初三数学总复习图形的相似
数学初三必考知识点归纳

数学初三必考知识点归纳这里按照五个大类把初三的全部知识点都整理一遍,一共二十八个知识点,如下所示:一、相似三角形(7个考点)考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3:相似三角形的概念考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4:相似三角形的判定和性质及其应用考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5:三角形的重心考核要求:知道重心的定义并初步应用。
考点6:向量的有关概念考点7:向量的加法、减法、实数与向量相乘、向量的线性运算考核要求:掌握实数与向量相乘、向量的线性运算二、锐角三角比(2个考点)考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点9:解直角三角形及其应用考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
三、二次函数(4个考点)考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义。
考点11:用待定系数法求二次函数的解析式考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
初三数学第九章图形的相似解题思路方法探索二(过渡法)

初三数学第九章图形的相似解题思路方法探索二(过渡法)有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明.等量过渡法(等线段代换法)遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。
然后再应用三点定形法确定相似三角形。
只要代换得当,问题往往可以得到解决。
当然,还要注意最后将代换的线段再代换回来。
例1:如图3,△ABC中,AD平分∠BAC,AD的垂直平分线FE交BC的延长线于E.求证:DE2=BE·CE.等比过渡法(等比代换法)当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代换,然后再用三点定形法来确定三角形。
例2:如图4,在△ABC中,∠BAC=90°,AD⊥BC,E是AC的中点,ED交AB的延长线于点F.求证:AB DF AC AF.等积过渡法(等积代换法)思考问题的基本途径是:用三点定形法确定两个三角形,然后通过三角形相似推出线段成比例;若三点定形法不能确定两个相似三角形,则考虑用等量(线段)代换,或用等比代换,然后再用三点定形法确定相似三角形,若以上三种方法行不通时,则考虑用等积代换法。
例3:如图5,在△ABC中,∠ACB=90°,CD是斜边AB上的高,图5 AE F B D G C G 是DC 延长线上一点,过B 作BE ⊥AG ,垂足为E ,交CD 于点F .求证:CD 2=DF·DG .比例式和等积式的证明方法:常用“三点定形法”、等线段替换法、中间比过渡法、面积法等.若比例式或等积式所涉及的线段在同一直线上时,应将线段比“转移”(必要时需添辅助线),使其分别构成两个相似三角形来证明. 例1 如图5在△ABC 中,AD 、BE 分别是BC 、AC 边上的高,DF ⊥AB 于F ,交AC 的延长线于H ,交BE 于G ,求证:(1)FG / F A =FB / FH (2)FD 是FG 与FH 的比例中项.例2 如图在△ABC 中,AD 是BC 边上的中线,M 是AD 的中点,CM 的延长线交AB 于N .求:AN :AB 的值;例3 如图过△ABC 的顶点C 任作一直线与边AB 及中线AD 分别交于点F 和E .过D作DM ∥FC 交AB 于点M .(1)若S △AEF :S 四边形MDEF =2:3,求AE :ED ; (2)求证:AE ×FB =2AF ×EDB EA C DM N 图 C E DA FM B。
北师版初三数学上册第四章相似图形知识点讲解

九年级(上)第四章图形的相像(1)形态一样的图形叫相像图形,在相像多边形中,最简洁的是相像三角形.(2) 相像多边形:假如两个边数一样的多边形的对应角相等,对应边成比例,这两个多边形叫做相像多 边形.相像多边形对应边长度的比叫做相像比.一.成比例线段(1)线段的比假如选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。
(2)成比例线段在四条线段d c b a ,,,中,假如b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有依次的,假如说a ,d c b ,,成比例,那么应得比例式为:b a =dc . ②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项,假如b=c ,即 a b bd =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
③推断给定的四条线段是否成比例的方法:第一排:现将四条线段的长度统一单位,再按大小依次排列好;第二算:分别算出前两条线的长度之比与后两条线段的长度之比;第三判:若两个比相等,则这四条线段是成比例线段,否则不是(3)比例的性质(留意性质立的条件:分母不能为0) 根本性质:① a:b=c:d 则有 ad=bc (两外项之积等于两内向之积);② ②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项(3)合、分比性质:a c abcd b d b d ±±=⇔=. (4)等比性质:假如)0(≠++++====n f d b nm f e d c b a ,那么b an f d b m e c a =++++++++ . 注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以削减未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③ 可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . (4)比例题常用的方法有:比例合分比法,比例等比法,设参法,连等设k 法,消元法二,平行线分线段成比例(1)平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等. 留意:是所截的线段成比例,而跟平行线无关,所以比例线段中不行能 有AD,BE,CF 的比例关系(2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即12AC BC AB AC == 简记为:长短=全长注:黄金三角形:顶角是360的等腰三角形。
初三数学图形的相似知识精讲

初三数学图形的相似【本讲主要内容】图形的相似包括比例线段,比例性质,相似图形,相似多边形,相似多边形的性质,相似比。
【知识掌握】【知识点精析】1. 在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做成比例线段,简称比例线段,记作abcd=或a:b=c:d。
线段a、d叫做比例外项,线段b、c叫做比例内项,线段d叫做a、b、c的第四比例项。
如果abbc=或a:b=b:c,那么线段b叫做线段a、c的比例中项。
2. 比例性质(1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d。
特殊地,如果a:b=b:c,那么b2=ac;如果b2=ac,那么a:b=b:c。
(2)合比性质如果abcd=,那么a bbc dd+=+;(3)分比性质如果abcda bbc dd=-=-,那么。
(4)等比性质如果abcdefmnb d f n===++++≠……(…)那么a c e mb d f nab ++++++++=……3. 形状相同的图形叫做相似图形。
4. 形状相同的多边形叫做相似多边形,相似多边形对应边的比叫做相似比。
5. 相似多边形的对应角相等,对应边的比相等。
6. 如果两个多边形对应角相等,对应边的比相等,那么这两个多边形相似。
【解题方法指导】例1. 已知:abcd==23,求a cb d++=___________。
分析:利用等比性质求得。
解:∵abcd =∴a cb d a b++= 又∵a b =23∴a c b d ++=23评析:等比性质可灵活运用。
例2. 已知a b m n a b a b=+-=,则____________。
分析:可由合比性质及分比性质求得。
解:∵a b m n= ∴a b b m n n+=+ a b b m n n-=- ∴a b b a b b m n n m n n+÷-=+÷- ∴a b a b m n m n+-=+- 评析:这里是由合比性质及分比性质相除得到的,体现了它的活用。
初三数学第四章图形的相似章节练习题及答案

初三数学第四章图形的相似章节练习题及答案刚刚学习过图形的相似这一章节的学生们,大家都掌握了吗下面为大家带来一份初三数学上第四章图形的相似的章节练习题,文末附有答案,有需要的同学可以看一看,更多内容欢迎关注!知识点 1 平行线分线段成比例定理1. 如图,已知直线11 II 12 II 13 , AB=4 BC=6 DE=3 则EF为()A.2B.4.5C.6D.82. 如图,已知11 II 12 II 13,如果DE: EF=3: 4, BC=8 那么AB 的长是()A.323B.6C.3D.1633. (乐山中考)如图,1 1 I 12I 13,两条直线与这三条平行线分别交于点A B、C和D E、F.已知ABBC=32则DEDF勺值为()A.32B.23C.25D.354. 如图,已知11 II 12 II 13 , AB=3 DE=2 EF=4,求AC的长.知识点 2 平行线分线段成比例定理勺推论5. (成都中考)如图,在厶ABC中, DE// BC AD=6 DB=3 AE=4 则EC的长为()A.1B.2C.3D.46. 如图,在厶ABC中 , D, E分别在AB, AC上,且DE// BC,贝卩下列不成立的比例式是()A.ADDB=AECEB.ADDB=DEBCC.ADAB=AEACD.ABDB=ACCE7. 已知线段a、b、c,求作线段x使ax二be,下列每个图中的两条虚线都是平行线,则作法正确的是()8. 如图,已知EG/ BC GF// DC, AE=3 EB=2 AF=6 求AD的值.中档题9. (嘉兴中考)如图,直线11 // 12 // 13 ,直线AC分别交11 ,12 ,13 于点A, B,C;直线DF分别交11,12,13 于点D,E,F,AC与DF相交于点H,且AH=2 HB=1 BC=5则DEEF的值为()A.12B.2C.25D.3510. (包头中考)如图,在厶ABC中,点D, E,F分别在边AB AC BC上,且DE// BC EF// AB.若AD=2BD 贝卩CFBF的值为()A.12B.13C.14D.2311. (扬州中考)如图练习本中的横格线都平行且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上,若线段AB=4cm 则线段BC= _______ cm.12. 如图已知AD/ BE/ CF 它们依次交直线11 、12 于点A、B、C和点D E、F,如果AB=6 BC=8 DF=21,求DE的长.13. 如图,F是口ABCD勺边CD上一点,连接BF并延长交AD的延长线于点 E. 求证:DEAE=DFDC.14. 如图,在厶ABC中 , DF// AC DE// BC.求证:AE?CB=AC?CF.综合题15. 如图,在矩形ABCD K E是边CB延长线上的点,且EB=ABDE与AB相交于点F, AD=2 CD=1求AE及DF的长.参考答案1.B2.B3.D4. v 11 // 12 // 13,二ABBC=DEEF卩3BC=24「. BC=6.••• AC=AB+BC=3+6=9. 5.B 6.B 7.A 8. v EG/ BCAEEB=AGG又v GF // DC 二AGGC=AFF D.AEEB=AFFD卩32=6FD.「. FD=4.「.AD=AF+FD=10.9.D 10.A 11.12 12. 设DE为x,贝S EF=21-x. v AD// BE// CF, • ABBC 二DEE即68=x21-x.解得x=9.经检验,x=9是原分式方程的解,•DE=9. 13.证明:v 四边形ABCD是平行四边形,• CD// AB AD// BC. •DEAE=EFE同理可得EFEB=DFDC. DEAE=DFDC. 14证明:v DE// BC • ADAB二AEAC.DF// AC • ADAB=CFCB. AEAC=CFCB.AE?CB二AC?CF.5. v 四边形ABCD^矩形,且AD=2CD=1 • BC=AD=2 AB=CD=1 / ABC M C=90°,AB// DC;. EB=AB=1 在Rt△ ABE中, AE 二AB2+BE2二在Rt△ DCE中, DE二DC2+CE2=12+32=T0.AB// DC • EFDF二EBBC=1 设EF二x,贝S DF=2x.v EF+DF=DE • x+2x=10. • x=103.•DF=2x=2310.。
初三相似形的知识点总结

初三相似形的知识点总结1.相似形的定义相似形是指形状相似但大小不同的两个或多个图形。
其中,相似形的边对应成比例,角度相等。
2.判断相似形的条件判断两个图形是否相似,需要满足以下条件:对应角相等:两个图形中对应的角度相等。
对应边成比例:两个图形中对应的边的比例相等。
3.相似比例相似比例,又称为比例系数,是指两个相似形对应边的长度之比。
相似比例可以用 a:b 或 a/b 表示,其中 a 和 b 是两个相似形对应边的长度。
相似比例的性质:如果两个相似形的相似比例为 a:b,那么它们的面积比例为 a^2:b^2,体积比例为 a^3:b^3.4.相似形的性质相似形具有以下性质:对应角相等性质:两个相似形中,对应角相等。
对应边成比例性质:两个相似形中,对应边的比例相等。
面积比例性质:两个相似形的面积比例等于相似比例的平方。
周长比例性质:两个相似形的周长比例等于相似比例。
5.相似形的应用相似形的知识在几何学中具有广泛的应用,包括:几何图形的放大和缩小。
图形的刻画和构造。
解决实际问题中的比例关系。
6.常见的相似形在初三数学中,我们常见的相似形包括:直角三角形:具有相似比例的直角三角形,即两条直角边的长度比相等。
等腰三角形:具有相似比例的等腰三角形,即等腰边的长度比相等。
圆:具有相似比例的圆,即半径的长度比相等。
7.相似形的证明在数学证明中,证明两个图形相似一般有两种方法:AAA相似三角形定理:两个三角形对应角相等,则这两个三角形相似。
AA相似比例定理:两个三角形对应两角相等,则这两个三角形相似。
8.相似形的应用举例在地图上测量长距离时,可以利用相似形的原理,通过测量一段短距离得出较长距离的长度。
在建筑设计中,通过对建筑物的模型进行放大和缩小,可以控制建筑物的比例和尺寸。
在工程测量中,利用相似形的性质可以计算水池或容器的容积,判断物体的体积。
综上所述,相似形知识是初三数学中重要的一部分,它有着广泛的应用和深远的意义。
初三数学图形的相似试题答案及解析

初三数学图形的相似试题答案及解析1. 如图,小明用长为3m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB=12m ,则旗杆AB 的高为 m .【答案】9.【解析】解:由题意得,CD ∥AB , ∴△OCD ∽△OAB , ∴=, 即=,解得AB=9. 故答案为:9.【考点】相似三角形的应用.2. 如图,已知直线l 1∥l 2,线段AB 在直线l 1上,BC 垂直于l 1交l 2于点C ,且AB=BC ,P 是线段BC 上异于两端点的一点,过点P 的直线分别交l 2、l 1于点D 、E (点A 、E 位于点B 的两侧),满足BP=BE ,连接AP 、CE . (1)求证:△ABP ≌△CBE ;(2)连结AD 、BD ,BD 与AP 相交于点F .如图2. ①当=2时,求证:AP ⊥BD ;②当=n (n >1)时,设△PAD 的面积为S 1,△PCE 的面积为S 2,求的值.【答案】(1)证明见解析 •证明见解析 ‚n+1【解析】(1)由BC 垂直于l 1可得∠ABP=∠CBE ,由SAS 即可证明;(2)①延长AP 交CE 于点H ,由(1)及已知条件可得AP ⊥CE ,△CPD ∽△BPE ,从而有DP=PE ,得出四边形BDCE 是平行四边形,从而可得到CE//BD ,问题得证; ②由已知条件分别用S 表示出△PAD 和△PCE 的面积,代入即可. 试题解析:(1)∵BC ⊥直线l 1, ∴∠ABP=∠CBE , 在△ABP 和△CBE 中∴△ABP ≌△CBE (SAS );(2)①延长AP 交CE 于点H ,∵△ABP ≌△CBE , ∴∠PAB=∠ECB ,∴∠PAB+∠AEE=∠ECB+∠AEH=90°, ∴AP ⊥CE ,∵=2,即P 为BC 的中点,直线l 1//直线l 2, ∴△CPD ∽△BPE ,∴==,∴DP=PE ,∴四边形BDCE 是平行四边形, ∴CE//BD , ∵AP ⊥CE , ∴AP ⊥BD ;②∵=N∴BC=n•BP ,∴CP=(n ﹣1)•BP , ∵CD//BE ,∴△CPD ∽△BPE , ∴==n ﹣1,即S 2=(n ﹣1)S ,∵S △PAB =S △BCE =n•S , ∴S △PAE =(n+1)•S , ∵==n ﹣1,∴S 1=(n+1)(n ﹣1)•S , ∴==n+1.【考点】1、全等三角形的性质与判定;2、相似三角形的性质与判定;3、平行四边形的性质与判定3. 如图,在□ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B .(1)求证:△ADF ∽△DEC ;(2)若AB=8,AD=6,AF=4,求AE 的长.【答案】(1)证明见解析;(2)6.【解析】(1)利用对应两角相等,证明两个三角形相似△ADF ∽△DEC ;(2)利用△ADF ∽△DEC ,可以求出线段DE 的长度;然后在在Rt △ADE 中,利用勾股定理求出线段AE 的长度.(1)证明:∵▱ABCD ,∴AB ∥CD ,AD ∥BC ,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.在△ADF与△DEC中,∴△ADF∽△DEC.(2)∵△ADF∽△DEC,∴又∵ CD=AB=8,AD=6,AF= 4.代入求得DE="12" ,四边形ABCD是平行四边形,又∵AE⊥BC,∴ AE⊥AD,在Rt△AED中,由勾股定理可得AE=6.【考点】1.相似三角形的判定与性质;2.勾股定理;3.平行四边形的性质.4.如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,且DG平分△ABC的周长,设BC=a、AC=b、AB=c.(1)求线段BG的长;(2)求证:DG平分∠EDF;(3)连接CG,如图2,若△GBD ∽△GDF,求证:BG⊥CG.【答案】(1)(b+c);(2)证明见解析;(3)证明见解析.【解析】(1)由△BDG与四边形ACDG的周长相等与BD=CD,易得BG=AC+AG,即可得BG=(AB+AC);(2)由点D、F分别是BC、AB的中点,利用三角形中位线的性质,易得DF=AC=b,由FG=BG-BF,求得DF=FG,又由DE∥AB,即可求得∠FDG=∠EDG;(3)由△BDG与△DFG相似,∠DFG>∠B,∠BGD=∠DGF(公共角),可得∠B=∠FDG,又由(2)得:∠FGD=∠FDG,易证得DG=BD=CD,可得B、G、C三点在以BC为直径的圆周上,由圆周角定理,即可得BG⊥CG.试题解析:(1)解:∵△BDG与四边形ACDG的周长相等,∴BD+BG+DG=AC+CD+DG+AG,∵D是BC的中点,∴BD=CD,∴BG=AC+AG,∵BG+(AC+AG)=AB+AC,∴BG=(AB+AC)=(b+c);(2)证明:∵点D、F分别是BC、AB的中点,∴DF=AC=b,BF=AB=c,又∵FG=BG-BF=(b+c)-c=b,∴DF=FG,∴∠FDG=∠FGD,∵点D、E分别是BC、AC的中点,∴DE∥AB,∴∠EDG=∠FGD,∴∠FDG=∠EDG,即DG平分∠EDF;(3)证明:∵△BDG与△DFG相似,∠DFG>∠B,∠BGD=∠DGF(公共角),∴∠B=∠FDG,由(2)得:∠FGD=∠FDG,∴∠FGD=∠B,∴DG=BD,∵BD=CD,∴DG=BD=CD,∴B、G、C三点在以BC为直径的圆周上,∴∠BGC=90°,即BG⊥CG.【考点】1.相似三角形的判定与性质;2.三角形中位线定理.5.平面直角坐标中,已知点O(0,0),A(0,2),B(1,0),点P是反比例函数y=﹣图象上的一个动点,过点P作PQ⊥x轴,垂足为Q.若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有()A.1个B.2个C.3个D.4个【答案】D【解析】可以分别从△PQO∽△AOB与△PQO∽△BOA去分析,首先设点P(x,y),根据相似三角形的对应边成比例与反比例函数的解析式,联立可得方程组,解方程组即可求得点P的坐标,即可求得答案.解:∵点P在反比例函数y=﹣图象上,∴设点P(x,y),当△PQO∽△AOB时,则,又PQ=y,OQ=﹣x,OA=2,OB=1,即,即y=﹣2x,∵xy=﹣1,即﹣2x2=﹣1,∴x=±,∴点P为(,﹣)或(﹣,);同理,当△PQO∽△BOA时,求得P(﹣,)或(,﹣);故相应的点P共有4个.故选D.6.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG ⊥AE ,垂足为G ,若BG=,则△CEF 的面积是( )A .B .C .D .【答案】A【解析】首先,由于AE 平分∠BAD ,那么∠BAE=∠DAE ,由AD ∥BC ,可得内错角∠DAE=∠BEA ,等量代换后可证得AB=BE ,即△ABE 为等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG ,而在Rt △ABG 中,由勾股定理可求得AG 的值,即可求得AE 的长;然后,证明△ABE ∽△FCE ,再分别求出△ABE 的面积,然后根据面积比等于相似比的平方即可得到答案.解:∵AE 平分∠BAD , ∴∠DAE=∠BAE ;又∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠BEA=∠DAE=∠BAE , ∴AB=BE=6,∵BG ⊥AE ,垂足为G , ∴AE=2AG .在Rt △ABG 中,∵∠AGB=90°,AB=6,BG=, ∴AG==2, ∴AE=2AG=4; ∴S △ABE =AE•BG=×4×=.∵BE=6,BC=AD=9, ∴CE=BC ﹣BE=9﹣6=3, ∴BE :CE=6:3=2:1. ∵AB ∥FC ,∴△ABE ∽△FCE ,∴S △ABE :S △CEF =(BE :CE )2=4:1,则S △CEF =S △ABE =故选A .7. 如图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF ,使得另一边EF 过原矩形的顶点C .(1)设Rt △CBD 的面积为S 1,Rt △BFC 的面积为S 2,Rt △DCE 的面积为S 3,则S 1 S 2+S 3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明. 【答案】(1)= (2)△BCD ∽△CFB ∽△DEC ,证明见解析【解析】思路分析:(1)根据S 1=S 矩形BDEF ,S 2+S 3=S 矩形BDEF ,即可得出答案.(2)根据矩形的性质,结合图形可得:△BCD ∽△CFB ∽△DEC ,选择一对进行证明即可.解答:(1)解:∵S1=BD×ED,S矩形BDEF=BD×ED,∴S1=S矩形BDEF,∴S2+S3=S矩形BDEF,∴S1=S2+S3.(2)答:△BCD∽△CFB∽△DEC.证明△BCD∽△DEC;证明:∵∠EDC+∠BDC=90°,∠CBD+∠BDC=90°,∴∠EDC=∠CBD,又∵∠BCD=∠DEC=90°,∴△BCD∽△DEC.点评:本题考查了相似三角形的判定,注意掌握相似三角形的判定定理,最经常用的就是两角法,此题难度一般.8.如图,在平行四边形中,是的中点,和交于点,设△的面积为,△的面积为,则下列结论中正确的是()A.B.C.D.【答案】B【解析】∵∥,∴△∽△.又∵是的中点,∴,∴:=,即.9.如图,在平行四边形中,为边延长线上的一点,且为的黄金分割点,即,交于点,已知,求的长.【答案】2【解析】∵四边形为平行四边形,∴∠∠,∠∠,∴△∽△,∴,即,∴,∴.10.已知:如图,是上一点,∥,,分别交于点,∠1=∠2,探索线段之间的关系,并说明理由.【答案】理由见解析【解析】解:. 理由:∵∥∴∠∠.又∴.又∵∴△∽△,∴即.11.如图,△ABC的三个顶点都在⊙O上,∠BAC的平分线交BC于点D,交⊙O于点E,则与△ABD相似的三角形有()A.3个B.2个C.1个D.0个【答案】B【解析】由∠BAE=∠EAC,∠ABC=∠AEC,得△ABD∽△AEC; 由∠BAE=∠BCE,∠ABC=∠AEC,得△ABD∽△CED.共两个.12.如图,△ABC中,DE∥BC,EF∥AB.证明:△ADE∽△EFC.【答案】证明见解析.【解析】利用一组平行线被第三条直线所截它们的同位角相等,找到符合相似三角形的条件即可.试题解析:∵DE∥BC,EF∥AB,∴∠AED=∠ECF,∠CEF=∠EAD.∴△ADE∽△EFC.考点: 相似三角形的判定.13.如图,在△ABC中,若DE∥BC,AD=5,BD=10,DE=4,则BC的值为( )A.8B.9C.10D.12【答案】D.【解析】由DE∥BC可推出△ADE∽△ABC,所以.因为AD=5,BD=10,DE=4,所以,解得BC=12.故选D.【考点】相似三角形的判定与性质.14.已知:如图,DE∥BC,AE=5,AD=6,DB=8,则EC=______.【答案】.【解析】△ABC中,DE∥BC,应用平行线分线段成比例的性质,可解答.试题解析:∵△ABC中,DE∥BC,∴∵AD=6,DB=8,AE=5,∴,解得EC=考点: 平行线分线段成比例.15.如图,□ABCD中,E为BC延长线上一点,AE交CD于点F,若,AD=2,∠B=45°,,求CF的长.【答案】.【解析】过点A作AM⊥BE于点M.首先利用已知条件求出BE=BM+ME=3,再利用平行四边形的性质求出CE=BE-BC=1,最后通过证明△ADF∽△ECF,有相似三角形的性质即可求出CF的长.试题解析:过点A作AM⊥BE于点M.在Rt△ABM中,∵∠B=45°,,∴.∵,∴.∴EM=2.∴BE=BM+ME=3.∵四边形ABCD是平行四边形,∴BC=AD=2,DC=AB=,AD∥BC.∴CE=BE-BC=1.∵AD∥BC,∴∠1=∠E,∠D=∠2.∴.∴.∵DC=,∴.考点: 1.相似三角形的判定与性质;2.平行四边形的性质;3.解直角三角形.16.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD中,点E是边BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G. 如果,求的值.他的做法是:过点E作EH∥AB交BG于点H,则可以得到△BAF∽△HEF.请你回答:(1)AB和EH的数量关系为,CG和EH的数量关系为,的值为 .(2)如图(2),在原题的其他条件不变的情况下,如果,那么的值为(用含a的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F. 如果,那么的值为(用含m,n的代数式表示).【答案】(1),, ;(2);(3).【解析】本题的设计独具匠心:由平行四边形中的一个特殊的例子出发(第1问),推广到平行四边形中的一般情形(第2问),最后再通过类比、转化到梯形中去(第3问).各种图形虽然形式不一,但运用的解题思想与解题方法却是一以贯之:即通过构造相似三角形,得到线段之间的比例关系,这个比例关系均统一用同一条线段来表达,这样就可以方便地求出线段的比值.本题体现了初中数学的类比、转化、从特殊到一般等思想方法,有利于学生触类旁通、举一反三.(1)根据△BAF∽△HEF,可知两三角形的相似比是3:1,所以AB=3EH;由EH∥AB、CD∥AB可得EH∥CD,故△BCG∽△BEH,而E为BC的中点,所以两三角形的相似比为2:1,所以CG=2EH;由平行四边形对边相等得,AB=CD,所以.根据(1)的分析,易得.(3)本问体现“类比”与“转化”的情形,将(1)(2)问中的解题方法推广转化到梯形中,如下图所示.试题解析:解:(1)依题意,过点E作EH∥AB交BG于点H,如右图1所示.则有△ABF∽△HEF,∴,即AB=3EH∵EH∥AB、CD∥AB可得EH∥CD,∴△BCG∽△BEH,又∵E为BC的中点,∴CG=2EH;∴故填空依次为:,, .同理根据(1)可以发现:,;∴故填空为 .如上图所示,过点E作EH//AB交BD的延长线于点H,则有EH//AB//CD∵EH//CD∴△BCD∽△BEF,∴,即又∵∴∵EH//AB∴△ABF∽△EHF∴故填空为:.【考点】1、相似形综合题;2、平行四边形的性质;3、梯形;4、相似三角形的判定与性质.17.已知△ABC和△DEF相似,且△ABC的三边长为3、4、5,如果△DEF的周长为6,那么下列不可能是△DEF一边长的是()A.1.5;B.2;C.2.5;D.3.【答案】D.【解析】∵△ABC的三边长为3、4、5,∴△ABC的周长为:3+4+5=12,∵△ABC∽△DEF,△DEF的周长为6,∴相似比为:2:1,∵△ABC的三边长为3、4、5,∴△DEF三边长分别是:1.5,2,2.5,∴△DEF边长不可能是3.故选D.【考点】相似三角形的性质.18.如图,梯形ABCD是一个拦河坝的截面图,坝高为6米.背水坡AD的坡角为,为了提高河坝的抗洪能力,防汛指挥部决定加固河坝,若坝顶CD加宽0.8米,新的背水坡EF的坡度为1:1.4.河坝总长度为500米.(1)求完成该工程需要多少立方米方土?(2)某工程队在加固600立方米土后,采用新的加固模式,这样每天加固方数是原来的2倍,结果只用11天完成了大坝加固的任务.请你求出该工程队原来每天加固多少立方米土?【答案】(1)4032,(2)300.【解析】(1)首先过点D作DG⊥AB于G,过点E作EH⊥AB于H,由CD∥AB,即可得EH=DG=6米,然后由背水坡AD的坡度i为1:1.2,新的背水坡EF的坡度为1:1.4,即可求得AG与FH的长,则可求得FA的长,则可求得梯形ADEF的面积,继而为求得该工程需要多少方土;(2)首先设原来每天加固x米,根据题意即可得方程:,解此方程即可求得答案.试题解析:(1)过点D作DG⊥AB于G,过点E作EH⊥AB于H.∵CD∥AB,∴EH=DG=6米,∵,∴AG=7.2米,∵,∴FH=8.4米,∴FA=FH+GH-AG=8.4+0.8-7.2=2(米),∴S梯形ADEF=(ED+AF)•EH=×(0.8+2)×6=8.4(平方米).∴V=8.4×4800=4032(立方米).(2)设原来每天加固x米,根据题意,得:去分母,得1200+4200=18x(或18x=5400),解得:x=300.检验:当x=300时,2x≠0(或分母不等于0).∴x=300是原方程的解.答:该工程队原来每天加固300米.考点:(1)坡度;(2)一元一次方程的应用.19.如图,已知直线∥∥,,,,则.【答案】3【解析】因为直线∥∥,所以 , , .【考点】平行线分线段成比例定理。
初三数学相似图形判定方法

初三数学相似图形判定方法相似图形是数学中的重要概念,它在几何形状的变换和比例关系中有广泛应用。
在初三数学学习中,学生需要学会判定两个图形是否相似。
本文将介绍一些常见的相似图形判定方法,帮助初三学生更好地理解和应用相似图形的知识。
一、边长比例法判断两个图形是否相似,最基本的方法就是比较它们的边长比例。
如果两个图形的对应边的长度比值相等,那么它们就是相似的。
以两个三角形为例,如果它们对应的边长比例完全相等,即三个比值都相等,那么这两个三角形就是相似的。
我们可以通过计算各个边长的比值来判断两个图形是否相似。
二、角度相等法除了边长比例外,角度也是判定相似图形的重要条件之一。
如果两个图形的内角相等,那么它们也是相似的。
以两个三角形为例,如果它们对应的内角完全相等,那么这两个三角形就是相似的。
我们可以通过测量各个角度的大小来判断两个图形是否相似。
三、边长比例和角度相等的综合判定法在实际问题中,我们往往需要综合考虑边长比例和角度相等这两个条件来判定相似图形。
如果两个图形既满足边长比例相等,又满足角度相等,那么它们一定是相似的。
我们可以通过计算边长比例和测量角度来进行判定,确保得到准确的结果。
四、相似图形的性质除了判定方法,初三学生还应该了解相似图形的一些基本性质。
相似图形具有以下特点:1. 边长比例:相似图形的对应边的长度比例相等。
2. 角度相等:相似图形的对应角度相等。
3. 周长比例:相似图形的周长比例等于对应边长比例。
4. 面积比例:相似图形的面积比例等于对应边长比例的平方。
初三学生在学习相似图形时,可以利用这些性质来解决一些实际问题。
例如,如果两个相似三角形的边长比例为3:4,那么它们的周长比例也为3:4。
五、应用举例为了更好地理解相似图形判定方法,我们来看一个应用举例:已知在平面直角坐标系中,点A(2,-1)、B(4,3)和C(8,2)是三角形ABC的顶点,D(4,1)和E(8,-2)是三角形ADE的顶点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的相似(1)
【知识点及方法指导】
1.相似图形的定义______________________________________________
2.相似多边形的定义_____________________________________________
3.相似多边形的判定____________________________________________ 相似多边形的性质____________________________________________
4.相似三角形的判定1:__________________________________________ 相似三角形的判定2:__________________________________________ 相似三角形的判定3:___________________________________________
5.相似三角形的性质:___________________________________________
6.相似的几种类型A 字型__________________,X 字型_______________ 强调:证明相似时注意挖掘题目中的隐含条件:如公共角、对顶角、公共边。
【典型例题】:
例1、(2011潍坊中考) 如图,已知等腰三角形ABC ,AB = AC ,底边BC 的长为2,DE 是它的中位线,则下面三个结论:(1)DE =1;(2)△ADE ∽△ABC ;(3)△ADE 的面积与△ABC 的面积之比为1︰4. 其中正确的有( ).
A .0个
B .1个
C .2个
D .3个
例2、(2012潍坊中考)如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件
,使⊿ABC ≌⊿DBE.(只需添加一个即
可)
例3、(2013潍坊中考)直角三角形ABC 中,︒=∠90ACB ,10=AB , 6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点记为1A ;AD 的中点E 的对应点记为1E .若11FA E ∆∽BF E 1∆,则AD =__________.
A
B
C
D
E A B
D
E C
例4、如图,一个矩形ABCD 的长AD= a cm ,宽AB= b cm ,E 、F 分别是AD 、BC 的中点,连接E 、F ,所得新矩形ABFE 与原矩形ABCD 相似,求a:b 的值.
例5、(上海)如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与△ABC 相似的三角形有( )个. A .1 B .2 C .3 D .
4
例6、如图,△ABC 中,点D 在AB 上,如果AC 2=AD •AB,求证:△ABC ∽△ACD
例7、在△ABC 中,∠C =900,CD 是高,试证明:BD AD CD •=2
【对应练习】
1.如图,在△ABC 中,CD ,AE 是三角形的两条高,写出图中所有相似的三角形.
D
2.下列各组图形一定相似的是( ).
A .有一个角相等的等腰三角形
B .有一个角相等的直角三角形
C .有一个角是100°的等腰三角形
D .有一个角是对顶角的两个三角形 3.如图所示,给出下列条件:
①B ACD ∠=∠;②ADC ACB ∠=∠;③AC AB
CD BC
=
;④AC 2=AD •AB 其中单独能够判定ABC ACD △∽△的个数为( ) A .1 B .2 C .3 D .4
4. 如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )
5.如图, ABC △中,CD AB ⊥于D ,一定能确定ABC △为直角三角形的条件的个数是( )
①1A ∠=∠,②CD DB
AD CD
=,③290B ∠+∠=°,④345BC AC AB =∶∶∶∶,
⑤CD AC BD AC •=•
A .1
B .2
C .3
D .4
6.已知:如图,P 为△ABC 中线AD 上的一点,且BD 2=PD •AD , 求证:△ADC ∽△CDP .
7.高明为了测量一大楼的高度,在地面上放一平面镜,镜子与楼的距离AE=27m,他与镜子的距离是2.1m时,刚好能从镜子中看到楼顶B,已知他的眼睛到地面的高度CD为1.6m,结果他很快计算出大楼的高度AB,你知道是什么吗?试加以说明.
8.在非等腰△ABC中,M是AB上一点,若过M的直线所截得的三角形与原三角形相似,•试说明满足条件的直线有几条,画出相应的图形加以说明.
思考:在等腰△ABC中呢?在等边△ABC中呢?在直角△ABC中AB是斜边时呢,AB是直角边时呢?
例8、如图,已知中,,,,,点在上,(与点不重合),点在上,当的面积与四边形的面积相等时,求的长.
例9、如图,△ABC中,∠C=90°,BC=8cm,5AC-3AB=0,点P从B点出发,沿BC方向以2m/s的速度移动,点Q从C出发,沿CA方向以1m/s的速度移动。
若P、Q同时分别从B、C出发,经过多少时间△CPQ与△CBA相似?
【课堂检测】
1、下列说法
“①凡正方形都相似;②凡等腰三角形都相似;③凡等腰直角三角形都相似;
④直角三角形斜边上的中线与斜边的比为1∶2;⑤两个相似多边形的面积比为4∶9,则周长的比为16∶81.”中,正确的个数有()个
A、1
B、2
C、3
D、4
2、如图是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆
形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为()
A.0.36πm2
B.0.81πm2
C.2πm2
D.3.24πm2
3、如图,在Rt ABC
△中,90
ACB
∠=°,3
BC=,4
AC=,AB的垂直平分线DE交BC的延长线于点E,则CE的长为()
A.3 2
B .
7
6
C.
25
6
D.2 B
A
C
Q
P
4.一个钢筋三角架三 长分别为20cm ,50cm ,60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有( )
A .一种
B .两种
C .三种
D .四种
5.如图,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论: ①AFC C ∠=∠; ②DF CF =;
③ADE FDB △∽△; ④BFD CAF ∠=∠.
其中正确的结论是 (填写所有正确结论的序号)
.
6.如图,Rt ABC △中,90ACB ∠=°,
直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =△四边形,则CF
AD
= .
8.有一块三角形的土地,它的底边BC =100米,高AH =80米。
某单位要沿着地
边BC 修一座底面是矩形DEFG 的大楼,D 、G 分别在边AB 、AC 上。
若大楼的宽是40米(即DE =40米),求这个矩形的面积。
M
A B
D
G
F。