华师大版九年级数学上册知识总结-----华师版

合集下载

九年级华师大版数学知识点

九年级华师大版数学知识点

九年级华师大版数学知识点详解九年级数学学科是中学数学学科的重要阶段之一,学生将进一步巩固和拓展初中数学的基础知识,并学习一些高中数学的初步内容。

下面将重点介绍九年级华师大版数学的主要知识点,帮助同学们更好地理解和掌握这些内容。

一、代数运算代数运算是数学学科中非常重要的一个部分,它涉及到数字和符号的组合及其运算规则。

在九年级的代数运算中,包括乘法法则、因式分解、代数式的展开与因式分解等内容。

其中,乘法法则是代数运算的基础,学生需要熟练掌握乘法法则,并能够运用到实际问题中。

而因式分解则是将一个多项式拆分成几个较简单的乘积的过程,也是九年级代数运算的重点之一。

二、平面几何在九年级华师大版数学中,平面几何是一个重要的内容。

它主要包括三角形、平行线、相似形和勾股定理等知识点。

在学习这些知识点时,同学们需要了解三角形的定义和性质,并能够应用到解决实际问题中。

平行线的学习中,需要掌握平行线的定义以及平行线的性质,例如平行线间的角和、平行线的判定方法等。

相似形是指形状相似但大小不同的两个图形,学生需要学习相似形的定义、性质以及相似比的计算方法。

勾股定理是解决直角三角形问题的重要定理,同学们需要了解勾股定理的定义和证明过程,并能够熟练应用到解题中。

三、数列与函数数列是由一列数字按照一定规律排列而成的一组数,数列中的每个数字称为项。

在九年级华师大版数学中,学生需要学习数列的概念、性质以及求解数列的问题。

在数列的学习中,同学们需要了解等差数列和等比数列的定义,并能够计算其通项、前n项和等差(比)等相关内容。

函数是数学中的一种基本概念,是将一个数集的每个元素都对应到另一个数集中的元素的关系。

在九年级数学中,学生将进一步学习函数的概念以及函数的性质和运算。

此外,同学们还需要学习函数的图像、函数关系的表示和函数的应用等内容。

四、概率与统计概率与统计是应用数学的重要分支,它涉及到随机事件和数据的收集与分析。

在九年级华师大版数学中,学生将学习概率的基本概念和性质,以及概率的计算方法和应用。

华师大版-数学-九年级上册-第25章知识升华

华师大版-数学-九年级上册-第25章知识升华

第25章知识升华一、知识脉络:二、典例分析:例1 在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB 于点D ,求∠BCD 的四个三角函数值.【分析】求∠BCD 的四个三角函数值,关键要弄清其定义,由于∠BCD 是在Rt △BCD 中的一个内角,根据定义,仅一边BC 是已知的,此时有两条路可走,一是设法求出BD 和CD ,二是把∠BCD 转化成∠A ,显然走第二条路较方便,因为在Rt △ABC 中,三边均可得出,利用三角函数定义即可求出答案.【解】 在Rt △ABC 中,∵ ∠ACB =90°∴∠BCD +∠ACD =90°,∵CD ⊥AB ,∴∠ACD +∠A =90°,∴∠BCD =∠A .在Rt △ABC 中,由勾股定理得,AB =22AC BC =10,∴sin ∠BCD =sinA =BC AB =45 ,cos ∠BCD =cosA =AC AB =35, tan ∠BCD =tanA =BC AC =43 ,cot ∠BCD =cotA =AC BC =34.【说明】本题主要是要学生了解三角函数定义,把握其本质,应强调转化的思想,即本题中角的转换.例2 如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪离AB 为1.5米,求拉线CE 的长.(结果保留根号)【分析】求CE 的长,此时就要借助于另一个直角三角形,故过点A 作AG ⊥CD ,垂足为G ,在Rt △ACG 中,可求出CG ,从而求得CD ,在Rt △CED 中,即可求出CE 的长.【解】 过点A 作AG ⊥CD ,垂足为点G ,在Rt △ACG 中,∵∠CAG =30°,BD =6,∴tan 30°=CG AG ,∴CG =6×33 =2 3 ,∴CD =2 3 +1.5,在Rt △CED 中,sin 60°=CD EC,∴EC =CD sin60° =23+1.53=4+ 3 . 答:拉线CE 的长为4+ 3 米.【说明】在直角三角形的实际应用中,利用两个直角三角形的公共边或边长之间的关系,往往是解决这类问题的关键,在复习过程中应加以引导和总结.例3 如图,某县为了加固长90米,高5米,坝顶宽为4米的迎水坡和背水坡,它们是坡度均为1∶0.5,橫断面是梯形的防洪大坝,现要使大坝顺势加高1米,求⑴坡角的度数;⑵完成该大坝的加固工作需要多少立方米的土?【分析】大坝需要的土方=橫断面面积×坝长;所以问题就转化为求梯形ADNM 的面积,在此问题中,主要抓住坡度不变,即MA 与AB 的坡度均为1∶0.5.【解】 ⑴∵i =tanB ,即tanB =10.5=2,∴∠B =63.43°. ⑵过点M 、N 分别作ME ⊥AD ,NF ⊥AD ,垂足分别为E 、F .由题意可知:ME =NF =5,∴ME AE =10.5 ,∴AE =DF =2.5,∵AD =4, ∴MN =EF =1.5,∴S 梯形ADNM =12(1.5+4)×1=2.75.∴需要土方为2.75×90=247.5 (m 3) .【说明】本题的关键在于抓住前后坡比不变来解决问题,坡度=垂直高度水平距离=坡角的正切值.例4 某风景区的湖心岛有一凉亭A ,其正东方向有一棵大树B ,小明想测量A 、B 之间的距离,他从湖边的C 处测得A 在北偏西45°方向上,测得B 在北偏东32°方向上,且量得B 、C 间距离为100米,根据上述测量结果,请你帮小明计算A 、B 之间的距离.(结果精确到1米,参考数据:sin 32°≈0.5299,cos 32°≈0.8480,tan s 32°≈0.6249,cot 32°≈1.600)【分析】本题涉及到方位角的问题,要解出AB 的长,只要去解Rt △ADC 和Rt △BDC 即可.【解】过点C 作CD ⊥AB ,垂足为D .由题知:∠α=45°,∠β=32°.在Rt △BDC中,sin 32°=BD BC ,∴BD =100sin 32°≈52.99.cos 32°=CD BC,∴CD =100 cos 32°≈84.80.在Rt △ADC 中,∵∠ACD =45°,∴AD =DC =84.80.∴AB =AD +BD ≈138米.答:AB 间距离约为138米.【说明】本题中涉及到方位角的问题,画图是本题的难点,找到两个直角三角形的公共边是解题的关键,在复习中应及时进行归纳、总结由两个直角三角形构成的各种情形.例5 在某海滨城市O 附近海面有一股台风,据监测,当前台风中心位于该城市的东偏南70°方向200千米的海面P 处,并以20千米/ 时的速度向西偏北25°的PQ 的方向移动,台风侵袭范围是一个圆形区域,当前半径为60千米,且圆的半径以10千米/ 时速度不断扩张.(1)当台风中心移动4小时时,受台风侵袭的圆形区域半径增大到 千米;又台风中心移动t 小时时,受台风侵袭的圆形区域半径增大到 千米.(2)当台风中心移动到与城市O 距离最近时,这股台风是否侵袭这座海滨城市?请说明理由(参考数据2 1.41≈,3 1.73≈).【分析】先要计算出OH 和PH 的长,即可求得台风中心移动时间,而后求出台风侵袭的圆形区域半径,此圆半径与OH 比较即可.【解】⑴100; (6010)t +.⑵作OH ⊥PQ 于点H ,可算得1002141OH =≈(千米),设经过t 小时时,台风中心从P 移动到H ,则201002PH t ==52t =时,受台风侵袭地区的圆的半径为:601052130.5+⨯(千米)<141(千米).∴城市O 不会受到侵袭.【说明】本题是在新的情境下涉及到方位角的解直角三角形问题,对于此类问题常常要构造直角三角形,利用三角函数知识来解决.。

华师大九年级数学上知识点

华师大九年级数学上知识点

华师大九年级数学上知识点华师大九年级数学上的重要知识点数学作为一门重要的学科,是培养学生逻辑思维和分析问题能力的重要手段。

华师大九年级的数学教材包含了许多重要的知识点,掌握这些知识点对于学生打好数学基础,提高综合素质非常重要。

下面将重点介绍华师大九年级数学上的几个重要知识点。

一、代数ic745ic745代数是数学中非常重要的一部分,也是中学数学的重点内容之一。

在代数中,学生将学习如何用字母表示数,进而掌握各种数的加减乘除运算和代数式的展开与因式分解等技巧。

1. 代数式的运算代数式是数学中的核心概念之一,掌握代数式的运算是解决各种问题的基础。

学生需要掌握代数式的加减乘除运算规则,并能在实际问题中应用这些技巧。

2. 一元二次方程一元二次方程是数学中的经典问题之一,也是考查学生解决实际问题能力的常见题型。

掌握一元二次方程的解法,对于学生在构建模型求解实际问题时十分有帮助。

二、几何几何是数学中的一个重要分支,通过几何的学习,学生将培养空间想象和图形分析能力,进而解决与形状、位置、方向等相关的问题。

1. 平面图形的相关性质学生需要掌握平面图形的基本性质,如线段、角、三角形、四边形等的定义和性质。

特别是对于三角形和四边形,需要熟练掌握各种判定等著名定理和公式的使用。

2. 空间图形的相关性质学生需要了解立体图形的基本性质,如立方体、圆柱体、圆锥体、球体等的定义和性质。

掌握这些性质能够帮助学生解决立体图形的计算和判定问题。

三、概率统计概率统计是数学中比较实用的一门学科,通过学习概率统计,学生将掌握分析数据、做出统计推断和预测的技巧。

1. 数据的收集和整理学生需要学会有效地收集数据,并分析和整理数据。

采用合适的统计方法,能够更好地描述和总结数据,进而做出科学的推断。

2. 概率的计算和应用学生需要掌握概率的基本概念和计算方法。

理解事件发生的可能性和概率的性质,能够帮助学生在预测和决策中做出更合理的选择。

以上介绍了华师大九年级数学上的一些重要知识点,对于学生来说,掌握这些知识点将对他们的数学学习和应用能力有很大帮助。

【华师大版】2012-2013学年九年级(全一册)数学小复习:第24单元 图形的相似 复习课件

【华师大版】2012-2013学年九年级(全一册)数学小复习:第24单元 图形的相似 复习课件

数学·新课标(HS)
第24章复习2 ┃ 考点攻略
┃考点攻略┃
► 考点一 相似三角形的判定
例1 如图24-8所示,方格纸中每个小正方形的边长为1, △ABC和△DEF的顶点都在方格纸的格点上. (1)判断△ABC和△DEF是否相似,并说明理由; (2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请 在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与 △ABC相似(要求写出2个符合条件的三角形,并在图中连结相应 线段,不必说明理由).
第24章复习2 ┃ 考点攻略
解:(1)梯形 A1B1C1D1,如图 24-13. (2)梯形 A2B2C2D2,如图 24-13.
图 24-13
数学·新课标(HS)
第24章复习2 ┃ 考点攻略
方法技巧 位似是相似的特殊形式,位似图形具有相似图形的一切性质, 利用位似可以将图形放大或缩小,位似是一种图形变换.
数学·新课标(HS)
第24章复习2 ┃ 知识归类 判定方法3:如果一个三角形的 三条边 和另一个三角形的 三条边 对应成比例,那么这两个三角形相似. 4.相似三角形的性质 (1)两个相似三角形对应 高 的比、对应 中线 的比、对应 角平分线 的比都等于它们对应边的比. (2)两个相似三角形周长的比等于 面积的比等于 相似比的平方 . 5.相似多边形 边数 相同,并且一个多边形的 (1)如果两个多边形的 各角分别与另一个多边形的各角对应相等, 各边对应成比例,那 么这两个多边形叫做相似多边形. 相似比 ,相似三角形
图24-9
(2)答案不唯一,下面 6 个三角形中的任意 2 个均可. △P2P5D,△P4P5F,△P2P4D, △P4P5D,△P2P4P5,△P1FD.

华师大版九年级上册知识点

华师大版九年级上册知识点

第一章化学反应第一节(P2)一、质量守恒定律(1)定义:参加化学反应的各物质的质量总和等于反应后生成的各物质的质量总和,这个定律叫质量守恒定律。

(2) a.必须是真正参加反应的物质b.各物质的质量总和相等(3)质量守恒定律的解释宏观元素种类元素质量物质的总质量原子种类没有变化微观原子数目没有增减原子质量没有增减进行有关的计算应用推测一些物质的组成解释一些实验事实(3)化学反应前后一定不变的量:①原子种类②元素种类③原子数目④物质总质量用质量守恒定律解释下面两种现象:1、镁带在空气中燃烧后,生成物的质量比镁带的质量增加了,为什么2、煤燃烧后留下的煤灰的质量,比煤的质量减少了,为什么小练克碳与一定量的氧气恰好完全反应,生成二氧化碳22克,有______克氧气参加了反应。

二、化学方程式(1)定义:用化学式来表示化学反应的式子(2)化学方程式的书写原则:一是以客观事实为依据;二是要遵守质量守恒定律(3)书写化学方程式的方法和步骤写:写出反应物和生成物的分子式配:配平化学方程式等:将短线改为等号注:注明反应条件,生成物的状态(4)化学方程式表示的意义①表示反应物和生成物的种类②表示反应的条件③表示反应物、生成物间原子、分子个数比④表示反应物、生成物间的质量练习:试写出下列反应的化学方程式(1)硫在氧气中燃烧生成二氧化硫(2)磷在氧气中燃烧生成五氧化二磷(3)氢气与灼热的氧化铜反应生成铜和水三、化学方程式的配平1.最小公倍数法配平方法是:求出方程式两边相同原子前系数的最小公倍数,然后用该最小公倍数除以各自的原子个数,所得的值就是对应物质的系数。

2.用奇数配偶数法用这一方法配平的化学方程式的特点是:某元素在式子里出现的次数较多,且各端的原子总数是一奇一偶。

配平方法:选定该元素作为配平的起点,先把奇数变为最小的偶数(即乘以2),再确定其它化学式的系数。

3.观察法配平方法是:(1)通过观察,从化学式比较复杂的一种生成物推求出有关各反应物和生成物的系数。

华师大版上册九年级数学第一学月考试总结分析

华师大版上册九年级数学第一学月考试总结分析

华师大版上册九年级数学第一学月考试总结分析一、本科的教情状态和学情状态1、老师方面:我们20位数学老师经常在一起教研,解决教学中存在的问题,尤其在老教师帮扶新教师方面做得更加到位,新上岗徐老师,闫老师在讲授新课的过程中遇到困惑都能虚心请教,老教师们都毫无保留地给她们传经送宝,她俩还随时跟着有经验的老师进课堂听课学习。

老师们每上一节课都充分备课,依据学生学情进行教学设计,课堂上激情饱满,激发学生兴趣,充分调动学生学习积极性,让学生参与课堂,做课堂的主人。

数学组每周进行周清测试,及时了解学生学习情况,每次测试完老师们都把学生的试卷全批全改,针对学生出错情况进行讲评。

老师们不失时机的挑一些学生到办公室进行辅导,辅导的过程中有的还给学生们进行心理辅导和精神鼓励,真可谓老师们干得如火如荼!2、学生方面:各班优生学习态度好,学习目的明确,学法得当,听课聚精会神,做作业都能保质保量完成,所以成绩优异!然而,由于受今春疫情的影响,这届学生差生群体比往年还大,相当一部分学生学习数学已经是一个门外汗,可以说一窍不通。

原因是数学是一个知识一环套一环的学科,前面的落下了后面的接不住了。

但老师们目前为止还不想放弃任何一个差生,总是鼓励学生们老师慢慢讲,你只要认真听课,还是能够学会的,心有多大,舞台就有多大!二、月考成绩表现:1.班级的优生本学科可否优秀?每班都不同程度地存在一些优秀生数学还没有达到优秀的现象,另外不少班级老师反映分到班级前20名的学生,这次月考成绩还有不及格的现象,让老师们大吃一惊!2.对第二梯队的学生本学科如何发挥正贡献?首先给同学们讲数学学科成绩不好,直接要被中招考试淘汰掉,注定是考不上高中的,让学生们有一个危机感,给他们压担子。

其次,在课堂上多提问他们,让他们回答一些中等难度的问题,让他们感受到老师重视他们,关爱他们,他们就会迸发内驱力,迎头前进!第三,课后多给他们开小灶,帮助学生解决学习中的困难。

华师大版九年级数学上册课件全册

华师大版九年级数学上册课件全册

32 9 3, 类似地,计算:

7 5
2

=
7 5
02 0
0.52 0.5
又如 32 = 9=3= 3,再计算:


7 5
2

=
7 5
0.52 = 0.5
归纳 一般地,有
a (a≥0) -a (a<0)
知识要点 1.从运算顺序来看,
2 a 先开方,后平方
2.从取值范围来看,
2 a a≥0
3.从运算结果来看:Fra bibliotek 2 a =a
a (a≥0)
a2 =∣a∣ =
-a(a<0)
a2 先平方,后开方
a 2 a取任何实数
练一练 化简
(1) 16
(3) (7)2
解: (1) 16 42 4
(3) (7)2 7
(2) (5)2
(4) 72
问题3 平方根的性质:
正数有两个平方根且互为相反数; 0有一个平方根就是0; 负数没有平方根.
问题4 所有实数都有算术平方根吗?
正数和0都有算术平方根; 负数没有算术平方根.
S
S
圆形的下球体在平面图上的面积为S,则半径为_______π___.
讲授新课
一 二次根式的定义及有意义的条件
如图所示的值表示正方形的面积,则
两个二次根式能否进行加、减、乘、除运算?怎样运算?让我们从研 究乘法开始.
请写出两个二次根式,猜一猜,它们的积应该是多少?
2 7= ?
特殊化,从能开得尽方的二次根式乘法运算开始思考!
讲授新课
一 二次根式的乘法法则及运算
1. a 既可表示开方运算,也可表示运算的结果.

华师大版数学九年级上册用坐标确定位置课件

华师大版数学九年级上册用坐标确定位置课件
①福建的东南方向;②北纬25.03°;③东经121.3°; ④北纬25.03°,东经121.3°. 导引:用经纬度确定物体的位置,要用两个量:经度和纬度, 二者缺一不可.
总结
知2-讲
通常用经纬度来表示地球上某一地点的确切位置.
知2-练
• 北京时间2014年5月24日4时49分云南省德宏傣族景
颇族自治州盈江县(北纬25.0°,东经97.8°)产生
知识点 1 用坐标表示平面内点的位置
知1-导
不少问题中,物体的大小往往可以忽略,因而可以用 点来表示,从而可以用坐标确定物体所在的位置.
某中学夏令营举行野外拉练活 动,老师交给大家一 张地图,如 图23. 6. 1所示,地图上画了一个 平面直角坐 标系作为定向标记, 并给出了四座农舍的坐标: (1,2)、 (-3, 5)、(4, 5)、(0, 3).
知1-导
目的地位于连结第一座与第 三座农舍的直线和连 结 第二座与第四座农舍的直线的交点处.利用平面直角坐标 系,同学们很快就到达了目的地.请你在图中画出目的地 的位置.
(来自教材)
知1-导
利用坐标确定物体的位置时,第一应根据条件建立合 适的平面直角坐标系,然后用有序实数对来表示这个物 体的位置.一般地,我们习惯用(a,b)来表示一个物体 的位置,其中a表示横坐标,b表示纵坐标.
方向,距离此处3千米的地方;
“明天调味品厂”在他现在所在地的北偏西45°的方向,
距离此处2. 4千米的地方;
“321号水库”在他现在所在地的南偏东27°的方向,距
离此处1. 1千米的地方.
根据这些信息,试在图23. 6. 3中画出表示各处位置的
示意图.
(来自教材)
知3-导
在图23. 6. 3 中帮助小明 完成这张示
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.二次根式:式子a (a ≥0)叫做二次根式。

2.二次根式有意义的条件:被开方数a ≥0
3. 二次根式的性质:
(1)(a )2
=a (a ≥0); (2)==a a 2 4.二次根式的乘法---------)0,0(≥≥⇔
⋅b a ab b a
5.二次根式的除法---------
)0,0(>≥⇔
b a b
a
b
a 6.最简二次根式:
⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母; ⑶分母中不含根式。

7.同类二次根式--------化成最简二次根式后,被开方数相同。

8.二次根式的加减--------先把各个二次根式化简,再将同类二次根式合并。

9.分母有理化:把分母中的根号化去。


a
的有理化因式是a ; ②
a 的有理化因式是a 。

1. 一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程。

2.一般形式:c b a c bx ax ,,(02
=++是已知数,)0≠a 。

其中c b a ,,分别叫做二次项的系数,一次项的系数,常数项。

3. 一元二次方程的解---------- 使方程左、右两边相等的未知数的值叫做方程的解。

4.一元二次方程的解法
(1)直接开平方法-----------若()02
≥=a a x ,则a x ±=
(2)配方法-----步骤:①把常数项移到方程的右边;②把二次项的系数化为1;③方程两边同时 加上1次项的系数的一半的平方,配成完全平方公式;④直接开平方。

(3)公式法-------求根公式:)04(242
2≥--±-=
ac b a
ac b b x 步骤:①把方程化为()002
≠=++a c bx ax 的形式,确定的值c b a .,(注意符号);②求出ac b 42
-的值;③若
042≥-ac b ,则.,b a 把及ac b 42-的值代入求根公式,求出21,x x 。

(4)因式分解法-----------要求方程右边必须是0,左边能分解因式。

注意:形如“
()()为常数b a b a x b a x ,02=+++可将左边分解因式,方程变形为()()0=++b x a x ,则
00=+=+b x a x 或,即b x a x -=-=21,。

5.一元二次方程根的判别式-----------------△=ac b 42
- ①△=ac b 42
-﹥0⇔方程有两个不相等的实数根; ②△=ac b 42-=0⇔方程有两个相等的实数根; ③△=ac b 42-﹤0⇔方程没有实数根。

注意:逆用根的判别式求未知数的值或取值范围,不能忽略二次项系数不为0这一条件。

a (a >0)
a -(a <0)
0 (a =0);
6. 一元二次方程的根与系数的关系
若21,x x 是一元二次方程()002
≠=++a c bx ax 的两个根,则有a b
x x -
=+21, a
c x x =21 常用变形:①()212
212
22
12x x x x x x -+=+ ②
2
121
211
1x x x x x x +=+
7.一元二次方程的应用
知识点一 列一元二次方程解应用题的一般步骤
① 审题 ②设未知数 ③列方程 ④解方程 ⑤检验 ⑥作答。

关键点:找出题中的等量关系。

知识点二 增长率问题与降低率问题的数量关系及表示法:
(1)若基数为a ,增长率x 为,则一次增长后的值为()x a +1,两次增长后的值为()2
1x a +;
(2)若基数为a ,降低率x 为,则一次降低后的值为()x a -1,两次降低后的值为()2
1x a -。

知识点三 与市场经济有关的问题----------如:营销问题、水电问题等,常用关系式有:
(1)每件利润=销售价-成本价; (2)利润率=(销售价—进货价)÷进货价×100%; (3)销售额=售价×销售量; (4)总利润=单个利润×销售数量 第24章 图形的相似
1.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即d
c
b a =(或a :b=
c :
d ),那么,这四条线段叫做成比例线段。

(注意:线段单位要统一)
2.比例性质的基本性质: bc
ad d c
b a =⇔= (两外项的积等于两内项积)
3.黄金分割:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果
AC
BC
AB AC =
,即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。

其中AB AC 2
1
5-=
≈AB 。

4.相似三角形:两个三角形中,如果三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。

如△ABC 与△DEF 相似,记作△ABC ∽△DEF 。

5.相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。

通常用k 来表示。

相似比具有顺序性.
6. 相似三角形的性质
①相似三角形对应角相等、对应边成比例.
②相似三角形对应高、对应角平分线、对应中线、周长的比都等于相似比。

③相似三角形对应面积的比等于相似比的平方. 7.三角形相似的判定定理:
(1)平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。

(2)两角对应相等,两三角形相似.
(3)两边对应成比例且夹角相等,两三角形相似. (4)三边对应成比例,两三角形相似.
(5)直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。

射影定理:CD2=AD ·BD , AC2=AD ·AB ,BC2=BD ·BA
六种相似基本模型:
C
A
B
D C
A
B
D
E E D B
A
C
DE ∥BC
∠B ?∠AED
∠B ?∠ACD
A
B
C
D
O
B
A
C
O D
C
B
A
X 型 母子型
AC ∥BD
∠B ?∠C
AD 是Rt △ABC 斜边上的高
中位线
①三角形的中位线:连结三角形两边中点的线段。

(3条) ②三角形的中位线平行于第三边且等于第三边的一半。

③重心:三角形三条中线相交于一点,这个交点叫做三角形的重心.
④重心的性质:三角形的重心到一个顶点的距离,等于它到对边中点的距离的两倍. ⑤梯形的中位线:连结梯形两腰中点的线段。

⑥梯形的中位线平行于两底边,且等于两底和的一半 ⑦梯形的面积=中位线╳高=
1
2
(上底+下底)╳高 射影定理:直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相CD2=AD ·BD , AC2=AD ·AB ,BC2=BD ·BA
10.位似(1)定义:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

(2)性质:①位似图形的对应边平行或共线。

②位似图形上任意一对对应点到位似中心的距离之比等于相似比。

11.图形的变换与坐标
①轴对称:图形关于x 轴对称,横不变,纵为相反数;关于y 轴对称,纵不变,横为相反数。

②中心对称:图形关于原点对称,横纵皆为相反数。

③平移:横坐标右加左减,纵坐标上加下减。

④位似:以原点为位似中心,位似比为K
1.在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):
:i h l =h
l
α
2.特殊
(重要)
3.解直角三角形:已知边和角→所有未知的边和角。

只有两种情况:(1)已知两条边(2)已知一条边和一个锐角
4.应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

(2)坡角:坡面与水平面的夹角。

记作α。

坡度:坡面的铅直高度h 和水平宽度l 的比。

用字母i 表示,即tan h
i l
α=
=。

一般写成1:m 的形式。

随机事件的概率
1. 概率
(1)表示一个事件发生的可能性大小的这个数,叫做该事件的概率. P (所关注的事件)=所关注的结果/所有等可能的结果. 2. 概率的预测
(1)要清楚我们关注的是发生哪个或哪些结果. (2)要清楚所有机会的结果.
(1)、(2)两个结果个数之比就是关注的结果发生的概率. 方法:画树状图、列表法.。

相关文档
最新文档