n S .※ 模仿练习练1. 等比数列{}n a 中,301013S S =,1030140S S +=,求20S .练2. 求数列1,1+2,1+2+22,1+2+22+23,…的前n 项和S n .三、总结提升 ※ 学习小结1. 等比数列的前n 项和与通项关系;2. 等比数列前n 项,前2n 项,前3n 项的和分别是n S ,2n S ,3n S ,则数列n S ,2n n S S -,32n n S S -也成为等比数列. ※ 知识拓展1. 等差数列中,m n m n S S S mnd +=++;2. 等比数列中,n m m n n m m n S S q S S q S +=+=+. 当堂检测1. 等比数列{}n a 中,33S =,69S =,则9S =( ). A. 21 B. 12 C. 18 D. 242. 在等比数列中,14a =,q =2,使4000n S >的最小n 值是( ). A. 11 B. 10 C. 12 D. 93. 计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”.如(1101)2表示二进制的数,将它转换成十进制的形式是32101212021213⨯+⨯+⨯+⨯=,那么将二进制数(11111111)2转换成十进制的形式是( ).A. 922-B. 821-C. 822-D. 721-4. 在等比数列中,若332422S a S a +=+,则公比q = .5. 在等比数列中,11a =,512n a =-,341n S =-,则q = ,n = . 课后作业1. 等比数列的前n 项和12n n s =-,求通项n a .2. 设a为常数,求数列a,2a2,3a3,…,na n,…的前n项和;课后反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.5 等比数列的前n 项和(二)[学习目标] 1.熟练应用等比数列前n 项和公式的有关性质解题.2.应用方程的思想解决与等比数列前n 项和有关的问题.知识点一 等比数列前n 项和的变式1.等比数列{a n }的前n 项和为S n ,当公比q ≠1时,S n =a 1(1-q n )1-q =a 1(q n -1)q -1=a 1-a n q1-q =a 1q n q -1-a 1q -1; 当q =1时,S n =na 1.2.当公比q ≠1时,等比数列的前n 项和公式是S n =a 1(1-q n )1-q ,它可以变形为S n =-a 11-q·q n+a 11-q,设A =a 11-q,上式可写成S n =-Aq n+A .由此可见,非常数列的等比数列的前n 项和S n 是由关于n 的一个指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数. 当公比q =1时,因为a 1≠0,所以S n =na 1是n 的正比例函数(常数项为0的一次函数). 思考 在数列{a n }中,a n +1=ca n (c 为非零常数)且前n 项和S n =3n -1+k ,则实数k 等于________. 答案 -13解析 由题{a n }是等比数列, ∴3n的系数与常数项互为相反数, 而3n的系数为13,∴k =-13.知识点二 等比数列前n 项和的性质1.连续m 项的和(如S m ,S 2m -S m ,S 3m -S 2m )仍构成等比数列.(注意:q ≠-1或m 为奇数) 2.S m +n =S m +q mS n (q 为数列{a n }的公比). 3.若{a n }是项数为偶数、公比为q 的等比数列,则S 偶S 奇=q . 思考 在等比数列{a n }中,若a 1+a 2=20,a 3+a 4=40,则S 6等于( ) A .140 B .120 C .210 D .520 答案 A解析 S 2=20,S 4-S 2=40,∴S 6-S 4=80, ∴S 6=S 4+80=S 2+40+80=140.题型一 等比数列前n 项和的性质例1 (1)等比数列{a n }中,S 2=7,S 6=91,则S 4=______.(2)等比数列{a n }共有2n 项,其和为-240,且(a 1+a 3+…+a 2n -1)-(a 2+a 4+…+a 2n )=80,则公比q =____. 答案 (1)28 (2)2解析 (1)∵数列{a n }是等比数列, ∴S 2,S 4-S 2,S 6-S 4也是等比数列, 即7,S 4-7,91-S 4也是等比数列, ∴(S 4-7)2=7(91-S 4), 解得S 4=28或S 4=-21.又∵S 4=a 1+a 2+a 3+a 4=a 1+a 2+a 1q 2+a 2q 2=(a 1+a 2)(1+q 2)=S 2·(1+q 2)>0, ∴S 4=28.(2)由题S 奇+S 偶=-240,S 奇-S 偶=80, ∴S 奇=-80,S 偶=-160, ∴q =S 偶S 奇=2. 反思与感悟 解决有关等比数列前n 项和的问题时,若能恰当地使用等比数列前n 项和的相关性质,常常可以避繁就简.不仅可以减少解题步骤,而且可以使运算简便,同时还可以避免对公比q 的讨论.解题中把握好等比数列前n 项和性质的使用条件,并结合题设条件寻找使用性质的切入点,方可使“英雄”有用武之地.跟踪训练1 (1)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6等于( ) A .2 B.73C.83 D .3 答案 B解析 方法一 因为数列{a n }是等比数列,所以S 6=S 3+q 3S 3,S 9=S 6+q 6S 3=S 3+q 3S 3+q 6S 3,于是S 6S 3=(1+q 3)S 3S 3=3,即1+q 3=3,所以q 3=2.于是S 9S 6=1+q 3+q 61+q 3=1+2+41+2=73. 方法二 由S 6S 3=3,得S 6=3S 3.因为数列{a n }是等比数列,且由题意知q ≠-1,所以S 3,S 6-S 3,S 9-S 6也成等比数列,所以(S 6-S 3)2=S 3(S 9-S 6),解得S 9=7S 3,所以S 9S 6=73.(2)一个项数为偶数的等比数列,各项之和为偶数项之和的4倍,前3项之积为64,求通项公式.解 设数列{a n }的首项为a 1,公比为q ,全部奇数项、偶数项之和分别记为S 奇、S 偶,由题意知S 奇+S 偶=4S 偶,即S 奇=3S 偶.∵数列{a n }的项数为偶数,∴q =S 偶S 奇=13. 又a 1·a 1q ·a 1q 2=64,∴a 31·q 3=64,即a 1=12.故所求通项公式为a n =12·⎝ ⎛⎭⎪⎫13n -1.题型二 等比数列前n 项和的实际应用例2 小华准备购买一台售价为5 000元的电脑,采用分期付款方式,并在一年内将款全部付清.商场提出的付款方式为:购买2个月后第1次付款,再过2个月后第2次付款,…,购买12个月后第6次付款,每次付款金额相同,约定月利率为0.8%,每月利息按复利计算,求小华每期付款金额是多少.解 方法一 设小华每期付款x 元,第k 个月末付款后的欠款本利为A k 元,则:A 2=5 000×(1+0.008)2-x =5 000×1.0082-x , A 4=A 2(1+0.008)2-x =5 000×1.0084-1.0082x -x ,…A 12=5 000×1.00812-(1.00810+1.0088+…+1.0082+1)x =0,解得x = 5 000×1.008121+1.0082+1.0084+…+1.00810=5 000×1.008121-(1.0082)61-1.0082≈880.8. 故小华每期付款金额约为880.8元.方法二 设小华每期付款x 元,到第k 个月时已付款及利息为A k 元,则:A 2=x ;A 4=A 2(1+0.008)2+x =x (1+1.0082);A 6=A 4(1+0.008)2+x =x (1+1.0082+1.0084);…A 12=x (1+1.0082+1.0084+1.0086+1.0088+1.00810).∵年底付清欠款,∴A 12=5 000×1.00812,即5 000×1.00812=x (1+1.0082+1.0084+…+1.00810), ∴x = 5 000×1.008121+1.0082+1.0084+…+1.00810≈880.8.故小华每期付款金额约为880.8元.反思与感悟 分期付款问题是典型的求等比数列前n 项和的应用题,此类题目的特点是:每期付款数相同,且每期间距相同.解决这类问题有两种处理方法,如本题中方法一是按欠款数计算,由最后欠款为0列出方程求解;而方法二是按付款数计算,由最后付清全部欠款列方程求解.跟踪训练2 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少15,本年度当地旅游收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增长14.设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n的表达式.解 第1年投入800万元,第2年投入800×⎝ ⎛⎭⎪⎫1-15万元,…,第n 年投入800×⎝ ⎛⎭⎪⎫1-15n -1万元,所以总投入a n =800+800×⎝ ⎛⎭⎪⎫1-15+ (800)⎝ ⎛⎭⎪⎫1-15n -1=4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n (万元).同理,第1年收入400万元,第2年收入400×⎝ ⎛⎭⎪⎫1+14万元,…,第n 年收入400×⎝ ⎛⎭⎪⎫1+14n -1万元.所以总收入b n =400+400×⎝ ⎛⎭⎪⎫1+14+ (400)⎝ ⎛⎭⎪⎫1+14n -1=1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1.综上,a n =4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n ,b n =1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1.题型三 新情境问题例3 定义:若数列{A n }满足A n +1=A 2n ,则称数列{A n }为“平方数列”.已知数列{a n }中,a 1=2,点(a n ,a n +1)在函数f (x )=2x 2+2x 的图象上,其中n 为正整数. (1)证明:数列{2a n +1}是“平方数列”,且数列{lg(2a n +1)}为等比数列;(2)设(1)中“平方数列”的前n 项之积为T n ,则T n =(2a 1+1)(2a 2+1)·…·(2a n +1),求数列{a n }的通项及T n 关于n 的表达式;(3)对于(2)中的T n ,记b n =log2a n +1T n ,求数列{b n }的前n 项和S n ,并求使S n >4 024的n 的最小值.(1)证明 由条件得a n +1=2a 2n +2a n , 2a n +1+1=4a 2n +4a n +1=(2a n +1)2. ∴数列{2a n +1}是“平方数列”.∵lg(2a n +1+1)=lg(2a n +1)2=2lg(2a n +1), 且lg(2a 1+1)=lg 5≠0, ∴lg (2a n +1+1)lg (2a n +1)=2,∴{lg(2a n +1)}是首项为lg 5,公比为2的等比数列. (2)解 ∵lg(2a 1+1)=lg 5,∴lg(2a n +1)=2n -1lg 5.∴2a n +1=52n -1,∴a n =12(52n -1-1).∵lg T n =lg(2a 1+1)+lg(2a 2+1)+…+lg(2a n +1) =lg 5(1-2n)1-2=(2n-1)lg 5, ∴T n =52n-1.(3)解 ∵b n =log2a n +1T n =lg T n lg (2a n +1)=(2n-1)lg 52n -1lg 5=2n-12n -1=2-⎝ ⎛⎭⎪⎫12n -1,∴S n =2n -⎣⎢⎡⎦⎥⎤1+12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1=2n -1-⎝ ⎛⎭⎪⎫12n1-12=2n -2+2⎝ ⎛⎭⎪⎫12n.由S n >4 024,得2n -2+2⎝ ⎛⎭⎪⎫12n>4 024, 即n +⎝ ⎛⎭⎪⎫12n>2 013. 当n ≤2 012时,n +⎝ ⎛⎭⎪⎫12n<2 013; 当n ≥2 013时,n +⎝ ⎛⎭⎪⎫12n>2 013. ∴n 的最小值为2 013.反思与感悟 数列创新题的特点及解题关键 特点:叙述复杂,关系条件较多,难度较大. 解题关键:读清条件要求,理清关系,逐个分析.跟踪训练3 记U ={1,2,…,100}.对数列{a n }(n ∈N *)和U 的子集T ,若T =∅,定义S T =0;若T ={t 1,t 2,…,t k },定义S T =at 1+at 2+…+at k .例如:T ={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N *)是公比为3的等比数列,且当T ={2,4}时,S T =30.(1)求数列{a n }的通项公式;(2)对任意正整数k (1≤k ≤100),若T ⊆{1,2,…,k },求证:S T <a k +1; (3)设C ⊆U ,D ⊆U ,S C ≥S D ,求证:S C +S C ∩D ≥2S D . (1)解 当T ={2,4}时,S T =a 2+a 4=a 2+9a 2=30, ∴a 2=3,a 1=a 23=1,故a n =a 1qn -1=3n -1.(2)证明 对任意正整数k (1≤k ≤100). 由于T ⊆{1,2,…,k },则S T ≤a 1+a 2+a 3+…+a k =1+3+32+…+3k -1=3k-12<3k =a k +1.(3)证明 设A =∁C (C ∩D ),B =∁D (C ∩D ), 则A ∩B =∅,S C =S A +S C ∩D ,S D =S B +S C ∩D ,S C +S C ∩D -2S D =S A -2S B ,∴S C +S C ∩D ≥2S D 等价于S A ≥2S B . 由条件S C ≥S D 可得S A ≥S B .①若B =∅,则S B =0,所以S A ≥2S B 成立, ②若B ≠∅,由S A ≥S B 可知A ≠∅,设A 中的最大元素为I ,B 中的最大元素为m , 若m ≥I +1,则由(2)得S A <S I +1≤a m ≤S B ,矛盾. 又∵A ∩B =∅,∴I ≠m ,∴I ≥m +1,∴S B ≤a 1+a 2+…+a m =1+3+32+…+3m -1<a m +12≤a I 2≤S A2, 即S A >2S B 成立.综上所述,S A ≥2S B . 故S C +S C ∩D ≥2S D 成立.1.等比数列{a n }中,a 1a 2a 3=1,a 4=4,则a 2+a 4+a 6+…+a 2n 等于( ) A .2n-1 B.4n-13C.1-(-4)n 5D.1-(-2)n3答案 B解析 由a 1a 2a 3=1得a 32=1,∴a 2=1, 又∵a 4=4,∴a 4a 2=4.∴数列a 2,a 4,a 6,…,a 2n 是首项为1, 公比为4的等比数列.∴a 2+a 4+a 6+…+a 2n =1-4n 1-4=4n-13.2.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于( ) A .3 B .4 C .5 D .6 答案 D解析 设每天植树棵数为{a n },则{a n }是等比数列, ∴a n =2n (n ∈N *,n 为天数). 由题意得2+22+23+ (2)≥100, ∴2n-1≥50,∴2n ≥51, ∴n ≥6.∴需要的最少天数n =6.3.等比数列{a n }的前m 项和为4,前2m 项和为12,则它的前3m 项和是( ) A .28 B .48 C .36 D .52 答案 A解析 易知S m =4,S 2m -S m =8, ∴S 3m -S 2m =16,∴S 3m =12+16=28.4.已知数列{a n }是等比数列,S n 是其前n 项的和,a 1,a 7,a 4成等差数列.求证:2S 3,S 6,S 12-S 6成等比数列.证明 设等比数列{a n }的公比为q ,由题意得2a 7=a 1+a 4, 即2a 1·q 6=a 1+a 1·q 3, ∴2q 6-q 3-1=0.令q 3=t ,则2t 2-t -1=0, ∴t =-12或t =1,即q 3=-12或q 3=1.当q 3=1时,2S 3=6a 1,S 6=6a 1,S 12-S 6=6a 1, ∴S 26=2S 3·(S 12-S 6),∴2S 3,S 6,S 12-S 6成等比数列.当q 3=-12时,2S 3=2×a 1(1-q 3)1-q =2a 1×321-q =3a 11-q ,S 6=a 1(1-q 6)1-q =3a 141-q,S 12-S 6=a 7(1-q 6)1-q =a 1·q 6(1-q 6)1-q =a 14×341-q,∴S 26=2S 3·(S 12-S 6),∴2S 3,S 6,S 12-S 6成等比数列. 综上可知,2S 3,S 6,S 12-S 6成等比数列.等比数列中用到的数学思想1.分类讨论的思想:(1)利用等比数列前n 项和公式时要分公比q =1和q ≠1两种情况讨论; (2)研究等比数列的单调性时应进行讨论:当a 1>0,q >1或a 1<0,0<q <1时为递增数列;当a 1<0,q >1或a 1>0,0<q <1时为递减数列;当q <0时为摆动数列;当q =1时为常数列.2.函数的思想:等比数列的通项a n =a 1q n -1=a 1q·q n(q >0且q ≠1)常和指数函数相联系;等比数列前n 项和S n =a 1q -1·(q n-1)(q ≠1).设A =a 1q -1,则S n =A (q n-1)也与指数函数相联系.3.整体思想:应用等比数列前n 项和时,常把q n,a 11-q当成整体求解.。

相关文档
最新文档