几何常用定理

合集下载

立体几何四大公理八大定理

立体几何四大公理八大定理

立体几何四大公理八大定理《立体几何四大公理八大定理篇一》立体几何,那可是数学里的一座神秘大山。

说起立体几何四大公理八大定理,就像是在讲述一个神秘组织的规则一样。

先说说这四大公理吧。

公理就像是游戏的基本规则,大家都得默认它是对的,没什么可商量的余地。

就像那“如果一条直线上的两点在一个平面内,那么这条直线在此平面内”这条公理,我刚接触的时候就觉得,这不是理所当然的嘛。

可后来仔细一想,这就像在说一个小蚂蚁在一张纸上爬,如果它的两只脚都在纸上,那它整个身子肯定也在纸上啊。

这就像生活中的一些道理,看似简单,其实蕴含着很深的意义。

再看那八大定理,我的天呐,就像是迷宫里的一道道关卡。

有时候我感觉自己像是在黑暗中摸索的探险家,试图搞清楚这些定理之间的关系。

比如说,线面垂直的判定定理,要证明一条直线垂直一个平面,得找平面内两条相交直线都和这条直线垂直。

我每次做这种题的时候,就像在玩一场“找不同”的游戏,在复杂的图形里找出那两条特殊的相交直线。

我记得有一次考试,有一道立体几何的大题,就是要用到这些公理和定理。

我当时看着那图形,就像看一幅外星来的抽象画一样,完全蒙圈了。

我就想,这公理和定理怎么在这时候就像跟我捉迷藏似的呢?也许是我还不够熟练,就像一个新手厨师,虽然知道菜谱上的步骤,但是真到做的时候就手忙脚乱。

我开始在脑海里拼命回忆那些公理和定理,就像在翻找一个装满杂物的旧箱子,试图找到那个合适的工具。

可是有时候我又觉得这些公理和定理是不是有点太刻板了呢?我就想啊,在现实生活中,有些东西可没这么规规矩矩的。

比如说,我们看到的那些建筑,虽然也是基于立体几何的原理,但有些设计就很奇特,好像有点打破这些公理定理的感觉。

但也许这就是理论和实际的差距吧,理论是基础,实际是在这个基础上的创新。

就像我们学走路,先得学会基本的步伐,然后才能跳出自己的舞步。

这些公理和定理虽然有时候让我头疼得像要炸开一样,但我也知道,它们就像一把把钥匙,能打开立体几何这个神秘世界的大门。

初中数学几何公式定理超全汇总

初中数学几何公式定理超全汇总

初中数学几何公式定理超全汇总140条01线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1 关于某条直线对称的两个图形是全等形13、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称02角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1 在角的平分线上的点到这个角的两边的距离相等23、定理2 到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合03三角形25、定理三角形两边的和大于第三边26、推论三角形两边的差小于第三边27、三角形内角和定理三角形三个内角的和等于180°28、推论1 直角三角形的两个锐角互余29、推论2 三角形的一个外角等于和它不相邻的两个内角的和30、推论3 三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c32、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形04等腰、直角三角形33、等腰三角形的性质定理等腰三角形的两个底角相等34、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3 等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1 三个角都相等的三角形是等边三角形39、推论 2 有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半05相似、全等三角形42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3 三边对应成比例,两三角形相似(SSS)47、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2 相似三角形周长的比等于相似比50、性质定理3 相似三角形面积的比等于相似比的平方51、边角边公理有两边和它们的夹角对应相等的两个三角形全等52、角边角公理有两角和它们的夹边对应相等的两个三角形全等53、推论有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理有三边对应相等的两个三角形全等55、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等06四边形57、定理四边形的内角和等于360°58、四边形的外角和等于360°59、多边形内角和定理n边形的内角的和等于(n-2)×180°60、推论任意多边的外角和等于360°61、平行四边形性质定理1 平行四边形的对角相等62、平行四边形性质定理2 平行四边形的对边相等63、推论夹在两条平行线间的平行线段相等64、平行四边形性质定理3 平行四边形的对角线互相平分65、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形67、平行四边形判定定理3 对角线互相平分的四边形是平行四边形68、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理1 矩形的四个角都是直角70、矩形性质定理2 矩形的对角线相等71、矩形判定定理1 有三个角是直角的四边形是矩形72、矩形判定定理2 对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理1 菱形的四条边都相等74、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(a×b)÷276、菱形判定定理1 四边都相等的四边形是菱形77、菱形判定定理2 对角线互相垂直的平行四边形是菱形07正方形78、正方形性质定理1 正方形的四个角都是直角,四条边都相等79、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1 关于中心对称的两个图形是全等的81、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称08等腰梯形83、等腰梯形性质定理等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形09等分87、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h92 、(1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d93、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d94、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例96、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值10圆101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论 1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r ②直线L和⊙O相切d=r ③直线L和⊙O相离d﹥r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r ②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长142、正三角形面积√3a/4 a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144、弧长计算公式:L=nπR/180145、扇形面积公式:S扇形=nπR/360=LR/2146、内公切线长= d-(R-r) 外公切线长= d-(R+r)。

平面几何的26个定理精编版

平面几何的26个定理精编版

平面几何的26个定理精编版在平面几何中,有很多重要的定理可以帮助我们解决各种各样的问题。

下面列举了26个常用的定理,希望能够对读者有所帮助。

1. 两点确定一条直线定理:通过两个不同的点,可以确定唯一一条直线。

2. 第3角定理:任何一条直线将平面分成两个半平面,其中一个半平面包含直线上的第一个角,另一个半平面包含直线上的第二个角。

3. 垂线定理:如果两条直线相交,且其中一条直线上有一点,可以通过这个点引一条垂线与另一条直线相交,那么这个垂线与直线的交点将是直线上的最短距离的点。

4. 直角三角形的勾股定理:对于一个直角三角形来说,斜边的平方等于另外两条边平方的和。

5. 等腰三角形定理:一个三角形任意两边相等,则它的两个底角相等。

7. 三角形内角和定理:三角形的三个角的度数之和等于180度。

8. 同位角定理:如果一个直角与另一条直线相交,那么直角两边上的同位角互相等于180度。

9. 余角定理:如果一个角是直角的余角,那么这个角和它的补角之和等于90度。

10. 垂直角定理:两条直线相交的垂直角是互补的,即它们的度数之和为90度。

11. 平行线定理:平行的两条直线永远不会相交,它们之间的距离保持不变。

14. 内角定理:有n条直线相交,将平面分成了n(n-1)/2个角,则n个角的度数之和为180(n-2)度。

15. 切线和割线定理:圆上一点的切线和这个点到圆心的直线垂直。

18. 正弦定理:对于一个三角形,它的任何一条边的长度与它相对的角的正弦值成比例。

20. 平行线夹角定理:如果两条直线被一条横线所穿过,使对于直线之一和横线在同侧的内角和外角分别相等,那么这条直线与另一条直线是平行的。

23. 双曲线几何定理:在平面上有两个垂直的直线,任何一点到其中一个直线的距离减去到另一个直线的距离之差是常数。

24. 平面几何的欧拉定理:对于一个凸多边形,这个多边形的顶点数、边数、面数的差等于2。

25. 柿子公式:对于一个n边形,其对角线的条数为(n(n-3))/2。

几何中的著名定理大全

几何中的著名定理大全

几何中的著名定理1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

6、三角形各边的垂直一平分线交于一点。

7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。

10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E 的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB 分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。

数学几何必会定理

数学几何必会定理

在 Rt△ABC 中,∠ACB =90 °,cd 是斜边 ab 上的高,则有射影定理如下:①CD2 =AD · DB ②BC2 =BD · BA③AC2 =AD ·AB④AC· BC=AB ·CD (等积式,可用面积来证明)3. 三角形的三条中线交于一点,并且,各中线被这个点分成 2:1 的两部分4. 四边形两边中心的连线和两条对角线中心的连线交于一点5. 间隔的连接六边形的边的中心所做出的两个三角形的重心是重合的(可忽略)2倍。

该点叫做三角形的重心。

交于一点。

该点叫做三角形的旁心。

三角形有三个旁心。

三角形的重心三角形的三条中线交于一点三角形三条中线的交点叫做三角形的重心定理:三角形重心与顶点的距离等于它与对边中点的距离的两倍三角形的内心和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外接三角形三角形的三条内角平分线有一个且只有一个交点,这个交点到三角形三边的距离相等,就是三角形的内心三角形有且只有一个内切圆内切圆的半径公式:s 为三角形周长的一半三角形的外心经过三角形各顶点的圆叫做三角形的外接圆 .外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形三角形三边的垂直平分线有一个且只有一个交点,这个交点到三角形三个顶点的距离相等,就是三角形的外心三角形有且只有一个外接圆设三角形 ABC 的外心为 O,垂心为 H,从 O 向 BC 边引垂线,设垂足为 L,则 AH=2OL三角形的垂心三角形的三条高线交于一点三角形三条高线的交点叫做三角形的垂心锐角三角形的垂心在三角形内;直角三角形的垂心在直角的顶点;钝角三角形的垂心在三角形外三角形的旁心与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆,旁切圆的圆心叫做三角形的旁心三角形的一条内角平分线与其他两个角的外角平分线交于一点,这个交点到三角形一边及其他两边延长线的距离相等,就是三角形的旁心三角形有三个旁切圆,三个旁心7. (九点圆或欧拉圆或费尔巴赫圆 ) 三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上8. 欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上9. 库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

初一数学平面几何基本定理总结

初一数学平面几何基本定理总结

初一数学平面几何基本定理总结数学是一门研究数量、结构、变化以及空间和形式等概念的学科,而平面几何则是研究平面上的形状和尺寸关系的一部分数学内容。

在初一数学学习中,平面几何基本定理是学习平面几何的基础和起点。

下面将对初一数学中常见的平面几何基本定理进行总结。

1. 垂直平分线定理:垂直平分线定理是指如果一条直线同时是一条线段的垂直平分线,那么它将把这条线段分成两个相等的部分。

这个定理在平面几何中非常常见,经常用于解决线段的问题。

2. 直角三角形定理:直角三角形定理是指在一个直角三角形中,两条边的平方和等于斜边的平方。

这个定理在解决直角三角形相关问题时非常有用,可以通过已知两边求第三边的长度。

3. 同位角定理:同位角定理是指当一条直线被两个平行线相交时,同位角是相等的。

这个定理在解决平行线问题、角的计算问题等方面非常常用。

4. 垂直角定理:垂直角定理是指垂直的两条直线所形成的两对相邻角是相等的。

利用这个定理可以在已知一个角的情况下求解另一个角的大小。

5. 顶角定理:当一条直线穿过两条平行线时,位于平行线之间的对应角是相等的。

这个定理在解决平行线问题、角的计算等方面常常被使用。

6. 外角定理:外角定理是指一个三角形的外角等于与其不相邻的两个内角的和。

这个定理可以用于求解三角形内角的大小,还可以用于证明一些性质。

7. 同旁内角定理:同旁内角定理是指两条平行线被一条横切线切割后,同旁内角互补。

这个定理在解决平行线图形的内角问题时特别有用。

8. 直角平分线定理:直角平分线定理是指在一个直角三角形中,从直角的顶点到斜边上某一点引一条直线,将直角平分成两个相等的角。

这个定理在证明几何命题时常常被使用。

以上是初一数学中常见的平面几何基本定理的总结。

掌握这些基本定理,可以帮助我们解决平面几何的问题,进一步提高数学运算和推理的能力。

当然,这些定理只是平面几何中的一小部分,随着学习的深入,我们还会接触到更多的定理和推论。

几何定理大全

几何定理是指经过推理和实验证明,描述几何图形内在关系的一些真理。

以下是一些常见的几何定理:
1.三角形内角和定理:三角形内角和等于180度。

2.勾股定理:三角形中,直角边的平方等于斜边的平方。

3.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

4.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条
弧所对的圆心角的一半。

5.圆内接四边形对角互补:圆的内接四边形对角互补。

6.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点
的两条线段长的比例中项。

7.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

8.圆幂定理:经过半径的外端,并且垂直于这条半径的直线是圆的切线。

9.韦达定理:关于x的方程x^2+mx+n=0有两个实根,那么这两个根的判别式
△=b^2-4ac以及两根之和m1+m2=-b/a,两根之积m1*m2=c/a皆恒成立。

10.塞瓦定理:在三角形ABC内任取一点O,延长AO、BO、CO,并分别交对边
于D、E、F,则(BD/DC)(CE/EA)(AF/FB)=1。

立体几何常考定理总结(八大定理)

lmβααba立体几何的八大定理一、线面平行的判定定理:线线平行⇒线面平行线与平面平行.文字语言:若是平面外.的一条直线与平面内.的一条直线平行,则这条直符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α关键点...:.在.平面内...找一条与....平面外...的.直线平行的线...... 二、线面平行的性质定理:线面平行⇒线线平行文字语言:若是一条直线和一个平面平行,通过..这条直线的平面和那个平面相交..,那么这条直线就和交线..平行. 符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m关键点:需要......借助一个....通过已知直线......的.平面..,接..着找交线。

.....三、面面平行的判定定理:线面平行⇒ 面面平行文字语言:若是一个平面内.有两.条相交..直线都平行..于另一个平面..,那么这两个平面平行. 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 关键点:....在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。

............................... 四、面面平行的性质定理: 面面平行⇒线线平行、面面平行⇒线面平行文字语言:若是两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行. 符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭关键点...:找..第三个平面.....与已知平面都相交,.........则交线平行.....文字语言:若是两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面.符号语言://,//a a αβαβ⊂⇒ 关键:只若是其中一个平面内的直线就行..................五、线面垂直的判定定理:线线垂直⇒线面垂直文字语言:若是一条直线和一个平面内.的两.条相交..直线垂直..,那么这条直线垂直于那个平nmAαaBA l βαaβα面.符号语言:,a m a n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭关键点:在平面内找两条相交直线与所要证的直线垂直........................ 六、线面垂直的性质定理:线面垂直⇒线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意..一条直线. 符号语言:l l a a αα⊥⎫⇒⊥⎬⊂⎭关键点:往往线面垂直中的线线垂直需要用那个定理推出......................... 七、平面与平面垂直的判定定理:线面垂直⇒面面垂直文字语言:若是一个平面通过..另一个平面的一条垂线,则这两个平面相互垂直. (若是一条直线垂直于一个平面,而且有另一个平面通过这条直线,那么这两个平面垂直)符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭关键点:在需要证明的两个平面中找线面垂直....................八、平面与平面垂直的性质定理:面面垂直⇒线面垂直文字语言:若是两个平面相互垂直,那么在一个平面内垂直..于它们的交线..的直线垂直于另一个平面.符号语言:l AB AB AB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭关键点:先找交线,再在其中一个面内找与交线垂直的线。

初中几何常用定理汇总

初中几何常用定理汇总初中数学的几何部分,有很多定理需要记忆理解,但平时我们对知识点的学习都是分散的,不利于记忆!这里整理了初中三年较重要的一些几何定理↓↓↓这些基本定理对我们解几何题目而言是关键中的关键,一定要牢记哟!一、点、线、角点的定理:过两点有且只有一条直线点的定理:两点之间线段最短角的定理:同角或等角的补角相等角的定理:同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短二、几何平行平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补三、三角形内角定理定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°四、全等三角形判定定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等五、角的平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合六、等腰三角形性质等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)七、对称定理定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

认识平面几何的61个著名定理

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】★1、勾股定理(毕达哥拉斯定理)★2、射影定理(欧几里得定理)★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线和两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

★6、三角形各边的垂直平分线交于一点。

★7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。

10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC分成m和n两段,则有n×AB2+m×AC2=BC×(AP2+mn)17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E 的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上★19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD★20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 勾股定理(毕达哥拉斯定理)2. 射影定理(欧几里得定理)在Rt △ABC 中,∠ACB=90°,CD 是斜边AB 上的高,则有射影定理如下:①CD 2=AD ·DB;②BC 2=BD ·BA;③AC 2=AD ·AB;④AC ·BC=AB ·CD (等积式,可用面积来证明)。

3. 三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分。

4. 四边形两边中点的连线和两条对角线中点的连线交于一点。

5. 间隔的连接六边形的边的中点所做出的两个三角形的重心是重合的。

6. 三角形各边的垂直平分线交于一点。

三角形五心重心定义:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。

该点叫做三角形的重心。

外心定义:三角形的三边的垂直平分线交于一点。

该点叫做三角形的外心。

垂心定义:三角形的三条高交于一点。

该点叫做三角形的垂心。

内心定义:三角形的三内角平分线交于一点。

该点叫做三角形的内心。

旁心定义:三角形一内角平分线和另外两顶点处的外角平分线交于一点。

该点叫做三角形的旁心。

三角形有三个旁心。

三角形的内心和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外接三角形。

三角形的三条内角平分线有一个且只有一个交点,这个交点到三角形三边的距离相等,就是三角形的内心 三角形有且只有一个内切圆。

内切圆的半径公式: ()()()s a s b s c r s−−−=(s 为三角形周长的一半)三角形的外心经过三角形各顶点的圆叫做三角形的外接圆.外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形。

三角形三边的垂直平分线有一个且只有一个交点,这个交点到三角形三个顶点的距离相等,就是三角形的外心三角形有且只有一个外接圆。

设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL。

三角形的垂心三角形的三条高线交于一点。

三角形三条高线的交点叫做三角形的垂心。

锐角三角形的垂心在三角形内;直角三角形的垂心在直角的顶点;钝角三角形的垂心在三角形外。

三角形的旁心与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆,旁切圆的圆心叫做三角形的旁心。

三角形的一条内角平分线与其他两个角的外角平分线交于一点,这个交点到三角形一边及其他两边延长线的距离相等,就是三角形的旁心。

三角形有三个旁切圆,三个旁心。

7. (九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中点、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上。

8. 欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上,且2OG=GH9. 库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

10. 中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有22222()AB AC AP BP +=+。

11. 斯图尔特定理:P 将三角形ABC 的边BC 分成m 和n 两段,则有222()n AB m AC BC AP mn ⋅+⋅=⋅+ 。

12. 波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点E 的直线垂直于CD 。

13. 阿波罗尼斯定理:到两定点A 、B 的距离之比为定比m:n (值不为1)的点P ,位于将线段AB 分成m:n 的内分点C 和外分点D 为直径两端点的定圆周上。

14.托勒密定理:设四边形ABCD 内接于圆,则有AB ×CD+AD ×BC=AC ×BD 。

15.以任意三角形ABC 的边BC 、CA 、AB 为底边,分别向外作底角都是30度的等腰△BDC 、△CEA 、△AFB ,则△DEF 是等边三角形。

16. 爱尔可斯定理定理1:若△ABC 和△DEF 都是正三角形,则由线段AD 、BE 、CF 的重心构成的三角形也是等边三角形。

定理2:若△ABC 、△DEF 、△GHI 都是正三角形,则由三角形△ADG 、△BEH 、△CFI 的重心构成的三角形是等边三角形。

17.梅涅劳斯定理设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有1BP CQ AR PC QA RB⋅⋅=。

应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q 、∠C 的平分线交边AB 于R ,、∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线。

应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线。

18.塞瓦定理设△ABC 的三个顶点A 、B 、C 的不在三角形的边或它们的延长线上的一点S 连接面成的三条直线,分别与边BC 、CA 、AB 或它们的延长线交于点P 、Q 、R ,则1BP CQ AR PC QA RB⋅⋅=。

应用定理1:三角形的三条中线交于一点。

应用定理2:设△ABC 的内切圆和边BC 、CA 、AB 分别相切于点R 、S 、T ,则AR 、BS 、CT 交于一点。

19.西摩松定理从△ABC 的外接圆上任意一点P 向三边BC 、CA 、AB 或其延长线作垂线,设其垂足分别是D 、E 、R ,则D 、E 、R 共线(这条直线叫西摩松线)。

20.史坦纳定理设△ABC 的垂心为H ,其外接圆的任意点P ,这时关于△ABC 的点P 的西摩松线通过线段PH 的中点;应用定理:△ABC 的外接圆上的一点P 的关于边BC 、CA 、AB 的对称点和△ABC 的垂心H 同在一条(与西摩松线平行的)直线上。

这条直线被叫做点P 关于△ABC 的镜象线。

21.波朗杰、腾下定理设△ABC 的外接圆上的三点为P 、Q 、R ,则P 、Q 、R 关于△ABC 交于一点的充要条件是:*2()AP BQ CR n n N π++=∈推论1:设P 、Q 、R 为△ABC 的外接圆上的三点,若P 、Q 、R 关于△ABC 的西摩松线交于一点,则A 、B 、C 三点关于△PQR 的的西摩松线交于与前相同的一点。

推论2:在推论1中,三条西摩松线的交点是A 、B 、C 、P 、Q 、R 六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点。

推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆珠笔的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点。

推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点。

关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上。

关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。

22.卡诺定理通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线。

23.奥倍尔定理通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC 的外接圆取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线。

24.清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线。

25.他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW与边BC、CA、AB或其延长线的交点分别为ED、E、F,则D、E、F 三点共线。

(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP 则称P、Q两点关于圆O互为反点)。

A B C D点,以其中任三点作三角形,在圆周取一点P,作P点的关于这426.朗古来定理:在同一圆同上有1111个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上。

27.从三角形各边的中点,向这条边所的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心。

28.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点。

29.康托尔定理定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点。

定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松的交点在同一直线上。

这条直线叫做M、N两点关于四边形ABCD的康托尔线。

定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点。

这个点叫做M、N、L三点关于四边形ABCD的康托尔点。

定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上。

这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线。

30.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切。

31.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相交得到一个交点,则这样的三个交点可以构成一个正三角形。

这个三角形常被称作莫利等边三角形。

32.牛顿定理定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。

这条直线叫做这个四边形的牛顿线。

定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。

33.笛沙格定理定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。

定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。

相关文档
最新文档