人工智能例题大纲
人工智能复习大纲

8.何为状态图和与或图图搜索与问题求解有什么关系状态图是描述寻找目标或路径问题的有向图,即描述一个实体基于事件反应的动态行为,显示了该实体如何根据当前所处的状态对不同的时间做出反应的。
与或图是一种系统地将问题分解为互相独立的小问题,然后分而解决的方法。
与或图中有两种代表性的节点:“与节点”和“或节点”,“与节点”指所有的后续节点都有解时它才有解;“或节点”指各个后续节点均完全独立,只要其中有一个有解它就有解。
关系:问题求解就是在一个图中寻找一个从初始节点到目标节点的路径问题,图搜索模拟的实际是人脑分析问题,解决问题的过程,它基于领域知识的问题求解过程。
11. 什么是与或树什么是可解节点什么是解树答:一棵树中的弧线表示所连树枝为“与”关系,不带弧线的树枝为或关系。
这棵树中既有与关系又有或关系,因此被称为与或树。
满足下列条件的节点为可解节点。
①终止节点是可解节点;②一个与节点可解,当且仅当其子节点全都可解;③一个或节点可解,只要其子节点至少有一个可解。
解树实际上是由可解节点形成的一棵子树,这棵子树的根为初始节点,叶为终止节点,且这棵子树一定是与树14. 请阐述状态空间的一般搜索过程。
OPEN表与CLOSED表的作用是什么答:先把问题的初始状态作为当前扩展节点对其进行扩展,生成一组子节点,然后检查问题的目标状态是否出现在这些子节点中。
若出现,则搜索成功,找到了问题的解;若没出现,则再按照某种搜索策略从已生成的子节点中选择一个节点作为当前扩展节点。
重复上述过程,直到目标状态出现在子节点中或者没有可供操作的节点为止。
所谓对一个节点进行“扩展”是指对该节点用某个可用操作进行作用,生成该节点的一组子节点。
OPEN表用于存放刚生成的节点,对于不同的搜索策略,节点在OPEN表中的排序是不同的。
CLOSED表用于存放将要扩展或者已扩展的节点。
15. 广度优先搜索与深度优先搜索各有什么特点答:广度优先搜索就是始终先在同一级节点中考查,只有当同一级节点考查完之后,才考查下一级节点。
人工智能 考试复习提纲

第一章绪论●人工智能的诞生:1965年夏季,在达特茅斯大学●人工智能的学派:符号主义,联结主义,行为主义第二章知识表示方法●知识的特性:1.相对正确性;2.不确定性;3.可表示性;4.可利用性●★用谓词公式表示知识的步骤:1.定义谓词及个体,确定每个谓词及个体的确切含义。
2.根据所要表达的事物或概念,为每个谓词中的变元赋以特定的值。
3.根据所要表达的知识的语义,用适当的联接符号将各个谓词联接起来,形成谓词公式。
●★★机器人搬弄积木块问题表示P19●★一阶谓词逻辑表示法的特点:1.自然性;2.适宜于精确性知识的表示;3.易实现;4.与谓词逻辑表示法相对应的推理方法。
●产生式系统的组成:1.规则库;2.综合数据库;3.推理机●★产生式系统的推理方式:1.正向推理:①规则库中的规则与综合数据库中的事实进行匹配,得到匹配的规则集合;②使用冲突解决算法,从匹配规则集合中选择一条规则作为启用规则;③执行启动规则的后件。
将该启用规则的后件送入综合数据库或对综合数据库进行必要的修改。
重复这个过程直至达到目标。
2.反向推理:①规则库中的规划后件与目标事实进行匹配,得到匹配的规则集合;②使用冲突解决算法,从匹配规则集合中选择一条规则作为启用规则;③将启用规则的前件作为子目标。
重复这个过程直至各子目标均为已知事实,则反向推理的过程成功结束。
●★★语义网络表示知识举例:P36 例2.5、2.6、2.7;P71 作业18●框架的定义及组成:一个框架由若干个“槽”组成,每个“槽”又可划分为若干个“侧面”。
一个槽用于描述所论及对象的某一方面的属性,一个侧面用于描述相应属性的一个方面。
框架名<槽名><侧面><值>●脚本表示法:美国耶鲁大学的R.C.Schank及其同事们根据概念从属理论提出了一种知识表示方法——脚本表示法。
●问题状态空间的构成:1.状态;(2).算符;3.状态空间。
●★用状态空间表示问题的步骤1.定义状态的描述形式;2.用所定义的状态描述形式把问题的所有可能的状态都表示出来,并确定出问题的初始状态集合描述和目标状态集合描述;3.定义一组算符。
人工智能复习试题和答案及解析教学提纲

人工智能复习试题和答案及解析一、单选题1. 人工智能的目的是让机器能够(D ),以实现某些脑力劳动的机械化A. 具有完全的智能B. 和人脑一样考虑问题C. 完全代替人D. 模拟、延伸和扩展人的智能2. 下列关于人工智能的叙述不正确的有(C )。
A. 人工智能技术它与其他科学技术相结合极大地提高了应用技术的智能化水平。
B. 人工智能是科学技术发展的趋势。
C. 因为人工智能的系统研究是从上世纪五十年代才开始的,非常新,所以十分重要。
D. 人工智能有力地促进了社会的发展。
3. 自然语言理解是人工智能的重要应用领域,下面列举中的(C)不是它要实现的目标。
A. 理解别人讲的话。
B. 对自然语言表示的信息进行分析概括或编辑。
C. 欣赏音乐。
D. 机器翻译。
4. 下列不是知识表示法的是()。
A. 计算机表示法B. 谓词表示法C. 框架表示法D. 产生式规则表示法5. 关于“与/ 或”图表示知识的叙述,错误的有(D )。
A. 用“与/ 或”图表示知识方便使用程序设计语言表达,也便于计算机存储处理。
B. “与/ 或”图表示知识时一定同时有“与节点”和“或节点”。
C. “与/ 或”图能方便地表示陈述性知识和过程性知识。
D. 能用“与/ 或”图表示的知识不适宜用其他方法表示。
6. 一般来讲,下列语言属于人工智能语言的是(D )A. VJB. C#C. FoxproD. LISP7. 专家系统是一个复杂的智能软件,它处理的对象是用符号表示的知识,处理的过程是( C )的过程。
A. 思考B. 回溯C. 推理D. 递归8. 确定性知识是指(A )知识。
A. 可以精确表示的B. 正确的C. 在大学中学到的知识D. 能够解决问题的9. 下列关于不精确推理过程的叙述错误的是(B )。
A. 不精确推理过程是从不确定的事实出发B. 不精确推理过程最终能够推出确定的结论C. 不精确推理过程是运用不确定的知识D. 不精确推理过程最终推出不确定性的结论10. 我国学者吴文俊院士在人工智能的(A )领域作出了贡献。
(完整版)人工智能(部分习题答案及解析)

1.什么是人类智能?它有哪些特征或特点?定义:人类所具有的智力和行为能力。
特点:主要体现为感知能力、记忆与思维能力、归纳与演绎能力、学习能力以及行为能力。
2.人工智能是何时、何地、怎样诞生的?解:人工智能于1956年夏季在美国Dartmouth大学诞生。
此时此地举办的关于用机器模拟人类智能问题的研讨会,第一次使用“人工智能”这一术语,标志着人工智能学科的诞生。
3.什么是人工智能?它的研究目标是?定义:用机器模拟人类智能。
研究目标:用计算机模仿人脑思维活动,解决复杂问题;从实用的观点来看,以知识为对象,研究知识的获取、知识的表示方法和知识的使用。
4.人工智能的发展经历了哪几个阶段?解:第一阶段:孕育期(1956年以前);第二阶段:人工智能基础技术的研究和形成(1956~1970年);第三阶段:发展和实用化阶段(1971~1980年);第四阶段:知识工程和专家系统(1980年至今)。
5.人工智能研究的基本内容有哪些?解:知识的获取、表示和使用。
6.人工智能有哪些主要研究领域?解:问题求解、专家系统、机器学习、模式识别、自动定论证明、自动程序设计、自然语言理解、机器人学、人工神经网络和智能检索等。
7.人工智能有哪几个主要学派?各自的特点是什么?主要学派:符号主义和联结主义。
特点:符号主义认为人类智能的基本单元是符号,认识过程就是符号表示下的符号计算,从而思维就是符号计算;联结主义认为人类智能的基本单元是神经元,认识过程是由神经元构成的网络的信息传递,这种传递是并行分布进行的。
8.人工智能的近期发展趋势有哪些?解:专家系统、机器人学、人工神经网络和智能检索。
9.什么是以符号处理为核心的方法?它有什么特征?解:通过符号处理来模拟人类求解问题的心理过程。
特征:基于数学逻辑对知识进行表示和推理。
11.什么是以网络连接为主的连接机制方法?它有什么特征?解:用硬件模拟人类神经网络,实现人类智能在机器上的模拟。
特征:研究神经网络。
《人工智能》课程大纲

《人工智能》课程大纲人工智能课程大纲一、引言A. 课程背景与目的B. 课程结构概述二、人工智能基础知识A. 人工智能概述1. 人工智能定义与发展历史2. 人工智能的应用领域3. 人工智能的挑战和前景B. 机器学习1. 机器学习的定义和原理2. 监督学习、无监督学习与强化学习3. 机器学习算法与实践案例C. 自然语言处理1. 自然语言处理的概念和挑战2. 语音识别与文本处理技术3. 自然语言生成与机器翻译三、人工智能技术与应用A. 图像与视觉处理1. 图像处理基础2. 特征提取和图像分类算法3. 计算机视觉的应用案例B. 智能决策与规划1. 搜索算法与规划方法2. 强化学习与决策树算法3. 智能系统在自动驾驶等领域的应用C. 人机交互与智能系统设计1. 人机界面设计原则2. 聊天机器人与语音助手开发3. 智能系统的用户体验与评估四、人工智能的伦理与社会影响A. 人工智能的道德与伦理问题1. 个人隐私与数据安全2. 人工智能的道德准则与规范3. 机器人与人类社会的互动关系B. 人工智能对社会经济的影响1. 自动化对就业市场的改变2. 人工智能在医疗、金融等行业的应用3. 人工智能与可持续发展的关系五、课程实践与项目A. 人工智能编程与实践1. 基于Python的机器学习实践2. TensorFlow与深度学习编程B. 人工智能应用设计与实现1. 智能推荐系统开发2. 人工智能在游戏开发中的应用六、评估方式与学习资源A. 课程作业与考核方式B. 推荐教材与学习资源C. 学习支持与讨论平台七、总结与展望A. 课程回顾与学习成果B. 人工智能领域的未来发展方向本课程旨在帮助学生深入了解人工智能的基本概念、技术和应用,培养学生人工智能思维和创新能力。
通过课程的学习,学生将能够掌握人工智能基础知识,了解机器学习、自然语言处理、图像与视觉处理等核心技术。
同时,课程将注重伦理与社会影响的讨论,帮助学生思考人工智能的科技伦理问题和社会责任。
人工智能概论教学大纲(理论实验)(一)2024

人工智能概论教学大纲(理论实验)(一)引言概述:人工智能(Artificial Intelligence,简称AI)是计算机科学和工程的一个分支,涉及到使机器能够完成人类认为需要智能的任务。
本教学大纲旨在介绍人工智能的基础概念、算法和应用,帮助学生了解人工智能的理论和实验基础,培养其相关技能和能力。
一、人工智能的概述1. 人工智能的定义和目标(a) 人工智能的定义和发展历程(b) 人工智能的主要目标和应用领域(c) 人工智能的局限性和挑战2. 人工智能的基本原理(a) 人工智能的基本思维模型和问题解决方法(b) 人工智能的算法和技术基础(c) 人工智能的数据和模型训练3. 人工智能的伦理和社会影响(a) 人工智能的伦理和道德问题(b) 人工智能对社会和经济的影响(c) 人工智能的未来发展趋势和挑战二、人工智能的核心技术1. 机器学习(a) 机器学习的基本概念和方法(b) 监督学习、无监督学习和强化学习(c) 机器学习的算法和模型2. 深度学习(a) 深度学习的原理和神经网络模型(b) 卷积神经网络和循环神经网络(c) 深度学习在计算机视觉和自然语言处理中的应用3. 自然语言处理(a) 自然语言处理的基本任务和技术(b) 语言模型和句法分析(c) 文本分类、情感分析和机器翻译4. 计算机视觉(a) 图像处理和特征提取(b) 目标检测和图像分割(c) 计算机视觉在智能驾驶和人脸识别中的应用5. 推荐系统(a) 推荐系统的原理和算法(b) 用户行为分析和个性化推荐(c) 推荐系统在电子商务和社交媒体中的应用三、人工智能的实验基础1. 编程语言和工具(a) Python语言和相关库(b) 机器学习和深度学习框架(c) 数据处理和可视化工具2. 数据集和特征工程(a) 常用的公开数据集和数据源(b) 数据预处理和特征选择(c) 数据集划分和交叉验证方法3. 算法实现和模型训练(a) 机器学习算法的实现和调优(b) 深度学习模型的搭建和训练(c) 实验结果评估和比较分析四、人工智能的应用案例1. 智能语音助手(a) 语音识别和语音合成技术(b) 人机对话系统和智能问答(c) 智能音箱和智能家居应用2. 自动驾驶技术(a) 传感器和感知技术(b) 路径规划和决策控制(c) 自动驾驶的挑战和安全问题3. 金融风控和欺诈检测(a) 信用评分和风险预测(b) 交易欺诈和异常检测(c) 金融科技的发展和应用前景4. 医疗诊断和辅助决策(a) 医学影像分析和疾病诊断(b) 基因数据分析和个性化治疗(c) 人工智能在医疗领域的挑战和限制5. 智能物联网和城市管理(a) 物联网技术和智能传感器(b) 智能交通和智能能源管理(c) 城市智能化的可行性和影响评估总结:本教学大纲介绍了人工智能的概述、核心技术、实验基础和应用案例。
人工智能题库及答案详解

人工智能题库及答案详解一、单选题1. 人工智能(AI)的起源可以追溯到哪个年代?A. 1950年代B. 1960年代C. 1970年代D. 1980年代答案:A2. 下列哪项不是人工智能的主要分支?A. 机器学习B. 机器人学C. 神经网络D. 量子计算答案:D3. 深度学习是人工智能领域中的一个重要概念,它主要基于哪种数学结构?A. 线性代数B. 概率论C. 神经网络D. 逻辑推理答案:C二、多选题1. 人工智能在以下哪些领域有应用?A. 医疗诊断B. 交通管理C. 游戏开发D. 金融分析答案:A, B, C, D2. 以下哪些是人工智能研究的关键技术?A. 自然语言处理B. 计算机视觉C. 专家系统D. 遗传算法答案:A, B, C, D三、判断题1. 人工智能的发展完全依赖于硬件的进步。
()答案:错误2. 图灵测试是衡量机器智能的一个标准,由艾伦·图灵提出。
()答案:正确3. 人工智能可以完全替代人类的工作。
()答案:错误四、简答题1. 请简述人工智能的定义及其主要研究领域。
答案:人工智能(AI)是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似方式做出反应的智能机器。
主要研究领域包括机器学习、自然语言处理、计算机视觉、机器人学等。
2. 什么是机器学习,它与人工智能的关系是什么?答案:机器学习是人工智能的一个核心领域,它使计算机系统利用数据来提高性能,而无需进行明确的编程。
机器学习是实现人工智能的一种手段,通过学习数据模式来提高决策能力。
五、论述题1. 论述人工智能在教育领域的应用及其潜在影响。
答案:人工智能在教育领域的应用包括个性化学习、智能辅导、自动化评分等。
它能够根据学生的学习习惯和能力提供定制化的学习计划,提高学习效率。
同时,AI教师可以辅助人类教师进行教学,减轻教师负担。
然而,人工智能的广泛应用也可能带来教师角色的转变、学生隐私保护等问题。
六、案例分析题1. 请分析AlphaGo战胜围棋世界冠军的案例,并讨论其对人工智能发展的意义。
人工智能》教学大纲

人工智能》教学大纲2.掌握Prolog语言的基本语法和常用操作;3.能够编写简单的Prolog程序,并能够运行和调试;4.了解Prolog语言在人工智能中的应用。
第三章搜索算法基本内容和要求:1.掌握深度优先搜索、广度优先搜索、启发式搜索等搜索算法的基本思想和实现方法;2.能够应用搜索算法解决一些典型问题;3.了解搜索算法在人工智能中的应用。
第四章知识表示与推理基本内容和要求:1.掌握命题逻辑、一阶逻辑等知识表示方法;2.了解基于规则、框架、语义网络等知识表示方法;3.掌握归结方法、前向推理、后向推理等推理方法;4.能够应用知识表示与推理解决一些典型问题。
第五章不确定性推理基本内容和要求:1.了解不确定性推理的基本概念和方法;2.掌握贝叶斯定理及其应用;3.掌握条件概率、独立性、条件独立性等概念;4.能够应用不确定性推理解决一些典型问题,如垃圾邮件过滤等。
五、教材和参考书目1)主教材:Stuart Russell。
Peter Norvig。
Artificial Intelligence: A Modern Approach。
3rd n。
Prentice Hall。
2009.2)参考书目:___。
机器研究。
___。
2016.___。
统计研究方法。
___。
2012.___。
___。
2017.六、教学进度安排第一周人工智能概述第二周逻辑程序设计语言Prolog第三周搜索算法第四周知识表示与推理第五周不确定性推理第六周期中考试第七周至第十周课程实验第十一周至第十三周课程实验第十四周课程总结与复第十五周期末考试一实验(实训)内容产生式系统实验学时分配4目的与要求:熟悉和掌握产生式系统的运行机制,掌握基于规则推理的基本方法。
实验(实训)内容:主要包括产生式系统的正、反向推理、基于逻辑的搜索等10余个相关演示性、验证性和开发性设计实验。
二实验(实训)内容搜索策略实验学时分配4目的与要求:熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P(+)=3/6,P(-)=3/6
即有
H(S)= - ((3/6)*log (3/6) - (3/6)*log (3/6))
= -0.5*(-1) - 0.5*(-1) = 1
按照ID3算法,需要选择一个能使S的期望熵为最小的一个属性对根节点进行扩展,因此我们需要先计算S关于每个属性的条件熵:
H(S|xi)= ( |ST| / |S|)* H(ST) + ( |SF| / |S|)* H(SF)
在本题中,当x2=T时,有:
ST={1,2,5,6}
当x2=F时,有:
SF={3,4}
其中,ST和SF中的数字均为例子集S中的各个例子的序号,且有|S|=6,| ST|=4,| SF|=2。
由ST可知:
PST(+) = 2/4
PST(-) = 2/4
则有:
H(ST)= - (PST(+)log2 PST(+) - PST(-)log2 PST(- ))
解:设h(x)=每个W左边的B的个数,f(x)=d(x)+3*h(x),其搜索树如下:
6设有如下一组推理规则:
r1: IF E1THEN E2(0.6)
r2: IF E2AND E3THEN E4(0.7)
r3: IF E4THEN H (0.8)
r4: IF E5THEN H (0.9)
且已知CF(E1)=0.5, CF(E3)=0.6, CF(E5)=0.7。求CF(H)=?
即f*=g*+h*
9修道士和野人问题
解:用m表示左岸的修道士人数,c表示左岸的野人数,b表示左岸的船数,用三元组(m, c, b)表示问题的状态。
对A*算法,首先需要确定估价函数。设g(n)=d(n),h(n)=m+c-2b,则有
f(n)=g(n)+h(n)=d(n)+m+c-2b
其中,d(n)为节点的深度。通过分析可知h(n)≤h*(n),满足A*算法的限制条件。
K=m1(Ω)×m2(Ω)
+m1({h1})×m2({h1})+m1({h1})×m2(Ω)+m1(Ω)×m2({h1})
+m1({h2})×m2({h2})+m1({h2})×m2(Ω)+m1(Ω)×m2({h2})
=0.46×0.65
+0.36×0.06+0.36×0.65+0.46×0.06
+0.18×0.29+0.18×0.65+0.46×0.29
由r3得到:CF3(H)=CF(H, E3)×max{0, CF(E3)}
=-0.5×max{0, 0.6} = -0.3
根据结论不精确性的合成算法,CF1(H)和CF2(H)同号,有:
CF12(H)和CF3(H)异号,有:
即综合可信度为CF(H)=0.53
11设有如下知识:
r1:IF E1(0.6)AND E2(0.4)THEN E5(0.8)
解:(2)
定义谓词
S(x):x是计算机系学生
L(x, pragramming):x喜欢编程序
U(x,computer):x使用计算机
将知识用谓词表示为:
¬ (∀x) (S(x)→L(x, pragramming)∧U(x,computer))
2.请用语义网络表示如下知识:
高老师从3月到7月给计算机系的学生讲“计算机网络”课。
对F,进行存在固化,有
P(f(v))∧(Q(f(w)))
得以下两个子句
P(f(v)),Q(f(w))
对﹁G,有
﹁P(f(a))∨﹁P(y)∨﹁Q(y)
先行部合一,设合一{f(a)/y},则有因子
﹁P(f(a))∨﹁Q(f(a))
再对上述子句集进行归结演绎推理。其归结树如下图所示,即存在一个到空子句的归结过程。
=min{CER(E1), CER(E2)}
=min{0.8, 0.6} = 0.6
m({a1}, {a2})={0.6×0.3, 0.6×0.5} = {0.18, 0.3}
Bel(A)=m({a1})+m({a2})=0.18+0.3=0.48
Pl(A)=1-Bel(﹁A)=1-0=1
f(A)=Bel(A)+|A|/|Ω|•[Pl(A)-Bel(A)]
= - ((2/4)log2(2/4) - (2/4)log2(2/4))
=1
再由SF可知:
PSF(+)=1/2
PSF(-)=1/2
则有:
H(SF)= - (P(+)log2 P(+) - P(-)log2 P(- ))
= - ((1/2)log2(1/2)- (1/2)log2(1/2))
=1
将H(ST)和H (SF)代入条件熵公式,有:
1.用谓词逻辑知识表示方法表示如下知识:
(1)有人喜欢梅花,有人喜欢菊花,有人既喜欢梅花又喜欢菊花。
(2)不是每个计算机系的学生都喜欢在计算机上编程序。
解:(1)
定义谓词
P(x):x是人
L(x,y):x喜欢y
其中,y的个体域是{梅花,菊花}。
将知识用谓词表示为:
(∃x)(P(x)→L(x,梅花)∨L(x,菊花)∨L(x,梅花)∧L(x,菊花))
CF(H)=CF1(H)+CF2(H)-CF1(H)×CF2(H)
=0.692
7设训练例子集如下表所示:
请用ID3算法完成其学习过程。
解:
设根节点为S,尽管它包含了所有的训练例子,但却没有包含任何分类信息,因此具有最大的信息熵。即:
H(S)= - (P(+)log 2P(+) - P(-)log2 P(-))
=0.48+2/10*[1-0.48]
=0.584
故
CER(A)=MD(A/E')×f(A)=0.584
(2)求CER(H)
由r2得
m1({h1}, {h2})={CER(E3)×0.4, CER(E3)×0.2}
={0.9×0.4, 0.9×0.2}
={0.36, 0.18}
m1(Ω)=1-[m1({h1})+m1({h2})]
M-C问题的搜索过程如下图所示。
10设有如下一组知识:
r1:IF E1THEN H (0.9)
r2:IF E2THEN H (0.6)
r3:IF E3THEN H (-0.5)
r4:IF E4AND ( E5OR E6) THEN E1(0.8)
已知:CF(E2)=0.8,CF(E3)=0.6,CF(E4)=0.5,CF(E5)=0.6, CF(E6)=0.8
其中,T和F为属性xi的属性值,ST和SF分别为xi=T或xi=F时的例子集,|S|、| ST|和|SF|分别为例子集S、ST和SF的大小。
下面先计算S关于属性x1的条件熵:
在本题中,当x1=T时,有:
ST={1,2,3}
当x1=F时,有:
SF={4,5,6}
其中,ST和SF中的数字均为例子集S中例子的序号,且有|S|=6,| ST|=| SF|=3。
=1-[0.36+0.18]=0.46
由r3得
m2({h1}, {h2})={CER(A)×0.1, CER(A)×0.5}
={0.58×0.1, 0.58×0.5}
={0.06, 0.29}
m2(Ω)=1-[m2({h1})+m2({h2})]
=1-[0.06+0.29]=0.65
求正交和m=m1⊕m2
解:(1)先由r1求CF(E2)
CF(E2)=0.6 × max{0,CF(E1)}
=0.6 × max{0,0.5}=0.3
(2)再由r2求CF(E4)
CF(E4)=0.7 × max{0, min{CF(E2), CF(E3)}}
=0.7 × max{0, min{0.3, 0.6}}=0.21
CER(H)=MD(H/E')×f(H)=0.73
13用ID3算法完成下述学生选课的例子
由ST可知:
P(+)=2/3,P(-)=1/3
则有:
H(ST)= - (P(+)log2 P(+) - P(-)log2 P(- ))
= - ((2/3)log2(2/3)- (1/3)log2(1/3)) ==0.9183
再由SF可知:
PSF(+)=1/3,PSF(-)=2/3
则有:
H(SF)= - (PSF(+)log2 PST(+) - PSF(-)log2 PSF(- ))
= - ((2/3)log2(2/3)- (1/3)log2(1/3)) = 0.9183
将H(ST)和H (SF)代入条件熵公式,有:
H(S|x1)=(|ST|/|S|)H(ST)+ (|SF|/|S|)H(SF)
=(3/6)﹡0.9183 + (3/6)﹡0.9183
=0.9183
下面再计算S关于属性x2的条件熵:
r3: IF A THEN H={h1, h2} CF={0.1, 0.5}
已知用户对初始证据给出的确定性为:
CER(E1)=0.8 CER(E2)=0.6
CER(E3)=0.9
并假Ω定中的元素个数∣Ω∣=10
求:CER(H)=?
解:由给定知识形成的推理网络如下图所示:
(1)求CER(A)
由r1:
CER(E1AND E2)
CF(E3 AND E4 AND E5)
=0.7*0.5+0.6*0.3+0.69*0.2=0.67