集合的基本运算一 必修一教案4
1.3集合的基本运算教案-高一数学人教A版(2019)必修第一册

第一章集合与常用逻辑用语1.3集合的基本运算【素养目标】1.能从教材实例中抽象出两个集合并集和交集、全集和补集的含义.(数学抽象)2.准确翻译和使用补集符号和Venn图.(数学抽象)3.掌握有关的术语和符号,并会用它们正确进行集合的并集、交集与补集运算.(数学运算) 4.能用Venn图表示两个集合的并集和交集.(直观想象)5.能根据集合间的运算结果判断两个集合之间的关系.(逻辑推理)6.能根据两个集合的运算结果求参数的取值范围.(逻辑推理)7.会用Venn图、数轴解决集合综合运算问题.(直观想象)【学法解读】1.在本节学习中,学生应依据老师创设合适的问题情境,加深对“并集”“交集”“补集”“全集”等概念含义的认识,特别是对概念中“或”“且”的理解,尽量以义务教育阶段所学过的数学内容或现实生活中的实际情境为载体创设相关问题,帮助理解.2.要注意结合实例,运用数轴、V enn图等表示集合进行运算,从而更直观、清晰地解决有关集合的运算问题.1.3.1 并集与交集必备知识·探新知基础知识(3)A⊆B (4)B⊆A(5)A=B说明:由上述五个图形可知,无论集合A,B是何种关系,A∪B恒有意义,图中阴影部分表示并集.:并集概念中的“或”与生活用语中的“或”的含义是否相同?提示:并集概念中的“或”与生活用语中的“或”的含义是不同的.生活用语中的“或”是“或此”“或彼”只取其一,并不兼存;而并集中的“或”则是“或此”“或彼”“或此彼”,可兼有.“x∈A或x∈B”包含三种情形:①x∈A,但x∉B;②x∈B,但x∉A;③x∈A且x∈B.知识点二交集(1)A与B相交(有公共元素,相互不包含)(2)A与B相离(没有公共元素,A∩B=∅)(3)A⊆B,则A∩B=A(4)B⊆A,则A∩B=B(5)A=B,A∩B=B=A:集合运算中的“且”与生活用语中的“且”相同吗?提示:集合运算中的“且”与生活用语中的“且”的含义相同,均表示“同时”的含义,即“x∈A,且x∈B”表示元素x属于集合A,同时属于集合B.知识点三并集与交集的性质(1)___A∩A=A___,A∩∅=∅.(2)____A∪A=A____,A∪∅=A.思考3:(1)对于任意两个集合A,B,A∩B与A有什么关系?A∪B与A有什么关系?(2)设A,B是两个集合,若已知A∩B=A,A∪B=B,则它们之间有何关系?集合A与B 呢?提示:(1)(A∩B)⊆A,A⊆(A∪B).(2)A∩B=A⇔A∪B=B⇔A⊆B.基础自测1.(2019·全国卷Ⅲ理,1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=(A) A.{-1,0,1}B.{0,1}C.{-1,1} D.{0,1,2}[解析]∵B={x|x2≤1}={x|-1≤x≤1},∴A∩B={-1,0,1,2}∩{x|-1≤x≤1}={-1,0,1},故选A.2.(2019·江苏宿迁市高一期末测试)设集合M={0,1,2},N={2,4},则M∪N=(D) A.{0,1,2} B.{2}C.{2,4} D.{0,1,2,4}[解析]M∪N={0,1,2}∪{2,4}={0,1,2,4}.3.已知集合M={x|-5<x<3},N={x|-4<x<5},则M∩N=(A)A.{x|-4<x<3}B.{x|-5<x<-4}C.{x|3<x<5} D.{x|-5<x<5}[解析]M∩N={x|-5<x<3}∩{x|-4<x<5}={x|-4<x<3},故选A.4.(2019·江苏,1)已知集合A={-1,0,1,6},B={x|x>0,x∈R},则A∩B=____{1,6}________.[解析]A∩B={-1,0,1,6}∩{x|x>0,x∈R}={1,6}.5.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=___3__.[解析]因为A∩B={2,3},所以3∈B.所以m=3.关键能力·攻重难题型探究题型一并集运算例1(1)设集合A={1,2,3},B={2,3,4,5},求A∪B;(2)设集合A={x|-3<x≤5},B={x|2<x≤6},求A∪B.[分析]第(1)题由定义直接求解,第(2)题借助数轴求很方便.[解析](1)A∪B={1,2,3}∪{2,3,4,5}={1,2,3,4,5}.(2)画出数轴如图所示:∴A∪B={x|-3<x≤5}∪{x|2<x≤6}={x|-3<x≤6}.[归纳提升]并集运算应注意的问题(1)对于描述法给出的集合,应先看集合的代表元素是什么,弄清是数集,还是点集……,然后将集合化简,再按定义求解.(2)求两个集合的并集时要注意利用集合元素的互异性这一属性,重复的元素只能算一个.(3)对于元素个数无限的集合进行并集运算时,可借助数轴,利用数轴分析法求解,但要注意端点的值能否取到.【对点练习】❶ (1)已知集合A ={0,2,4},B ={0,1,2,3,5},则A ∪B =__{0,1,2,3,4,5}__. (2)若集合A ={x|x>-1},B ={x|-2<x<2},则A ∪B =__{x|x>-2}___. [解析] (1)A ∪B ={0,2,4}∪{0,1,2,3,5}={0,1,2,3,4,5}. (2)画出数轴如图所示,故A ∪B ={x|x>-2}.题型二 交集运算例2 (1)设集合M ={-1,0,1},N ={x|x2=x}则M∩N =( B ) A .{-1,0,1} B .{0,1} C .{1}D .{0}(2)若集合A ={x|-2≤x≤3},B ={x|x<-1或x>4},则集合A∩B 等于( D ) A .{x|x≤3或x>4} B .{x|-1<x≤3} C .{x|3≤x<4}D .{x|-2≤x<-1}(3)已知A ={(x ,y)|4x +y =6},B ={(x ,y)|3x +2y =7},则A∩B =___{(1,2)}__. [分析] (1)先求出集合N 中的元素再求M 、N 的交集.(2)借助数轴求A ∩B .(3)集合A和B 的元素是有序实数对(x ,y ),A 、B 的交集即为方程组⎩⎪⎨⎪⎧4x +y =63x +2y =7的解集.[解析] (1)N ={x|x2=x}={0,1},∴M∩N ={0,1},故选B .(2)将集合A 、B 表示在数轴上,由数轴可得A∩B ={x|-2≤x<-1},故选D .(3)A ∩B ={(x ,y )|4x +y =6}∩{(x ,y )|3x +2y =7}=⎩⎨⎧⎭⎬⎫x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ 4x +y =63x +2y =7={(1,2)}. [归纳提升] 求集合A∩B 的方法与步骤 (1)步骤①首先要搞清集合A 、B 的代表元素是什么.②把所求交集的集合用集合符号表示出来,写成“A∩B”的形式.③把化简后的集合A、B的所有公共元素都写出来即可(若无公共元素则所求交集为∅).(2)方法①若A、B的代表元素是方程的根,则应先解方程,求出方程的根后,再求两集合的交集;若集合的代表元素是有序数对,则A∩B是指两个方程组成的方程组的解集,解集是点集.②若A、B是无限数集,可以利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实心点表示,不含有端点的值用空心点表示.【对点练习】❷(1)(2020·天津和平区高一期中测试)设集合A={1,2,3,4},B={y|y=2x -1,x∈A},则A∩B等于(A)A.{1,3}B.{2,4}C.{2,4,5,7} D.{1,2,3,4,5,7}(2)(2020·广州荔湾区高一期末测试)设集合A={1,2,4},B={x|x2-4x+m=0},若A∩B ={1},则集合B=(D)A.{-3,1} B.{0,1}C.{1,5} D.{1,3}[解析](1)∵A={1,2,3,4},B={y|y=2x-1,x∈A},∴B={1,3,5,7},∴A∩B={1,3},故选A.(2)∵A∩B={1},∴1∈B,∴1是方程x2-4x+m=0的根,∴1-4+m=0,∴m=3.∴B={x|x2-4x+3=0}={x|(x-1)(x-3)=0}={1,3}.题型三集合的交集、并集性质的应用例3(1)设集合M={x|-2<x<5},N={x|2-t<x<2t+1,t∈R},若M∪N=M,则实数t的取值范围为___________.(2)设A={x|x2-2x=0},B={x|x2-2ax+a2-a=0}.①若A∩B=B,求a的取值范围;②若A∪B=B,求a的取值.[分析](1)把M∪N=M转化为N⊆M,利用数轴表示出两个集合,建立端点间的不等关系式求解.(2)先化简集合A,B,再由已知条件得A∩B=B和A∪B=B,转化为集合A、B的包含关系,分类讨论求a的值或取值范围.[解析] (1)由M ∪N =M 得N ⊆M ,当N =∅时,2t +1≤2-t ,即t ≤13,此时M ∪N =M 成立.当N ≠∅时,由数轴可得⎩⎪⎨⎪⎧2-t <2t +1,2t +1≤5,2-t ≥-2,解得13<t ≤2.缩上可知,实数t 的取值范围是{t |t ≤2}. (2)由x 2-2x =0,得x =0或x =2.∴A ={0,2}. ①∵A ∩B =B ,∴B ⊆A ,B =∅,{0},{2},{0,2}. 当B =∅时,Δ=4a 2-4(a 2-a )=4a <0,∴a <0;当B ={0}时,⎩⎪⎨⎪⎧a 2-a =0,Δ=4a =0,∴a =0;当B ={2}时,⎩⎪⎨⎪⎧4-4a +a 2-a =0,Δ=4a =0,无解;当B ={0,2}时,⎩⎪⎨⎪⎧2a =2,Δ=4a >0,a 2-a =0,得a =1.综上所述,得a 的取值范围是{a |a =1或a ≤0}. ②∵A ∪B =B ,∴A ⊆B .∵A ={0,2},而B 中方程至多有两个根, ∴A =B ,由①知a =1.[归纳提升] 利用交、并集运算求参数的思路(1)涉及A ∩B =B 或A ∪B =A 的问题,可利用集合的运算性质,转化为相关集合之间的关系求解,要注意空集的特殊性.(2)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则可用观察法得到不同集合中元素之间的关系,要注意集合中元素的互异性;与不等式有关的集合,则可利用数轴得到不同集合之间的关系.【对点练习】❸ 已知集合M ={x|2x -4=0},集合N ={x|x2-3x +m =0}, (1)当m =2时,求M∩N ,M ∪N ; (2)当M∩N =M 时,求实数m 的值. [解析] (1)由题意得M ={2}.当m =2时,N ={x|x2-3x +2=0}={1,2}, ∴M∩N ={2},M ∪N ={1,2}.(2)∵M∩N =M ,∴M ⊆N ,∵M ={2},∴2∈N ,∴2是关于x 的方程x2-3x +m =0的解,即4-6+m =0,解得m =2.课堂检测·固双基1.设集合A ={x ∈N *|-1≤x ≤2},B ={2,3},则A ∪B =( B ) A .{-1,0,1,2,3} B .{1,2,3} C .{-1,2}D .{-1,3}[解析] 集合A ={1,2},B ={2,3},则A ∪B ={1,2,3}. 2.已知集合A ={x |-3<x <3},B ={x |x <1},则A ∩B =( C ) A .{x |x <1} B .{x |x <3} C .{x |-3<x <1}D .{x |-3<x <3}[解析] A ∩B ={x |-3<x <3}∩{x |x <1}={x |-3<x <1}.故选C .3.设集合A ={2,4,6},B ={1,3,6},则如图中阴影部分表示的集合是( C )A .{2,4,6}B .{1,3,6}C .{1,2,3,4,6}D .{6}[解析] 图中阴影表示A ∪B ,又因为A ={2,4,6},B ={1,3,6},所以A ∪B ={1,2,3,4,6},故选C .4.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值范围是__a ≤1__. [解析] 利用数轴画图解题.要使A ∪B =R ,则a ≤1.5.已知集合A ={x |m -2<x <m +1},B ={x |1<x <5}. (1)若m =1,求A ∪B ;(2)若A ∩B =A ,求实数m 的取值范围. [解析] (1)由m =1,得A ={x |-1<x <2}, ∴A ∪B ={x |-1<x <5}.(2)∵A ∩B =A ,∴A ⊆B .显然A ≠∅.故有⎩⎪⎨⎪⎧m -2≥1,m +1≤5,解得3≤m ≤4.∴实数m 的取值范围为[3,4].素养作业·提技能A 组·素养自测一、选择题1.已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A ∩B =( B ) A .∅ B .{2} C .{0}D .{-2}[解析] 因为B ={-1,2},所以A ∩B ={2}.2.已知集合M ={x |-3<x ≤5},N ={x |x <-5,或x >4},则M ∪N =( A ) A .{x |x <-5,或x >-3} B .{x |-5<x <4} C .{x |-3<x <4}D .{x |x <-3,或x >5}[解析] 在数轴上分别表示集合M 和N ,如图所示,则M ∪N ={x |x <-5,或x >-3}.3.已知M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},则M ∩N 等于( D ) A .x =3,y =-1 B .(3,-1) C .{3,-1}D .{(3,-1)}[解析] ∵M ,N 均为点集,由⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1,∴M ∩N ={(3,-1)}.4.若A ={x ∈N |1≤x ≤10},B ={x ∈R |x 2+x -6=0},则图中阴影部分表示的集合为( A )A .{2}B .{3}C .{-3,2}D .{-2,3}[解析] A ={1,2,3,4,5,6,7,8,9,10},B ={-3,2},由题意可知,阴影部分为A ∩B ,A ∩B ={2}.5.集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C =( D ) A .{1,2,3} B .{1,2,4} C .{2,3,4}D .{1,2,3,4}[解析] A ∩B ={1,2},(A ∩B )∪C ={1,2,3,4},故选D .6.(2019·武汉市高一调研)设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( D )A .{a |-1<a ≤2}B .{a |a >2}C .{a |a ≥-1}D .{a |a >-1}[解析] 因为A ∩B ≠∅,所以集合A ,B 有公共元素,在数轴上表示出两个集合,如图所示,易知a >-1. 二、填空题7.已知集合A ={2,3},B ={2,6,8},C ={6,8},则(C ∪A )∩B =__{2,6,8}__. [解析] ∵A ∪C ={2,3}∪{6,8}={2,3,6,8}, ∴(C ∪A )∩B ={2,3,6,8}∩{2,6,8}={2,6,8}.8.若集合A ={x |3ax -1=0},B ={x |x 2-5x +4=0},且A ∪B =B ,则a 的值是__0,13,112__. [解析] 由题意知,B ={1,4},A ∪B =B ,∴A ⊆B .当a =0时,A =∅,符合题意;当a ≠0时,A =⎩⎨⎧⎭⎬⎫13a ,∴13a =1或13a =4, ∴a =13或a =112.综上,a =0,13,112.9.已知集合A ={x |x <1,或x >5},B ={x |a ≤x ≤b },且A ∪B =R ,A ∩B ={x |5<x ≤6},则2a -b =__-4__.[解析] 如图所示,可知a =1,b =6,2a -b =-4.三、解答题10.已知集合A =⎩⎨⎧x ⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫3-x >0,3x +6>0,集合B ={m |3>2m -1},求A ∩B ,A ∪B .[解析] 解不等式组⎩⎪⎨⎪⎧3-x >0,3x +6>0,得-2<x <3,则A ={x |-2<x <3}.解不等式3>2m -1,得m <2,则B ={m |m <2}. 用数轴表示集合A 和B ,如图所示.则A∩B={x|-2<x<2},A∪B={x|x<3}.11.设集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},A∩B={-3},求实数a 的值.[解析]∵A∩B={-3},∴-3∈B.∵a2+1≠-3,∴a-3=-3或2a-1=-3.①若a-3=-3,则a=0,此时A={0,1,-3},B={-3,-1,1},但由于A∩B={1,-3}与已知A∩B={-3}矛盾,∴a≠0.②若2a-1=-3,则a=-1,此时A={1,0,-3},B={-4,-3,2},A∩B={-3}.综上可知a=-1.B组·素养提升一、选择题1.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=(D)A.{x|2≤x≤3} B.{x|x≤2或x≥3}C.{x|x≥3} D.{x|0<x≤2或x≥3}[解析]∵S={x|(x-2)(x-3)≥0}={x|x≤2或x≥3},且T={x|x>0},∴S∩T={x|0<x≤2或x≥3}.故选D.2.设集合A={a,b},B={a+1,5},若A∩B={2},则A∪B等于(D)A.{1,2} B.{1,5}C.{2,5} D.{1,2,5}[解析]因为A∩B={2},所以2∈A,2∈B,所以a+1=2,所以a=1,b=2,即A={1,2},B={2,5},所以A∪B={1,2,5},故选D.3.(多选题)已知集合A={2,3,4},集合A∪B={1,2,3,4,5},则集合B可能为(AD) A.{1,2,5} B.{2,3,5}C.{0,1,5} D.{1,2,3,4,5}[解析]集合A={2,3,4},A∪B={1,2,3,4,5},则B中必有元素1和5,且有元素2,3,4中的0个,1个,2个或3个都可以,AD符合.B、C错误,故选AD.4.(多选题)已知集合A ={2,4,x 2},B ={2,x },A ∪B =A ,则x 的值可以为( ABC )A .4B .0C .1D .2 [解析] ∵A ∪B =A ,∴B ⊆A .∴x ∈A ,∴x =4或x 2=x ,由x 2=x 解得x =0或1,当x =0时,A ={2,4,0},B ={2,0},满足题意.当x =1时,A ={2,4,1},B ={2,1},满足题意.当x =4时,A ={2,4,16},B ={2,4},满足题意.故选ABC .二、填空题5.已知集合A ={x |0≤x ≤a ,a >0},B ={0,1,2,3},若A ∩B 有3个真子集,则a 的取值范围是__1≤a <2__.[解析] ∵A ∩B 有3个真子集,∴A ∩B 中有2个元素,又∵A ={x |0≤x ≤a ,a >0}, ∴1≤a <2.6.设集合M ={x |-2<x <5},N ={x |2-t <x <2t +1,t ∈R },若M ∩N =N ,则实数t 的取值范围为__t ≤2__.[解析] 当2t +1≤2-t 即t ≤13时,N =∅.满足M ∩N =N ; 当2t +1>2-t 即t >13时,若M ∩N =N 应满足⎩⎪⎨⎪⎧2-t ≥-22t +1≤5,解得t ≤2.∴13<t ≤2.综上可知,实数t 的取值范围是t ≤2.7.(2019·枣庄市第八中学考试)设集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则使A ⊆(A ∩B )成立的a 的取值集合为__{a |a ≤9}__.[解析] 由A ⊆(A ∩B ),得A ⊆B ,则(1)当A =∅时,2a +1>3a -5,解得a <6.(2)当A ≠∅时,⎩⎪⎨⎪⎧ 2a +1≤3a -5,2a +1≥3,3a -5≤22,解得6≤a ≤9.综合(1)(2)可知,使A ⊆(A ∩B )成立的a 的取值集合为{a |a ≤9}.三、解答题8.已知集合M ={x |2x +6=0},集合N ={x |x 2-3x +m =0}.(1)当m =-4时,求M ∩N ,M ∪N ;(2)当M ∩N =M 时,求实数m 的值.[解析](1)M={-3}.当m=-4时,N={x|x2-3x-4=0}={-1,4},则M∩N={-3}∩{-1,4}=∅,M∪N={-3}∪{-1,4}={-3,-1,4}.(2)∵M∩N=M,∴M⊆N.由于M={-3},则-3∈N,∴-3是关于x的方程x2-3x+m=0的解,∴(-3)2-3×(-3)+m=0,解得m=-18.9.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?[解析]设参加数学、物理、化学小组的人数构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.由全班共36名同学参加课外探究小组可得(26-6-x)+6+(15-10)+4+(13-4-x)+x=36,解得x=8,即同时参加数学和化学小组的有8人.。
集合及基本运算教案

集合及基本运算教案第一章:集合的概念1.1 集合的定义引入集合的概念,讲解集合的定义和性质。
举例说明集合的表示方法,如列举法和描述法。
1.2 集合的元素讲解集合中元素的特征,强调元素的唯一性和不可度量性。
通过实例解释集合中元素的关系,如属于和不属于。
1.3 集合的类型介绍常用集合的类型,如自然数集、整数集、实数集等。
讲解集合的分类方法,如无限集和有限集。
第二章:集合的运算2.1 集合的并集讲解集合的并集概念,即两个集合中所有元素的集合。
举例说明并集的表示方法和运算规则。
2.2 集合的交集讲解集合的交集概念,即两个集合中共有元素的集合。
举例说明交集的表示方法和运算规则。
2.3 集合的差集讲解集合的差集概念,即属于第一个集合但不属于第二个集合的元素的集合。
举例说明差集的表示方法和运算规则。
2.4 集合的补集讲解集合的补集概念,即在全集之外不属于给定集合的元素的集合。
举例说明补集的表示方法和运算规则。
第三章:集合的性质和运算规律3.1 集合的子集讲解集合的子集概念,即一个集合的所有元素都是另一个集合的元素。
举例说明子集的表示方法和运算规则。
3.2 集合的幂集讲解集合的幂集概念,即一个集合的所有可能的子集的集合。
举例说明幂集的表示方法和运算规则。
3.3 集合的德摩根定律讲解德摩根定律,包括德摩根第一定律和德摩根第二定律。
通过实例解释德摩根定律的应用和运算规律。
第四章:集合的排列和组合4.1 排列的概念讲解排列的概念,即从一组不同元素中取出几个元素按照一定的顺序排成一列。
举例说明排列的表示方法和运算规则。
4.2 组合的概念讲解组合的概念,即从一组不同元素中取出几个元素组成一个集合,不考虑元素的顺序。
举例说明组合的表示方法和运算规则。
4.3 排列和组合的公式讲解排列和组合的公式,如排列数公式和组合数公式。
通过实例解释排列和组合公式的应用和运算规律。
第五章:集合的应用5.1 集合在数学中的应用讲解集合在数学中的应用,如在代数、几何和概率论中的使用。
示范教案(集合的基本运算并集、交集)

示范教案(集合的基本运算-并集、交集)第一章:集合的基本概念1.1 集合的定义与表示方法引入集合的概念,讲解集合的定义介绍集合的表示方法,如列举法、描述法等举例说明集合的表示方法及其应用1.2 集合的基本运算介绍集合的基本运算,包括并集、交集、补集等讲解并集的定义及其运算规则讲解交集的定义及其运算规则第二章:集合的并集运算2.1 并集的定义与性质讲解并集的定义及其表示方法介绍并集的性质,如交换律、结合律等举例说明并集的性质及其应用2.2 并集的运算规则讲解并集的运算规则,如两个集合的并集等于它们的交集的补集等举例说明并集的运算规则及其应用2.3 并集的计算方法介绍并集的计算方法,如列举法、Venn图法等讲解并集计算方法的步骤及其应用第三章:集合的交集运算3.1 交集的定义与性质讲解交集的定义及其表示方法介绍交集的性质,如交换律、结合律等举例说明交集的性质及其应用3.2 交集的运算规则讲解交集的运算规则,如两个集合的交集等于它们的并集的补集等举例说明交集的运算规则及其应用3.3 交集的计算方法介绍交集的计算方法,如列举法、Venn图法等讲解交集计算方法的步骤及其应用第四章:集合的混合运算4.1 混合运算的定义与性质讲解混合运算的定义及其表示方法介绍混合运算的性质,如分配律等举例说明混合运算的性质及其应用4.2 混合运算的运算规则讲解混合运算的运算规则,如并集与交集的运算规则等举例说明混合运算的运算规则及其应用4.3 混合运算的计算方法介绍混合运算的计算方法,如列举法、Venn图法等讲解混合运算计算方法的步骤及其应用第五章:集合的应用举例5.1 集合在实际问题中的应用举例说明集合在实际问题中的应用,如统计数据处理、网络管理等讲解集合运算在实际问题中的重要性5.2 集合运算的综合应用举例说明集合运算在实际问题中的综合应用,如数据挖掘、图论等讲解集合运算的综合应用的方法及其步骤5.3 集合运算的拓展与应用介绍集合运算的拓展与应用,如模糊集合、多集等讲解集合运算的拓展与应用的方法及其步骤第六章:集合运算的练习题与解答6.1 集合运算的基础练习提供一些基础的集合运算练习题,如并集、交集的计算等引导学生通过列举法、Venn图法等方法解答练习题6.2 集合运算的进阶练习提供一些进阶的集合运算练习题,如混合运算、集合的应用等引导学生通过列举法、Venn图法等方法解答练习题6.3 集合运算练习题的解答与解析对练习题进行解答,解释解题思路和方法分析练习题的难度和考察点,帮助学生掌握集合运算的知识点第七章:集合运算的常见错误与注意事项7.1 集合运算的常见错误分析学生在集合运算中常见的错误,如概念混淆、运算规则错误等举例说明这些错误的产生原因和解题方法7.2 集合运算的注意事项提醒学生在进行集合运算时需要注意的事项,如符号使用、运算顺序等讲解注意事项的重要性及其在解题中的应用7.3 集合运算的解题技巧与策略介绍学生在解题时可以采用的集合运算技巧与策略,如化简、分解等讲解技巧与策略的运用方法和适用场景第八章:集合运算在实际问题中的应用案例分析8.1 集合运算在图论中的应用介绍集合运算在图论中的应用,如图的连通性、网络流等分析实际案例,讲解集合运算在图论问题中的作用和意义8.2 集合运算在数据挖掘中的应用介绍集合运算在数据挖掘中的应用,如数据预处理、特征选择等分析实际案例,讲解集合运算在数据挖掘问题中的作用和意义8.3 集合运算在其他领域的应用介绍集合运算在其他领域的应用,如计算机科学、经济学等分析实际案例,讲解集合运算在其他问题中的作用和意义第九章:集合运算的拓展与研究动态9.1 集合运算的拓展介绍集合运算的拓展方向,如模糊集合、多集、粗糙集等讲解拓展领域的研究动态和应用前景9.2 集合运算的研究方法与技术介绍集合运算的研究方法,如逻辑推理、数学建模等讲解研究技术在集合运算中的应用方法和实例9.3 集合运算的学术交流与资源共享介绍集合运算领域的学术交流与资源共享平台,如学术会议、期刊等鼓励学生积极参与学术交流,分享研究成果和经验第十章:总结与展望10.1 集合运算的教学总结总结本课程的教学内容和目标,强调集合运算的重要性和应用价值回顾学生在学习过程中的收获和不足,提出改进教学方法的建议10.2 集合运算的学习展望鼓励学生继续深入学习集合运算及相关领域知识,提高解决问题的能力展望集合运算在未来的发展趋势和应用前景,激发学生的学习兴趣和动力重点和难点解析1. 第一章至第五章的章节内容,主要涉及集合的基本概念、基本运算以及应用举例。
集合教案数学必修一

集合教案数学必修一教学目标:1. 知识目标:学生能够正确理解和运用集合的概念,能够正确使用集合的基本运算规则。
2. 能力目标:培养学生分析和解决问题的能力,培养学生的逻辑思维能力。
3. 情感目标:培养学生的学习兴趣和学习动力,培养学生的团队合作精神。
教学重点:1. 理解集合的概念。
2. 学习集合的基本运算法则。
教学难点:1. 学会正确应用集合的基本运算法则。
2. 在解决问题时能够正确运用集合的概念和基本运算法则。
教学方法:1. 课堂教学法:通过讲解、举例、讨论等方式讲解集合的概念和基本运算法则。
2. 合作学习法:通过小组讨论、合作探究等形式,培养学生的合作精神和解决问题的能力。
3. 情景教学法:通过真实的生活情境和案例引导学生理解和运用集合的概念和运算法则。
教学过程:第一步:导入(10分钟)1. 利用生活中的例子引导学生理解集合的概念。
比如,将课堂中的学生分为男生和女生两个集合,让学生分析男生和女生各自拥有的特点,并形成集合的概念。
2. 提问:集合的定义是什么?集合有哪些特点?第二步:学习集合的基本运算法则(30分钟)1. 定义并讲解集合的基本运算法则:并集、交集、差集和补集。
2. 通过举例子的方式帮助学生理解集合的基本运算法则,并通过画图的方式展示集合的运算过程。
3. 练习:让学生自己试着解决一些集合的运算问题,并让他们在小组内交流和讨论答案。
第三步:拓展运用(30分钟)1. 在生活中继续寻找集合的例子,让学生能够将所学的知识灵活运用到实际生活中。
2. 分组讨论:将学生分为小组,让每个小组选择一个自己感兴趣的话题,通过集合的概念和运算法则进行讨论和总结,最后由每个小组代表进行汇报。
第四步:总结(10分钟)1. 回顾本节课所学的知识点和解题方法,并进行总结。
2. 提问:学会了集合的概念和基本运算法则之后,你觉得对你有什么帮助?板书设计:集合的概念1. 定义:集合是由一些个体组成的整体。
2. 特点:没有重复元素,没有次序。
集合的基本运算(教案)

§1.1.3 集合的基本运算(教案)一、并集(重点)定义:一般地,由所有属于集合A 或属于集合B 的所有元素所组成的集合,称为集合A 与集合B 的并集(union set ),记作A B (读作“A 并B ”), 其数学语言表示形式为:{|AB x x A =∈,或}.x B ∈注意1:两个集合求并集,实际上也是一种运算,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素)。
例子:{3,5,6,8},{4,5,7,8}A B ==,则{3,4,5,6,7,8}A B =,而不是{3,5,6,8,4,5,7,8}.A B = 用Venn 图表示两个集合间的“并”运算(求并集):与子集的联系:A AB ⊆,B A B ⊆性质:由并集的定义及韦氏图不难看出,并集具有以下性质: ○1A A A =(吸收律); ○2A ∅=A ; ○3A B B A =(交换律); ○4()()A B C A B C =(结合律)..例1、(1)设集合{1,2,3},{2,3,4,5}A B ==,求AB ; {1,2,3,4,5}(2)设集合{|35}A x x =-<≤,{26}B x =<≤,求AB . {|36}.x x -<≤二、交集(重点)、定义:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集(intersection set ),记作A B (读作“A 交B ”), 其数学语言表示形式为:{|,AB x x A =∈且}.x B ∈注意2:正如并集一样,两个集合的交集仍然是一个集合,所不同的是交集是由两个集合中的共同元素所组成的集合.也就是说,交集是由那些既属于集合A 又属于集合B 的所有元素组成的. 例子:{1,2,3,4,5},{2,4,5,8,9}A B ==,{2,4,5}.AB =用Venn 图表示两个集合间的“交”运算(求交集):A ∪B与子集的联系:AB A ⊆,A B B ⊆性质:由交集的定义及韦氏图不难看出,交集具有以下性质: ○1A A A =(吸收律); ○2A ∅=∅; ○3A B B A =(交换律); ○4()()A B C A B C =(结合律). 随堂练习1: 把例1中的“求AB ”改为“求A B ”重做{2,3};{|25}.x x <≤例2、(1)集合A={x|x 2+5x -6≤0},B={x|x 2+3x>0},求A ∪B 和A∩B . (2)集合A={x |x 是等腰三角形}, B={x |x 是直角三角形}, 求A ∩B, A ⋃B解:(1)∵A={x|x 2+5x -6≤0}={x|-6≤x≤1}, B={x|x 2+3x>0}={x|x<-3或x>0}.A ∪B=R .AB {|63x x=-≤<-或01}.x <≤(2)A ∩B={x |x 是等腰三角形}∩{x |x 是直角三角形}={x |x 是等腰直角三角形},A ∪B={x |x 是等腰三角形}∪{x |x 是直角三角形}={x |x 是等腰三角形或直角三角形} 三、补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(universe set),通常记作.U补集:对于一个集合A,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementanry set),简称为集合A 的补集,记作U A ð,读作全集U 中集合A 的补集. 其数学语言表示形式为:{|,U A x x U =∈ð且}x A ∉,例子:历史老师? 注意3:(1)全集并不是一成不变的,它是依据所研究问题的来加以选择的。
集合的基本运算教案

集合的基本运算教案第一章:集合的基本概念1.1 集合的定义引入集合的概念,解释集合是由明确的、相互区别的对象组成的整体。
通过实例讲解集合的表示方法,如列举法、描述法等。
1.2 集合的元素介绍集合中元素的性质,如确定性、互异性、无序性。
解释元素与集合之间的关系,明确元素属于或不属于一个集合。
1.3 集合的类型分类介绍集合的常见类型,如自然数集、整数集、实数集等。
讲解集合的子集概念,即一个集合的所有元素都是另一个集合的元素。
第二章:集合的运算2.1 集合的并集介绍并集的定义,即两个集合中所有元素的集合。
讲解并集的表示方法,如用符号“∪”表示。
举例说明并集的运算规则和性质。
2.2 集合的交集解释交集的定义,即两个集合共有的元素的集合。
展示交集的表示方法,如用符号“∩”表示。
分析交集的运算规则和性质。
2.3 集合的补集引入补集的概念,即在全集范围内不属于某个集合的元素的集合。
讲解补集的表示方法,如用符号“∁”表示。
探讨补集的运算规则和性质。
第三章:集合的运算规则3.1 集合的德摩根定理讲解德摩根定理的内容,包括德摩根律的两种形式。
分析德摩根定理在集合运算中的应用。
3.2 集合分配律介绍分配律的概念,即集合的并集和交集的运算规律。
解释分配律在集合运算中的重要性。
3.3 集合恒等律讲解集合恒等律,即集合的并集和交集与集合本身的关系。
探讨集合恒等律在集合运算中的应用。
第四章:集合的应用4.1 集合的划分介绍集合的划分概念,即把一个集合分成几个子集。
讲解集合划分的表示方法,如用符号“÷”表示。
举例说明集合划分的应用。
4.2 集合的包含关系解释集合的包含关系,即一个集合是否包含另一个集合的所有元素。
探讨集合包含关系的性质和运算规则。
4.3 集合在数学中的应用分析集合在数学领域中的应用,如几何、代数等。
通过实例讲解集合在其他学科领域的应用。
第五章:集合的练习题及解答5.1 集合的基本概念练习题及解答设计关于集合定义、元素、类型等基本概念的练习题。
高中数学_必修1___§1.3集合的基本运算_教案

课题:§1.3集合的基本运算教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课型:新授课教学重点:集合的交集与并集、补集的概念;教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;教学过程:一、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。
二、新课教学1.并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A 与B的并集(Union)记作:A∪B 读作:“A并B”即:A∪B={x|x∈A,或x∈B}Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题(P 9-10例4、例5)说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。
问题:在上图中我们除了研究集合A 与B 的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A 与B 的交集。
2. 交集一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集(intersection )。
记作:A ∩B 读作:“A 交B ”即: A ∩B={x|∈A ,且x ∈B}交集的Venn 图表示说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。
例题(P 9-10例6、例7)拓展:求下列各图中集合A 与B 的并集与交集说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3. 补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。
集合间的基本运算教案

集合间的基本运算教案章节一:集合的基本概念教学目标:1. 了解集合的定义和表示方法。
2. 掌握集合的元素特征和集合间的基本关系。
教学内容:1. 集合的定义与表示方法:集合是由一些确定的、互不相同的对象组成的整体。
集合可以用大括号{}表示,例如{1, 2, 3}表示包含元素1、2、3的集合。
2. 集合的元素特征:集合中的元素具有无序性、互异性、确定性。
3. 集合间的基本关系:集合间的包含关系(子集)、不相交关系、并集、交集、补集。
教学活动:1. 引入集合的概念,引导学生思考日常生活中遇到的集合例子。
2. 通过示例讲解集合的表示方法。
3. 讨论集合的元素特征,引导学生发现集合中的元素满足的条件。
4. 讲解集合间的包含关系、不相交关系、并集、交集、补集的定义和性质。
章节二:集合的子集与真子集教学目标:1. 理解子集与真子集的概念。
2. 学会判断集合的子集与真子集。
教学内容:1. 子集的概念:如果一个集合的所有元素都是另一个集合的元素,这个集合就是另一个集合的子集。
2. 真子集的概念:如果一个集合是另一个集合的子集,并且两个集合不相等,这个集合就是另一个集合的真子集。
3. 判断集合的子集与真子集的方法。
教学活动:1. 引导学生回顾集合间的基本关系。
2. 引入子集与真子集的概念,通过示例讲解子集与真子集的判断方法。
3. 让学生练习判断给定集合的子集与真子集。
章节三:集合的并集与交集教学目标:1. 理解并集与交集的概念。
2. 学会计算集合的并集与交集。
教学内容:1. 并集的概念:如果两个集合的元素合并在一起,形成的集合称为这两个集合的并集。
2. 交集的概念:如果两个集合共有的元素组成的集合称为这两个集合的交集。
3. 计算集合的并集与交集的方法。
教学活动:1. 复习集合间的基本关系。
2. 引入并集与交集的概念,通过示例讲解并集与交集的计算方法。
3. 让学生练习计算给定集合的并集与交集。
章节四:集合的补集教学目标:1. 理解补集的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 4 页 共 4 页
(二)例题讲解: 例 1. (课本例 5)设集合 A x 1 x 2 , B x 1 x 3 , 求 A∪B. 变式:A={x|-5≤x≤8}
例 2. (课本例 7)设平面内直线 l1 上点的集合为 L1, 直线 l2 上点的集合为 L2,试用集合的运算表示 l1 ,l2 的 位置关系。
第 1 页 共 4 页
教学难点
教学过程
1. 并集的定义: 一般地,由所有属于集合 A 或属于集合 B 的元素 所组成的集合,叫做集合 A 与集合 B 的并集(union set) 。记作:A∪B(读作: “ A 并 B” ) ,即
A B x x A, 或x B
用 Venn 图表示:
人教版高中数学必修 1 教案
授课时间: 备课时间: 年 年 月 月 日 日
课题:集合的基本运算㈠ (1)理解交集与并集的概念; (2)掌握交集与并集的区别与联系;
教学目标
(3)会求两个已知集合的交集和并集,并能正确应用它们解决一 些简单问题。
教学重点
交集与并集的概念,数形结合的思想。 理解交集与并集的概念、符号之间的区别与联系。 一、复习回顾: 1.已知 A={1,2,3},S={1,2,3,4,5},则 A S;{x|x∈S 且 x A}= 。 2.用适当符号填空: 0 {0}; 0 Φ; Φ {x|x 2 +1=0,x∈ R} {0} {x|x<3 且 x>5} ; {x|x>6} {x|x< - 2 或 x>5} ; {x|x>-3} {x>2} 二、新课教学 (一). 交集、并集概念及性质的教学: 思考 1.考察下列集合,说出集合 C 与集合 A,B 之 间的关系: (1) A {1,3,5} , B {2,4,6}, C 1,2,3,4,5,6 ; (2) A {x x是有理数} , B {x x是无理数}, C x x 是实数 ; 由学生通过观察得结论。
这样,在问题(1) (2)中,集合 A,B 的并集是 C, 即 A B = C 说明:定义中要注意“所有”和“或”这两个条件。 讨论:A∪B 与集合 A、B 有什么特殊的关系? A∪A= , A∪Ф = , A∪B B∪A A∪B=A , A∪B= B . 巩固练习(口答) : ①.A={3,5,6,8},B={4,5,7,8},则 A∪B= ; ②.设 A={锐角三角形},B={钝角三角形}, 则 A∪B= ; ③.A={x|x>3},B={x|x<6},则 A∪B= 。 2. 交集的定义: 一般地,由属于集合 A 且属于集合 B 的所有元素 组成的集合, 叫作集合 A、 B 的交集 (intersection set) , 记作 A∩B(读“A 交Байду номын сангаасB” )即: A∩B={x|x∈A,且 x∈B} 用 Venn 图表示: (阴影部分即为 A 与 B 的交集)
常见的五种交集的情况:
第 2 页 共 4 页
B A
A(B)
A
B
A B
A
B
讨论:A∩B 与 A、B、B∩A 的关系? A ∩ A = A ∩ Ф = A∩B B∩ A A∩B=A
A∩B=
B 巩固练习(口答) : ①.A={3,5,6,8},B={4,5,7,8},则 A∩B= ; ②.A={等腰三角形},B={直角三角形},则 A ∩B = ; ③.A={x|x>3},B={x|x<6},则 A∩B= 。
第 3 页 共 4 页
3. 已知集合 A x x2 mx m2 19 0 ,
C z z 2 2z 8 0
B y y2 5 y 6 0
是否存在实数
m,同时满足
A B , A C ?
(m=-2)
(三)课堂练习: 课本 P11 练习 1,2,3 归纳小结: 本节课从实例入手,引出交集、并集的概念及符 号;并用 Venn 图直观地把两个集合之间的关系表示 出来,要注意数轴在求交集和并集中的运用。 作业布置: 1. 2. 习题 1.1,第 6,7; 预习补集的概念。