2019-2020学年长春市中考数学模拟试卷(六)(有标准答案)

合集下载

(3份试卷汇总)2019-2020学年吉林省长春市中考数学考试试题

(3份试卷汇总)2019-2020学年吉林省长春市中考数学考试试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则BDAD的值为()A.1 B.22C.2-1 D.2+12.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.12B.2 C.55D.2553.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°4.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.6cm C.2.5cm D.5cm5.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.6.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2C.x>﹣2 D.x≠﹣27.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元8.下列运算正确的是()A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6C.(a﹣b)2=a2﹣b2D.a3+a2=2a5 9.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数10.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25°B.35°C.45°D.65°二、填空题(本题包括8个小题)11.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=___________°.12.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.13.已知关于 x 的函数 y=(m ﹣1)x 2+2x+m 图象与坐标轴只有 2 个交点,则m=_______.14.如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 .15.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 .16.若点(a ,b )在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________ 17.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下: 种子粒数 100 400 800 1 000 2 000 5 000 发芽种子粒数 85 318 652 793 1 604 4 005 发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).18.如图,在矩形ABCD 中,AB =4,BC =5,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE .延长AF 交边BC 于点G ,则CG 为_____.三、解答题(本题包括8个小题)19.(6分)如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.求证:BDE CAD ∆∆∽;若13AB =,10BC =,求线段DE 的长.20.(6分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.21.(6分)今年3月12日植树节期间,学校预购进A,B两种树苗.若购进A种树苗3棵,B种树苗5棵,需2100元;若购进A种树苗4棵,B种树苗10棵,需3800元.求购进A,B两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵.22.(8分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为A、B、C、D 四个等级,并把测试成绩绘成如图所示的两个统计图表.七年级英语口语测试成绩统计表成绩x(分)等级人数x90≥ A 1275x90≤< B m60x75≤< C nx60< D 9请根据所给信息,解答下列问题:本次被抽取参加英语口语测试的学生共有多少人?求扇形统计图中 C 级的圆心角度数;若该校七年级共有学生640人,根据抽样结课,估计英语口语达到 B级以上(包括B 级)的学生人数.23.(8分)如图,一次函数y=-x+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y=kx(k≠0)的值时,写出自变量x的取值范围.24.(10分)如图,某市郊外景区内一条笔直的公路a 经过三个景点A 、B 、C ,•景区管委会又开发了风景优美的景点D ,经测量,景点D 位于景点A 的北偏东30′方向8km 处,•位于景点B 的正北方向,还位于景点C 的北偏西75°方向上,已知AB=5km.景区管委会准备由景点D 向公路a 修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km ).求景点C 与景点D 之间的距离.(结果精确到1km ).25.(10分)已知,如图,在坡顶A 处的同一水平面上有一座古塔BC ,数学兴趣小组的同学在斜坡底P 处测得该塔的塔顶B 的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP 攀行了26米,在坡顶A 处又测得该塔的塔顶B 的仰角为76°.求:坡顶A 到地面PO 的距离;古塔BC 的高度(结果精确到1米).26.(12分)如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图像与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点.若点M 是AB 边的中点,求反比例函数ky x=的解析式和点N 的坐标;若2AM =,求直线MN 的解析式及OMN △的面积参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.C 【解析】【分析】由DE ∥BC 可得出△ADE ∽△ABC ,利用相似三角形的性质结合S △ADE =S 四边形BCED ,可得出22AD AB =,结合BD=AB ﹣AD 即可求出BDAD的值. 【详解】∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C , ∴△ADE ∽△ABC ,∴2ADE ABCS AD AB S ⎛⎫= ⎪⎝⎭,∵S △ADE =S 四边形BCED ,S △ABC =S △ADE +S 四边形BCED , ∴2AD AB =, ∴22212BD AB AD AD AD --===-, 故选C .【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.2.A 【解析】分析:连接AC ,根据勾股定理求出AC 、BC 、AB 的长,根据勾股定理的逆定理得到△ABC 是直角三角形,根据正切的定义计算即可. 详解: 连接AC ,由网格特点和勾股定理可知, 2,22,10AB BC == AC 2+AB 2=10,BC 2=10, ∴AC 2+AB 2=BC 2, ∴△ABC 是直角三角形, ∴tan ∠ABC=21222AC AB ==. 点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.3.B【解析】试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°故选B.考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定4.D【解析】分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.详解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,2222+=+=BE EC4845∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴OF OCBE BC=,即445OF =, 解得:OF=5. 故选D .点睛:本题考查了垂径定理,关键是根据垂径定理得出OE 的长. 5.D 【解析】 【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可. 【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y 随x 的增大而减小,且当x=0时,y=4, 当y=0时,x=1. 故选D . 【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解. 6.D 【解析】 试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x 的取值应满足:x≠﹣1.故选D .考点:分式有意义的条件. 7.C 【解析】 【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可. 【详解】 3m×2m=6m 2,∴长方形广告牌的成本是120÷6=20元/m 2, 将此广告牌的四边都扩大为原来的3倍, 则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m 2, ∴扩大后长方形广告牌的成本是54×20=1080元, 故选C .本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.8.B【解析】【分析】根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.【详解】解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;B、(﹣2a3)2=4a6,正确;C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.故选B.【点睛】本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.9.C【解析】【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.10.A【解析】【分析】如图,过点C作CD∥a,再由平行线的性质即可得出结论.【详解】如图,过点C作CD∥a,则∠1=∠ACD,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故选A.【点睛】本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键.二、填空题(本题包括8个小题)11.1【解析】∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=1°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠ABD=∠A=1°;故答案是1.12.四丈五尺【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴x 15=1.50.5,解得x=45(尺).故答案为:四丈五尺.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.13.1 或 0 【解析】【分析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m 的值.【详解】解:(1)当 m ﹣1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴 交点坐标为(﹣12,0);与 y 轴交点坐标(0,1).符合题意. (2)当 m ﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,于是△=4﹣4(m ﹣1)m >0,解得,(m ﹣12)2<54,解得 m 或 m . 将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与 x 轴只有一个交点,与 Y 轴交于交于另一点,这时:△=4﹣4(m ﹣1)m=0,解得:m=12± .故答案为1 或 0 . 【点睛】此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解.14.10【解析】【分析】由正方形性质的得出B 、D 关于AC 对称,根据两点之间线段最短可知,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.【详解】如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴22+=10,68故PB+PE的最小值是10.故答案为10.15.(10,3)【解析】【分析】根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标.【详解】∵四边形AOCD为矩形,D的坐标为(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折叠,使D落在BC上的点F处,∴AD=AF=10,DE=EF,在Rt△AOF中22-=6,AF AO∴FC=10−6=4,设EC=x,则DE=EF=8−x,在Rt△CEF中,EF2=EC2+FC2,即(8−x)2=x2+42,解得x=3,即EC的长为3.∴点E的坐标为(10,3).16.1【解析】【分析】根据题意,将点(a,b)代入函数解析式即可求得2a-b的值,变形即可求得所求式子的值.【详解】∵点(a,b)在一次函数y=2x-1的图象上,∴b=2a-1,∴2a-b=1,∴4a-2b=6,∴4a-2b-1=6-1=1,故答案为:1.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.17.1.2【解析】【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.18.4 5【解析】【分析】如图,作辅助线,首先证明△EFG≌△ECG,得到FG=CG(设为x ),∠FEG=∠CEG;同理可证AF=AD =5,∠FEA=∠DEA,进而证明△AEG为直角三角形,运用相似三角形的性质即可解决问题.【详解】连接EG;∵四边形ABCD 为矩形,∴∠D =∠C =90°,DC =AB =4;由题意得:EF =DE =EC =2,∠EFG =∠D =90°;在Rt △EFG 与Rt △ECG 中,EF EC EG EG=⎧⎨=⎩, ∴Rt △EFG ≌Rt △ECG (HL ),∴FG =CG (设为x ),∠FEG =∠CEG ;同理可证:AF =AD =5,∠FEA =∠DEA ,∴∠AEG =12×180°=90°, 而EF ⊥AG ,可得△EFG ∽△AFE,∴2EF AF FG =∴22=5•x ,∴x =45, ∴CG =45, 故答案为:45. 【点睛】此题考查矩形的性质,翻折变换的性质,以考查全等三角形的性质及其应用、射影定理等几何知识点为核心构造而成;对综合的分析问题解决问题的能力提出了一定的要求.三、解答题(本题包括8个小题)19.(1)见解析;(2)6013DE =. 【解析】【分析】对于(1),由已知条件可以得到∠B=∠C ,△ABC 是等腰三角形,利用等腰三角形的性质易得AD ⊥BC ,∠ADC=90°;接下来不难得到∠ADC=∠BED ,至此问题不难证明;对于(2),利用勾股定理求出AD ,利用相似比,即可求出DE.【详解】解:(1)证明:∵AB AC =,∴B C ∠=∠.又∵AD 为BC 边上的中线,∴AD BC ⊥.∵DE AB ⊥,∴90BED CDA ︒∠=∠=,∴BDE CAD ∆∆∽.(2)∵10BC =,∴5BD =.在Rt ABD ∆中,根据勾股定理,得12AD ==. 由(1)得BDE CAD ∆∆∽,∴BD DE CA AD=, 即51312DE =, ∴6013DE =. 【点睛】此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.20.(1)1(2)10%.【解析】试题分析:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x-80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;(2)设平均每次降价的百分率为y ,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可.试题解析:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x-80)元,根据题意得 6000480080x x =-, 解得x=1.经检验,x=1是原方程的根.答:每张门票的原定票价为1元;(2)设平均每次降价的百分率为y ,根据题意得1(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去).答:平均每次降价10%.考点:1.一元二次方程的应用;2.分式方程的应用.21.(1)A 种树苗的单价为200元,B 种树苗的单价为300元;(2)10棵【解析】试题分析:(1)设B 种树苗的单价为x 元,则A 种树苗的单价为y 元.则由等量关系列出方程组解答即可;(2)设购买A 种树苗a 棵,则B 种树苗为(30﹣a )棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.试题解析:(1)设B 种树苗的单价为x 元,则A 种树苗的单价为y 元,可得:352100{4103800y x y x +=+=,解得:300200x y =⎧⎨=⎩, 答:A 种树苗的单价为200元,B 种树苗的单价为300元.(2)设购买A 种树苗a 棵,则B 种树苗为(30﹣a )棵,可得:200a+300(30﹣a )≤8000,解得:a≥10,答:A 种树苗至少需购进10棵.考点:1.一元一次不等式的应用;2.二元一次方程组的应用22. (1)60人;(2)144°;(3)288人.【解析】【分析】()1D 等级人数除以其所占百分比即可得;()2先求出A 等级对应的百分比,再由百分比之和为1得出C 等级的百分比,继而乘以360即可得; ()3总人数乘以A 、B 等级百分比之和即可得.【详解】解:()1本次被抽取参加英语口语测试的学生共有915%60÷=人;()2A 级所占百分比为12100%20%60⨯=, C ∴级对应的百分比为()120%25%15%40%-++=,则扇形统计图中 C 级的圆心角度数为36040%144⨯=;()()364020%25%288(⨯+=人),答:估计英语口语达到 B 级以上(包括B 级)的学生人数为288人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.23.(1)4y x=;(2)1<x <1. 【解析】【分析】(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;(2)一次函数y=-x+5的值大于反比例函数y=kx,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.【详解】解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),∴n=﹣1+5,解得:n=1,∴点A的坐标为(1,1).∵反比例函数y=kx(k≠0)过点A(1,1),∴k=1×1=1,∴反比例函数的解析式为y=4x.联立54y xyx=-+⎧⎪⎨=⎪⎩,解得:14xy=⎧⎨=⎩或41xy=⎧⎨=⎩,∴点B的坐标为(1,1).(2)观察函数图象,发现:当1<x<1.时,反比例函数图象在一次函数图象下方,∴当一次函数y=﹣x+5的值大于反比例函数y=kx(k≠0)的值时,x的取值范围为1<x<1.【点睛】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.24.(1)景点D向公路a修建的这条公路的长约是3.1km;(2)景点C与景点D之间的距离约为4km.【解析】【详解】解:(1)如图,过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,∴AF=12AD=12×8=4,∴=在Rt△ABF中=,∴BD=DF﹣﹣3,sin∠ABF=45AFAB=,在Rt △DBE 中,sin ∠DBE=DB BD ,∵∠ABF=∠DBE ,∴sin ∠DBE=45, ∴DE=BD•sin ∠DBE=45×(43﹣3)=163125-≈3.1(km ),∴景点D 向公路a 修建的这条公路的长约是3.1km ;(2)由题意可知∠CDB=75°,由(1)可知sin ∠DBE=45=0.8,所以∠DBE=53°, ∴∠DCB=180°﹣75°﹣53°=52°, 在Rt △DCE 中,sin ∠DCE=DB DC ,∴DC= 3.1sin 520.79DE ︒=≈4(km ), ∴景点C 与景点D 之间的距离约为4km .25. (1)坡顶A 到地面PQ 的距离为10米;()2移动信号发射塔BC 的高度约为19米.【解析】【分析】延长BC 交OP 于H.在Rt △APD 中解直角三角形求出AD =10.PD =24.由题意BH =PH.设BC =x.则x+10=24+DH.推出AC =DH =x ﹣14.在Rt △ABC 中.根据tan76°=BC AC,构建方程求出x 即可. 【详解】延长BC 交OP 于H .∵斜坡AP 的坡度为1:2.4,∴512AD PD =, 设AD =5k,则PD =12k,由勾股定理,得AP =13k,∴13k =26,解得k =2,∴AD =10,∵BC ⊥AC,AC ∥PO,∴BH ⊥PO,∴四边形ADHC 是矩形,CH =AD =10,AC =DH,∵∠BPD =45°,∴PH =BH,设BC =x,则x+10=24+DH,∴AC =DH =x ﹣14,在Rt △ABC 中,tan76°=BC AC ,即14x x -≈4.1. 解得:x≈18.7,经检验x≈18.7是原方程的解.答:古塔BC 的高度约为18.7米.【点睛】本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形.26.(1)18y x=,N(3,6);(2)y =-x +2,S △OMN =3. 【解析】【分析】(1)求出点M 坐标,利用待定系数法即可求得反比例函数的解析式,把N 点的纵坐标代入解析式即可求得横坐标;(2)根据M 点的坐标与反比例函数的解析式,求得N 点的坐标,利用待定系数法求得直线MN 的解析式,根据△OMN =S 正方形OABC -S △OAM -S △OCN -S △BMN 即可得到答案.【详解】解:(1)∵点M 是AB 边的中点,∴M(6,3). ∵反比例函数y =k x 经过点M ,∴3=6k .∴k =1. ∴反比例函数的解析式为y =18x . 当y =6时,x =3,∴N(3,6).(2)由题意,知M(6,2),N(2,6).设直线MN 的解析式为y =ax +b ,则6226a b a b +=⎧⎨+=⎩ , 解得18a b =-⎧⎨=⎩, ∴直线MN 的解析式为y =-x +2.∴S △OMN =S 正方形OABC -S △OAM -S △OCN -S △BMN =36-6-6-2=3.【点睛】本题考查了反比例函数的系数k的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M、N点的坐标是解题的关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()A.37 B.38 C.50 D.512.下列命题中真命题是()A.若a2=b2,则a=b B.4的平方根是±2C.两个锐角之和一定是钝角D.相等的两个角是对顶角3.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是()A.(3,-2 ) B.(-2,-3 ) C.(2,3 ) D.(3,2)4.如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是()A.a B.b C.1aD.1b5.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=2,则k的值为()A.4 B.22C.2 D.2 6.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°7.如图所示,在折纸活动中,小明制作了一张△ABC 纸片,点D,E 分别在边AB,AC 上,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=70°,则∠1+∠2= ( )A .70°B .110°C .130°D .140°8.二次函数2y x =的对称轴是( )A .直线y 1=B .直线x 1=C .y 轴D .x 轴9.在下列二次函数中,其图象的对称轴为2x =-的是A .()22y x =+B .222y x =-C .222y x =--D .()222y x =- 10.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .二、填空题(本题包括8个小题)11.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为_____.12.某航班每次飞行约有111名乘客,若飞机失事的概率为p=1.111 15,一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿41万元人民币. 平均来说,保险公司应向每位乘客至少收取_____元保险费才能保证不亏本.13.计算:|﹣3|+(﹣1)2= .14.分解因式:2288a a -+=_______15.某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为___________元.16.如图,有一直径是2的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC ,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米.17.如果关于x的方程2x2x m0-+=(m为常数)有两个相等实数根,那么m=______.18.如图,点P(3a,a)是反比例函kyx=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.三、解答题(本题包括8个小题)19.(6分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.20.(6分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长21.(6分)如图,在矩形ABCD中,对角线AC,BD相交于点O.画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.22.(8分)如图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.23.(8分)先化简,再求值:22m35m23m6m m2-⎛⎫÷+-⎪--⎝⎭,其中m是方程2x3x10++=的根.24.(10分)某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈2425,cos73.7°≈725,tan73.7°≈24725.(10分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?26.(12分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x 应定为多少元.在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】试题解析:第①个图形中有3 盆鲜花,第②个图形中有336+=盆鲜花,第③个图形中有33511++=盆鲜花,…第n 个图形中的鲜花盆数为23357(21)2n n ++++⋯++=+,则第⑥个图形中的鲜花盆数为26238.+=故选C.2.B【解析】【分析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A 、若a 2=b 2,则a=±b ,错误,是假命题;B 、4的平方根是±2,正确,是真命题;C 、两个锐角的和不一定是钝角,故错误,是假命题;D 、相等的两个角不一定是对顶角,故错误,是假命题.故选B .【点睛】。

2019-2020学年长春市中考数学模拟试卷(有标准答案)(word版)

2019-2020学年长春市中考数学模拟试卷(有标准答案)(word版)

吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣B.C.﹣5 D.52.(3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1083.(3.00分)下列立体图形中,主视图是圆的是()A.B.C.D.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y 轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k 的值为()A.4 B.2C.2 D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:3.(填“>”、“=”或“<”)10.(3.00分)计算:a2•a3= .11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为.(写出一个即可)12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE 剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y 轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)17.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为.【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y≤9时,直接写出L的取值范围.吉林省长春市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣B.C.﹣5 D.5【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:B.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×108【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2500000000用科学记数法表示为2.5×109.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)下列立体图形中,主视图是圆的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、圆锥的主视图是三角形,故A不符合题意;B、圆柱的柱视图是矩形,故 B错误;C、圆台的主视图是梯形,故C错误;D、球的主视图是圆,故D正确;故选:D.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【解答】解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.【点评】此题考查三角形内角和问题,关键是根据三角形内角和、角平分线的定义和平行线的性质解答.6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺【分析】根据同一时刻物高与影长成正比可得出结论.【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴,解得x=45(尺).故选:B.【点评】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y 轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k 的值为()A.4 B.2C.2 D.【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.【解答】解:作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×2=4.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:>3.(填“>”、“=”或“<”)【分析】先求出3=,再比较即可.【解答】解:∵32=9<10,∴>3,故答案为:>.【点评】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.10.(3.00分)计算:a2•a3= a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为 2 .(写出一个即可)【分析】由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.【解答】解:∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥.故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37 度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.【点评】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE 剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEF D周长的最小值为20 .【分析】当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可.【解答】解:当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=2,∠B=60°.∴AE=3,BE=,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:20【点评】此题考查平移的性质,关键是根据当AE⊥BC时,四边形AEFD的周长最小进行分析.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y 轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为 3 .【分析】解方程x2+mx=0得A(﹣m,0),再利用对称的性质得到点A的坐标为(﹣1,0),所以抛物线解析式为y=x2+x,再计算自变量为1的函数值得到A′(1,2),接着利用C点的纵坐标为2求出C点的横坐标,然后计算A′C的长.【解答】解:当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),∵点A关于点B的对称点为A′,点A′的横坐标为1,∴点A的坐标为(﹣1,0),∴抛物线解析式为y=x2+x,当x=1时,y=x2+x=2,则A′(1,2),当y=2时,x2+x=2,解得x1=﹣2,x2=1,则C(﹣2,1),∴A′C的长为1﹣(﹣2)=3.故答案为3.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象上点的坐标特征.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:+====x+1,当x=﹣1时,原式=﹣1+1=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【解答】解:列表如下:A 1A2BA 1(A1,A1)(A2,A1)(B,A1)A 2(A1,A2)(A2,A2)(B,A2)B(A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为.【点评】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.【分析】利用轴对称图形性质,以及全等四边形的定义判断即可.【解答】解:如图所示:【点评】此题考查了作图﹣轴对称变换,以及全等三角形的判定,熟练掌握各自的性质是解本题的关键.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【分析】(1)设每套课桌椅的成本为x元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)【分析】(1)根据切线的性质求出∠A=90°,根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠AOD,根据弧长公式求出即可.【解答】解:(1)∵AC切⊙O于点A,∠BAC=90°,∵∠C=40°,∴∠B=50°;(2)连接OD,∵∠B=50°,∴∠AOD=2∠B=100°,∴的长为=π.【点评】本题考查了切线的性质、圆周角定理、弧长公式等知识点能熟练地运用知识点进行推理和计算是解此题的关键.20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为18 ;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.【解答】解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.【点评】本题考查条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是 1 立方米,从打开输入口到关闭输出口共用的时间为11 分钟.【分析】(1)体积变化量除以时间变化量求出注入速度;(2)根据题目数据利用待定系数法求解;(3)由(2)比例系数k=4即为两个口同时打开时水泥储存罐容量的增加速度,则输出速度为5﹣4=1,再根据总输出量为8求解即可.【解答】解:(1)每分钟向储存罐内注入的水泥量为15÷3=5分钟;(2)设y=kx+b(k≠0)把(3,15)(5.5,25)代入解得∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;只打开输出口前,水泥输出量为 5.5﹣3=2.5立方米,之后达到总量8立方米需需输出8﹣2.5=5.5立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟故答案为:1,11【点评】本题为一次函数实际应用问题,考查了一次函数的图象性质以及在实际问题中比例系数k代表的意义.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为 2 .【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为9 .【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE,即可得出结论;探究:(1)判断出PG=BC,同感知的方法判断出△PGF≌CBE,即可得出结论;(2)利用直角三角形的斜边的中线是斜边的一半,应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.【解答】解:感知:∵四边形ABCD是正方形,∴AB=BC,∠BCE=∠ABC=90°,∴∠ABE+∠CBE=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠BAF=∠CBE,在△ABF和△BCE中,,∴△ABF≌△BCE(ASA);探究:(1)如图②,过点G作GP⊥BC于P,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴四边形ABPG是矩形,∴PG=AB,∴PG=BC,同感知的方法得,∠PGF=∠CBE,在△PGF和△CBE中,,∴△PGF≌△CBE(ASA),∴BE=FG,(2)由(1)知,FG=BE,连接CM,∵∠BCE=90°,点M是BE的中点,∴BE=2CM=2,∴FG=2,故答案为:2.应用:同探究(2)得,BE=2ME=2CM=6,∴ME=3,同探究(1)得,CG=BE=6,∵BE⊥CG,∴S=CG×ME=×6×3=9,四边形CEGM故答案为9.【点评】此题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,判断出CG=BE是解本题的关键.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;(4)分三种情况,利用锐角三角函数,即可得出结论.【解答】解:(1)在Rt △ABC 中,∠A=30°,AB=4,∴AC=2,∵PD ⊥AC ,∴∠ADP=∠CDP=90°,在Rt △ADP 中,AP=2t ,∴DP=t ,AD=APcosA=2t ×=t , ∴CD=AC ﹣AD=2﹣t (0<t <2);(2)在Rt △PDQ 中,∵∠DPC=60°,∴∠PQD=30°=∠A ,∴PA=PQ ,∵PD ⊥AC ,∴AD=DQ ,∵点Q 和点C 重合,∴AD+DQ=AC ,∴2×t=2,∴t=1;(3)当0<t ≤1时,S=S △PDQ =DQ ×DP=×t ×t=t 2; 当1<t <2时,如图2,CQ=AQ ﹣AC=2AD ﹣AC=2t ﹣2=2(t ﹣1),在Rt △CEQ 中,∠CQE=30°,∴CE=CQ•tan∠CQE=2(t ﹣1)×=2(t ﹣1), ∴S=S △PDQ ﹣S △ECQ =×t ×t ﹣×2(t ﹣1)×2(t ﹣1)=﹣t 2+4t ﹣2, ∴S=;(4)当PQ 的垂直平分线过AB 的中点F 时,如图3,∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2,∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=2,∴t=;当PQ的垂直平分线过AC的中点M时,如图4,∴∠QMN=90°,AN=AC=,QM=PQ=AP=t,在Rt△NMQ中,NQ==t,∵AN+NQ=AQ,∴+t=2t,∴t=,当PQ的垂直平分线过BC的中点时,如图5,∴BF=BC=1,PE=PQ=t,∠H=30°,∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1,在Rt△PEH中,PH=2PE=2t,∴AH=AP+PH=AB+BH,∴2t+2t=5,∴t=,即:当线段PQ的垂直平分线经过△ABC一边中点时,t的值为秒或秒或秒.【点评】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y≤9时,直接写出L的取值范围.【分析】(1)求出点B坐标利用待定系数法即可解决问题;(2)利用对称轴公式,求出BE的长即可解决问题;(3)由G2与矩形ABCD恰好有两个公共点,推出抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,利用待定系数法即可解决问题;(4)分两种情形讨论求解即可;【解答】解:(1)由题意E(0,1),A(﹣1,1),B(1,1)把B(1,1)代入y=﹣x2+mx+1中,得到1=﹣+m+1,∴m=.(2)∵抛物线G1的对称轴x=﹣=m,∴AE=ED=2m,∵矩形ABCD的对称中心为坐标原点O,∴AD=BC=4m,AB=CD=2,∴L=8m+4.(3)∵当G2与矩形ABCD恰好有两个公共点,∴抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,∴m2﹣1=1,∴m=2或﹣2(舍弃),∴L=8×2+4=20.(4)①当最高点是抛物线G1的顶点N(m,m2+1)时,若m2+1=,解得m=1或﹣1(舍弃),若m2+1=9时,m=4或﹣4(舍弃),又∵m≤2,观察图象可知满足条件的m的值为1≤m≤2,②当(2,2m﹣1)是最高点时,,解得2≤m≤5,综上所述,1≤m≤5,∴12≤L≤44.【点评】本题考查二次函数综合题、矩形的性质、待定系数法、不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用数形结合的思想解决问题,属于中考压轴题.。

2020年长春市中考数学模拟试卷及答案解析

2020年长春市中考数学模拟试卷及答案解析

2020年长春市中考数学模拟试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列四个数中,最小的数是()A.−43B.﹣1C.0D.22.(3分)长白山位于吉林省延边州安图县和白山市抚松县境内,是中朝两国的界山、中华十大名山之一、国家5A级风景区.今年十一期间长白山景区共接待游客18.14万人次,将18.14万用科学记数法表示为()A.18.14×104B.1.814×104C.1.814×105D.1.814×106 3.(3分)李明为好友制作一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A.B.C.D.4.(3分)如果关于x的一元一次不等式组的解集在数轴上的表示如图所示,那么该不等式组的解集为()A.x≥﹣1B.x<2C.﹣1≤x≤2D.﹣1≤x<2 5.(3分)《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是( )A .{8y −x =37y −x =4B .{8y −x =37y −x =−4C .{y −8x =−37y −x =−4D .{8y −x =37y −y =4 6.(3分)如图,⊙O 的半径为6cm ,四边形ABCD 内接于⊙O ,连结OB 、OD ,若∠BOD=∠BCD ,则劣弧BD̂的长为( )A .4πB .3πC .2πD .1π7.(3分)在台风来临之前,有关部门用钢管加固树木(如图),固定点A 离地面的高度AC=m ,钢管与地面所成角∠ABC =∠a ,那么钢管AB 的长为( )A .m cosaB .m •sin aC .m •cos aD .m sina8.(3分)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =6x 在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD 为( )A .36B .12C .6D .3二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)分解因式:16x 4﹣1= .。

精编2019级吉林省长春市中考数学模拟试卷(有标准答案)

精编2019级吉林省长春市中考数学模拟试卷(有标准答案)

吉林省长春市中考数学模拟试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)的相反数是()A. B.C.﹣4 D.42.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.3.(3分)下列运算正确的是()A.a•a2=a2B.(a2)3=a6C.a2+a3=a6 D.a6÷a2=a34.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.5.(3分)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.126.(3分)如图,在Rt△ABC中,∠C=90°,AC<BC.斜边AB的垂直平分线交边BC于点D.若BD=5,CD=3,则△ACD的周长是()A.7 B.8 C.12 D.137.(3分)如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°8.(3分)如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)化简:﹣= .10.(3分)某种商品n千克的售价是m元,则这种商品8千克的售价是元.11.(3分)不解方程,判断方程2x2+3x﹣2=0的根的情况是.12.(3分)如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于A、B两点,点P (1,m)在△AOB的形内(不包含边界),则m的值可能是.(填一个即可)13.(3分)如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小是度.14.(3分)如图,在平面直角坐标系中,抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的一个交点为A.已知点A的横坐标为1,过点A作x轴的平行线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则的值为.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=.16.(6分)如图是一副扑克牌的四张牌,将它们正面向下洗均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.17.(6分)为了解九年级课业负担情况,某校随机抽取80名九年级学生进行问卷调查,在整理并汇总这80张有效问卷的数据时发现,每天完成课外作业时间,最长不超过180分钟,最短不少于60分钟,并将调查结果绘制成如图所示的频数分布直方图.(1)被调查的80名学生每天完成课外作业时间的中位数在组(填时间范围).(2)该校九年级共有800名学生,估计大约有名学生每天完成课外作业时间在120分钟以上(包括120分钟)18.(7分)如图,在▱ABCD中,O为AC的中点,过点O作EF⊥AC与边AD、BC分别相交于点E、F,求证:四边形AECF是菱形.19.(7分)某环卫清洁队承担着9600米长的街道清雪任务,在清雪1600米后,为了减少对交通的影响,决定租用清雪机清雪,结果共用了4小时就完成了清雪任务.已知使用清雪机后的工作效率是原来的5倍,求原来每小时清雪多少米?20.(7分)如图,小区内斜向马路的大树与地面的夹角∠ABC为55°,高为3.2米的大型客车靠近此树的一侧至少要离此树的根部B点多少米才能安全通过?(结果精确到0.1米)【参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.42】21.(8分)【发现问题】如图①,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点,求证:△DFM ≌△MGE.【拓展探究】如图②,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°.点F、M、G分别为AB、BC、AC边的中点,若AD=5,AB=6,△DFM的面积为a,直接写出△MGE的面积.22.(9分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B 市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.(1)直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.(2)求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.(3)求机场大巴与货车相遇地到机场C的路程.23.(10分)如图,在△ABC中,AD⊥BC于点D,BD=3cm,DC=8cm,AD=4cm,动点P从点B出发,沿折线BA﹣AC向终点C做匀速运动,点P在线段BA上的运动速度是5cm/s;在线段AC 上的运动速度是cm/s,当点P不与点B、C重合时,过点P作PQ⊥BC于点Q,将△PBQ绕PQ 的中点旋转180°得到△QB′P,设四边形PBQB′与△ABD重叠部分图形的面积为y(cm2),点P的运动时间为x(s).(1)用含x的代数式表示线段AP的长.(2)当点P在线段BA上运动时,求y与x之间的函数关系式.(3)当经过点B′和△ADC一个顶点的直线平分△ADC的面积时,直接写出x的值.:y=(x+k)(x﹣3)交x轴于点A、B 24.(12分)如图①,在平面直角坐标系中,抛物线C1(A在B的右侧),交y轴于点C,横坐标为2k的点P在抛物线C上,连结PA、PC、AC,设△1ACP的面积为S.(1)求直线AC对应的函数表达式(用含k的式子表示).(2)当点P在直线AC的下方时,求S取得最大值时抛物线C1所对应的函数表达式.(3)当k取不同的值时,直线AC、抛物线C1和点P、点B都随k的变化而变化,但点P始终在不变的抛物线(虚线)C2:y=ax2+bx上,求抛物线C2所对应的函数表达式.(4)如图②,当点P在直线AC的下方时,过点P作x轴的平行线交C2于点F,过点F作y轴的平行线交C1于点E,当△PEF与△ACO的相似比为时,直接写出k的值.吉林省长春市中考数学模拟试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)的相反数是()A. B.C.﹣4 D.4【解答】解:的相反数是,故选:B.2.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选:C.3.(3分)下列运算正确的是()A.a•a2=a2B.(a2)3=a6C.a2+a3=a6 D.a6÷a2=a3【解答】解:A、原式=a3,错误;B、原式=a6,正确;C、原式不能合并,错误;D、原式=a4,错误,故选:B.4.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,由①得,x>﹣1;由②得,x≤2,故此不等式组的解集为:﹣1<x≤2.在数轴上表示为:故选:A.5.(3分)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD 的面积是()A.6 B.8 C.10 D.12【解答】解:如图,过点D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分线,∠C=90°,∴DE=CD=2,∴△ABD的面积=AB•DE=×8×2=8.故选:B.6.(3分)如图,在Rt△ABC中,∠C=90°,AC<BC.斜边AB的垂直平分线交边BC于点D.若BD=5,CD=3,则△ACD的周长是()A.7 B.8 C.12 D.13【解答】解:∵DE是AB的垂直平分线,∴AD=BD=5,又CD=3,由勾股定理得,AC==4,∴△ACD的周长=AC+CD+AD=12,故选:C.7.(3分)如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°【解答】解:∵∠B+∠D=180°,∴∠D=180°﹣130°=50°,∴∠AOC=2∠D=100°.故选:D.8.(3分)如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.B.C.D.【解答】解:∵OB=1,AB⊥OB,点A在函数y=﹣(x<0)的图象上,∴当x=﹣1时,y=2,∴A(﹣1,2).∵此矩形向右平移3个单位长度到A1B1O1C1的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数y=(x>0)的图象上,∴k=4,∴反比例函数的解析式为y=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,y=,∴P(3,).故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)化简:﹣= .【解答】解:原式=2﹣=.故答案为:.10.(3分)某种商品n千克的售价是m元,则这种商品8千克的售价是元.【解答】解:根据题意,得:,故答案为:.11.(3分)不解方程,判断方程2x2+3x﹣2=0的根的情况是有两个不相等的实数根.【解答】解:∵a=2,b=3,c=﹣2,∴△=b2﹣4ac=9+16=25>0,∴一元二次方程有两个不相等的实数根.故答案为:有两个不相等的实数根.12.(3分)如图,在平面直角坐标系中,直线y=﹣x+2分别交x 轴、y 轴于A 、B 两点,点P (1,m )在△AOB 的形内(不包含边界),则m 的值可能是 1 .(填一个即可)【解答】解:∵直线y=﹣x+2分别交x 轴、y 轴于A 、B 两点, ∴A (4,0),B (0,2),∴当点P 在直线y=﹣x+2上时,﹣+2=m ,解得m=, ∵点P (1,m )在△AOB 的形内, ∴0<m <, ∴m 的值可以是1. 故答案为:1.13.(3分)如图,将△ABC 绕点A 按逆时针方向旋转100°,得到△AB 1C 1,若点B 1在线段BC 的延长线上,则∠BB 1C 1的大小是 80 度.【解答】解:由旋转的性质可知:∠B=∠AB 1C 1,AB=AB 1,∠BAB 1=100°. ∵AB=AB 1,∠BAB 1=100°, ∴∠B=∠BB 1A=40°. ∴∠AB 1C 1=40°.∴∠BB 1C 1=∠BB 1A+∠AB 1C 1=40°+40°=80°. 故答案为:80.14.(3分)如图,在平面直角坐标系中,抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的一个交点为A.已知点A的横坐标为1,过点A作x轴的平行线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则的值为.【解答】解:抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的对称轴分别为直线x=3与直线x=﹣2,∵点A的横坐标为1,∴点C的横坐标为5,点B横坐标为﹣5,∴AC=4,AB=6,则==,故答案为:三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=.【解答】解:原式=2b2+a2﹣b2﹣(a2+b2﹣2ab)=2b2+a2﹣b2﹣a2﹣b2+2ab=2ab,当a=﹣3,b=时,原式=2×(﹣3)×=﹣3.16.(6分)如图是一副扑克牌的四张牌,将它们正面向下洗均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.【解答】解:画树状图得:∵共有12种等可能的结果,牌面上的数字都是偶数的有2种情况,∴P(牌面上数字都是偶数)==.17.(6分)为了解九年级课业负担情况,某校随机抽取80名九年级学生进行问卷调查,在整理并汇总这80张有效问卷的数据时发现,每天完成课外作业时间,最长不超过180分钟,最短不少于60分钟,并将调查结果绘制成如图所示的频数分布直方图.(1)被调查的80名学生每天完成课外作业时间的中位数在120~150 组(填时间范围).(2)该校九年级共有800名学生,估计大约有600 名学生每天完成课外作业时间在120分钟以上(包括120分钟)【解答】解:(1)被调查的80名学生每天完成课外作业时间的中位数在120~150.故答案为120~150.(2)校九年级共有800名学生,每天完成课外作业时间在120分钟以上的学生有800×=600,故答案为600.18.(7分)如图,在▱ABCD中,O为AC的中点,过点O作EF⊥AC与边AD、BC分别相交于点E、F,求证:四边形AECF是菱形.【解答】证明:∵四边形ABCD是平行四边形,∴BC∥AD,∴AE∥CF,∴∠OAE=∠OCF,∵点O是AC的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵EF与AC垂直,∴四边形AECF是菱形.19.(7分)某环卫清洁队承担着9600米长的街道清雪任务,在清雪1600米后,为了减少对交通的影响,决定租用清雪机清雪,结果共用了4小时就完成了清雪任务.已知使用清雪机后的工作效率是原来的5倍,求原来每小时清雪多少米?【解答】解:设原来每小时清雪x米,根据题意得:+=4,解得:x=800,经检验:x=800是分式方程的解.答:原来每小时清雪800米.20.(7分)如图,小区内斜向马路的大树与地面的夹角∠ABC为55°,高为3.2米的大型客车靠近此树的一侧至少要离此树的根部B点多少米才能安全通过?(结果精确到0.1米)【参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.42】【解答】解:如图:在AB上取点D,过点D作DE⊥BC于点E,则DE=3.5,∵tan55°==1.42,∴BE==≈2.3(米),答:至少要离此树的根部B点2.3米才能安全通过.21.(8分)【发现问题】如图①,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点,求证:△DFM ≌△MGE.【拓展探究】如图②,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°.点F、M、G分别为AB、BC、AC边的中点,若AD=5,AB=6,△DFM的面积为a,直接写出△MGE的面积.【解答】【发现问题】证明:∵△ADB是等腰直角三角形,F为斜边AB的中点,∴∠DFB=90°,DF=FA;∵△ACE是等腰直角三角形,G为斜边AC的中点,∴∠EGC=90°,AG=GE,∵点F、M、G分别为AB、BC、AC边的中点,∴FM∥AC,MG∥AB,∴四边形AFMG是平行四边形,∴FM=AG,MG=FA,∠BFM=∠BAC,∠BAC=∠MGC,∴DF=MG,∠DFM=∠MGE,FM=GE,在△DFM与△MGE中,,∴△DFM≌△MGE.【拓展探究】∵点F、M、G分别为AB、BC、AC边的中点,∴FM∥AC,MG∥AB,FM=AC=AG,MG=AB=AF,∠MGC=∠BAC=∠BFM,∴∠DFM=∠MGE,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∴tan∠1=tan∠3,即=,∴=,∵∠DFM=∠MGE,∴△DFM∽△MGE,∴=()2,在Rt△ADF中,DF===4,∴=()2=,∵△DFM的面积为a,∴S=a.△MGE22.(9分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B 市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.(1)直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.(2)求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.(3)求机场大巴与货车相遇地到机场C的路程.【解答】解:(1)60+20=80(km),80÷20×=(h).∴连接A、B两市公路的路程为80km,货车由B市到达A市所需时间为h.(2)设所求函数表达式为y=kx+b(k≠0),将点(0,60)、(,0)代入y=kx+b,得:,解得:,∴机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式为y=﹣80x+60(0≤x≤).(3)设线段ED对应的函数表达式为y=mx+n(m≠0),将点(,0)、(,60)代入y=mx+n,得:,解得:,∴线段ED对应的函数表达式为y=60x﹣20(≤x≤).解方程组,得,∴机场大巴与货车相遇地到机场C的路程为km.23.(10分)如图,在△ABC中,AD⊥BC于点D,BD=3cm,DC=8cm,AD=4cm,动点P从点B出发,沿折线BA﹣AC向终点C做匀速运动,点P在线段BA上的运动速度是5cm/s;在线段AC 上的运动速度是cm/s,当点P不与点B、C重合时,过点P作PQ⊥BC于点Q,将△PBQ绕PQ 的中点旋转180°得到△QB′P,设四边形PBQB′与△ABD重叠部分图形的面积为y(cm2),点P的运动时间为x(s).(1)用含x的代数式表示线段AP的长.(2)当点P在线段BA上运动时,求y与x之间的函数关系式.(3)当经过点B′和△ADC一个顶点的直线平分△ADC的面积时,直接写出x的值.【解答】解:(1)当0<x≤1时,PA=5x,当1<x<5时,PA=5(x﹣1)=5x﹣5.(2)如图1中,当0<x≤时,重叠部分是四边形PBQB′.∵PQ⊥BC,AD⊥BC,∴PQ∥AD,∴==,∴==,∴PQ=4x,BQ=3x,由题意四边形PBQB′是平行四边形,∴y=BQ•PQ=12x2,如图2中,当<x≤1,重叠部分是五边形PBQMN.∵PN∥BD,∴=,∴PN=3(1﹣x),B′N=3x﹣3(1﹣x)=6x﹣3,易知MN=4(2x﹣1),∴y=12x2﹣•(6x﹣3)•4(2x﹣1)=﹣12x2+24x﹣6.综上所述,y=.(3)如图3中,当PA=B时,PB′是△ABD是中位线.∴AB′=DB′,此时CB′平分△ADC的面积,此时x=.如图4中,设AB′的延长线交BC于G.当DG=GC=4时,AB′平分△ADC的面积,∵PB′∥BG,∴=,∴=,∴x=.如图5中,连接DB′交AC于N,延长B′P交AD于T,作NM⊥PB′于M,NH⊥AD于H.由题意PA=(x﹣1),AT=x﹣1,TP=2(x﹣1),PB′=BQ=3+2(x﹣1)=2x+1,当AN=CN时,DB′平分△ADC的面积,∴可得AH=HD=2,HN=TM=2,∴B′M=TB′﹣MT=2(x﹣1)+2x+1﹣4=4x﹣5,MN=2﹣(x﹣1)=3﹣x,TD=4﹣(x﹣1)=5﹣x,∵MN∥TD,∴=,∴=,∴x=,综上所述,x=s或s或s时,经过点B′和△ADC一个顶点的直线平分△ADC的面积.24.(12分)如图①,在平面直角坐标系中,抛物线C1:y=(x+k)(x﹣3)交x轴于点A、B(A在B的右侧),交y轴于点C,横坐标为2k的点P在抛物线C1上,连结PA、PC、AC,设△ACP的面积为S.(1)求直线AC对应的函数表达式(用含k的式子表示).(2)当点P在直线AC的下方时,求S取得最大值时抛物线C1所对应的函数表达式.(3)当k取不同的值时,直线AC、抛物线C1和点P、点B都随k的变化而变化,但点P始终在不变的抛物线(虚线)C2:y=ax2+bx上,求抛物线C2所对应的函数表达式.(4)如图②,当点P在直线AC的下方时,过点P作x轴的平行线交C2于点F,过点F作y轴的平行线交C1于点E,当△PEF与△ACO的相似比为时,直接写出k的值.【解答】解:(1)在y=(x+k)(x﹣3)中,令y=0,可得A(3,0),B(﹣k,0),令x=0,可得C(0,﹣3k),设直线AC对应的函数表达式为:y=mx+n,将A(3,0),C(0,﹣3k)代入得:,解得:,∴直线AC对应的函数表达式为:y=kx﹣3k;(2)如图①,过点P作y轴的平行线交AC于点Q,交x轴于点M,过C作CN⊥PM于N,当x=2k时,y=(2k+k)(2k﹣3)=6k2﹣9k,∵点P、Q分别在抛物线C1、直线AC上,∴P(2k,6k2﹣9k)、Q(2k,2k2﹣3k),∴PQ=9k﹣6k2﹣(3k﹣2k2)=﹣4k2+6k,∴S△PAC =S△PQC+S△PQA=PQ•CN+PQ•AM=PQ•(CN+AM),=PQ,=(﹣4k2+6k),=﹣6(k﹣)2+,∴当k=时,△PAC面积的最大值是,此时,C1:y=(x+)(x﹣3)=x2﹣﹣;(3)∵点P在抛物线C1上,∴P(2k,6k2﹣9k),当k=1时,此时P(2,﹣3),当k=2时,P(4,6),把(2,﹣3)和(4,6)代入抛物线(虚线)C2:y=ax2+bx上得:,解得:,∴抛物线C2所对应的函数表达式为:y=x2﹣x;(4)如图②,由题意得:△ACO和△PEF都是直角三角形,且∠A OC=∠PFE=90°,∵点P在直线AC的下方,横坐标为2k的点P在抛物线C1上,∴P(2k,6k2﹣9k),且0<k<,∵A(3,0),C(0,﹣3k),∴OA=3,OC=3K,∴当△PEF与△ACO的相似比为时,存在两种情况:①当△PEF∽△CAO时,,∴=,∴PF=k,EF=1,∴E(3k,12k2﹣12k),∵EF=1,∴9k﹣6k2=12k﹣12k2+1,6k2﹣3k﹣1=0,k1=,k2=<0(舍),②当△PEF∽△ACO时,,∴,∴PF=1,EF=k,∴E(2k+1,6k2﹣4k﹣2),∴4k+2﹣6k2+k=9k﹣6k2,k=,综上所述,k的值为或.。

吉林省长春市2019年中考数学模拟试卷(包含答案)

吉林省长春市2019年中考数学模拟试卷(包含答案)

吉林省长春市2019年中考数学模拟试卷一.选择题(满分24分,每小题3分)1.下列语句正确的是()A.“+15米”表示向东走15米B.0℃表示没有温度C.﹣a可以表示正数D.0既是正数也是负数2.已知a<b,下列式子不成立的是()A.a+1<b+1 B.4a<4bC.﹣>﹣b D.如果c<0,那么<3.天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×1074.如图,点O在直线AB上,若∠AOC=3∠BOC,则∠BOC的度数为()A.30°B.45°C.50°D.60°5.如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC=6,BD=8,则OE长为()A.3 B.5 C.2.5 D.46.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为()A .a sin α+a sin βB .a cos α+a cos βC .a tan α+a tan βD .+7.如图,在⊙O 中,点C 在优弧上,将沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是( )①AC =CD ;②AD =BD ;③+=;④CD 平分∠ACBA .1B .2C .3D .48.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =的图象经过点B ,若△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD =2,则k 的值为( )A .2B .4C .6D .8二.填空题(满分18分,每小题3分) 9.因式分解:ax 3y ﹣axy 3= .10.定义[x ]表示不超过实数x 的最大整数,例如:[0.82]=0,[6]=6,[﹣]=﹣3,[﹣7]=﹣7.若规定:对于实数m ,.例如:f (7)=[]﹣[]=[﹣]﹣[]=﹣2﹣1=﹣3,则f (﹣6)= .11.如图,在四边形ABCD 中,∠ABC =90°,对角线AC 、BD 交于点O ,AO =CO ,CD ⊥BD ,如果CD=3,BC=5,那么AB=.12.如图,点A、B、C、D、E在⊙O上,且为50°,则∠E+∠C=°.13.如图,在Rt△ABC中,∠C=90°,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若∠A=30°,则=.14.二次函数y=ax2+bx+c的图象与x轴相交于(﹣1,0)和(5,0)两点,则该抛物线的对称轴是.三.解答题15.(6分)先化简再求值,(3a﹣2)2﹣3a(2a﹣1)+5,其中a是方程x2﹣3x+1=0的解.16.(6分)现有学生若干人,分住若干宿舍.如果每间住4人,那么还余20人;如果每间住6人,那么有一间宿舍只住了2人.试求学生人数和宿舍间数.17.(6分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.18.(7分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)1 7≤t<8 m2 8≤t<9 113 9≤t<10 n4 10≤t<11 4请根据以上信息,解答下列问题:(1)m=,n=,a=,b=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.19.(7分)在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC ,其中∠A =2∠B ,关系式a 2=b (b +c )是否仍然成立?并证明你的结论.(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数. 20.(7分)已知抛物线y =x 2+(2m ﹣1)x ﹣2m (m >0.5)的最低点的纵坐标为﹣4. (1)求抛物线的解析式;(2)如图1,抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,D 为抛物线上的一点,BD 平分四边形ABCD 的面积,求点D 的坐标;(3)如图2,平移抛物线y =x 2+(2m ﹣1)x ﹣2m ,使其顶点为坐标原点,直线y =﹣2上有一动点P ,过点P 作两条直线,分别与抛物线有唯一的公共点E 、F (直线PE 、PF 不与y 轴平行),求证:直线EF 恒过某一定点.21.(8分)甲、乙两车分别从A 、B 两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B 地行驶,两车之间的路程y (千米)与出发后所用时间x (小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V 甲、V 乙. (2)求m 的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.22.(9分)如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD 上一动点,过点C作AE的垂线交AE的延长线于点F.(1)求∠D的度数;(2)若点E为CD的中点,求EF的值;(3)当点E在线段CD上运动时,是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.23.如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P.【观察猜想】①AE与BD的数量关系是;②∠APD的度数为.【数学思考】如图2,当点C在线段AB外时,(1)中的结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;【拓展应用】如图3,点E为四边形ABCD内一点,且满足∠AED=∠BEC=90°,AE=DE,BE=CE,对角线AC、BD交于点P,AC=10,则四边形ABCD的面积为.24.在平面直角坐标系中,如果某点的横坐标与纵坐标的和为10,则称此点为“合适点”例如,点(1,9),(﹣2019,2029)…都是“合适点”.(1)求函数y=2x+1的图象上的“合适点”的坐标;(2)求二次函数y=x2﹣5x﹣2的图象上的两个“合适点”A,B之间线段的长;(3)若二次函数y=ax2+4x+c的图象上有且只有一个合适点”,其坐标为(4,6),求二次函数y=ax2+4x+c的表达式;(4)我们将抛物线y=2(x﹣n)2﹣3在x轴下方的图象记为G1,在x轴及x轴上方图象记为G2,现将G1沿x轴向上翻折得到G3,图象G2和图象G3两部分组成的记为G,当图象G上恰有两个“合适点”时,直接写出n的取值范围.参考答案一.选择题1.解:A、“+15米”不一定表示向东走15米,原说法错误,故这个选项不符合题意;B、0℃不是没有温度,而是表示零上温度和零下温度的分界点,原说法错误,故这个选项不符合题意;C、﹣a可以表示正数,也可以表示负数,原说法正确,故这个选项符合题意;D、0 既不是正数也不是负数,原说法错误,故这个选项不符合题意;故选:C.2.解:A、不等式两边同时加上1,不等号方向不变,式子a+1<b+1成立,故这个选项不符合题意;B、不等式两边同时乘以4,不等号方向不变,式子4a<4b成立,故这个选项不符合题意;C、不等式两边同时乘以﹣,不等号方向改变,式子﹣a>﹣b成立,故这个选项不符合题意;D、不等式两边同时除以负数c,不等号方向改变,式子<不成立,故这个选项符合题意.故选:D.3.解:用科学记数法表示1326000的结果是1.326×106,故选:B.4.解:∵∠AOC与∠BOC互为邻补角,∴∠AOC+∠BOC=180°,①又∵∠AOC=3∠BOC,②把②代入①,可得3∠BOC+∠BOC=180°,解得∠BOC=45°.故选:B.5.解:∵四边形ABCD是菱形,AC=6,BD=8,∴AO=OC=3,OB=OD=4,AO⊥BO,又∵点E是AB中点,∴OE是△DAB的中位线,在Rt△AOD中,AB==5,则OE=AD=.故选:C.6.解:在Rt△ABD和Rt△ABC中,AB=a,tanα=,tanβ=,∴BC=a tanα,BD=a tanβ,∴CD=BC+BD=a tanα+a tanβ;故选:C.7.解:过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;∵点D是AB的中点,∴AD=BD,∵AC=CD',故②正确;∴=,由折叠得:=,∴+=;故③正确;延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:A.8.解:设B点坐标为(a,b),∵△OAC和△BAD都是等腰直角三角形,∴S△OAC =AC2,S△BAD=AD2,∵S△OAC ﹣S△BAD=2,∴AC2﹣AD2=4,∴(AC+AD)(AC﹣AD)=4∴(OC+BD)•CD=4,∴a•b=4,∴k=4.故选:B.二.填空题9.解:ax3y﹣axy3=axy(x2﹣y2)=axy(x+y)(x﹣y).故答案为:axy(x+y)(x﹣y).10.解:∵,∴f(﹣6)=[]﹣[]=2﹣(﹣2)=4.故答案为:4.11.解:如图,过点A作AE⊥BD,∵CD⊥BD,AE⊥BD,∴∠CDB=∠AED=90°,且CO=AO,∠COD=∠AOE,∴△AOE≌△COD(AAS)∴CD=AE=3,∵∠CDB=90°,BC=5,CD=3,∴DB===4;∵∠ABC=∠AEB=90°,∴∠ABE+∠EAB=90°,∠CBD+∠ABE=90°,∴∠EAB=∠CBD,且∠CDB=∠AED=90°,∴△ABE∽△BCD,∴,∴∴AB=故答案为:.12.解:连接EA,∵为50°,∴∠BEA=25°,∵四边形DCAE为⊙O的内接四边形,∴∠DEA+∠C=180°,∴∠DEB+∠C=180°﹣25°=155°,故答案为:155.13.解:由作法得BD平分∠ABC,∵∠C=90°,∠A=30°,∴∠ABC=60°,∴∠ABD=∠CBD=30°,∴DA=DB,在Rt△BCD中,BD=2CD,∴AD=2CD,∴=.故答案为.14.解:∵二次函数y=ax2+bx+c的图象与x轴相交于(﹣1,0)和(5,0)两点,∴其对称轴为:x==2.故答案为:x=2.三.解答15.解:原式=9a2﹣12a+4﹣6a2+3a+5=3a2﹣9a+9=3(a2﹣3a)+9,把x=a代入方程得:a2﹣3a+1=0,即a2﹣3a=﹣1,则原式=﹣3+9=6.16.解:设学生有x人,宿舍有y间,依题意,得:,解得:.答:学生有68人,宿舍有12间.17.解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.18.解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.19.(1)证明:∵∠A=2∠B,∠A=60°∴∠B=30°,∠C=90°∴c=2b,a=b∴a2=3b2=b(b+c)(2)解:关系式a2=b(b+c)仍然成立.法一:证明:∵∠A=2∠B∴∠C=180°﹣∠A﹣∠B=180°﹣3∠B由正弦定理得即a=2R sin A,b=2R sin B,c=2R sin C∴b(b+c)=2R sin B(2R sin B+2R sin C)=4R2sin B[sin B+sin(180°﹣3∠B)]=4R2sin B(sin B+sin3∠B)=4R2sin B(2sin2B cos B)=4R2sin2B×sin2B=4R2sin22B又∵a2=4R2sin2A=4R2sin22B∴a2=b(b+c)(3)解:若△ABC是倍角三角形,由∠A=2∠B,应有a2=b(b+c),且a>b.当a>c>b时,设a=n+1,c=n,b=n﹣1,(n为大于1的正整数)代入a2=b(b+c),得(n+1)2=(n﹣1)•(2n﹣1),解得n=5,有a=6,b=4,c=5,可以证明这个三角形中,∠A=2∠B当c>a>b及a>b>c时,均不存在三条边长恰为三个连续正整数的倍角三角形.边长为4,5,6的三角形为所求.20.解:(1)∵y =x 2+(2m ﹣1)x ﹣2m =(x +m ﹣0.5)2﹣m 2﹣m ﹣0.25,∴顶点坐标为(0.5﹣m ,﹣m 2﹣m ﹣0.25)∵最低点的纵坐标为﹣4,∴﹣m 2﹣m ﹣0.25=﹣4,即4m 2+4m ﹣15=0,∴m =1.5或﹣2.5,∵m >0.5,∴m =1.5.∴抛物线的解析式为y =x 2+2x ﹣3;(2)∵y =x 2+2x ﹣3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C , ∴A (﹣3,0),B (1,0),C (0,﹣3).如图1,连AC 交BD 于E ,过A 作AM ⊥BD 于M ,过C 作CN ⊥BD 于N ,∵BD 平分四边形ABCD 的面积,∴S △ABD =S △CBD ,∴BD ×AM =BD ×CN ,∴AM =CN ,且∠AEM =∠CMN ,∠AME =∠CNE =90°∴△AEM ≌△CEN (AAS ),∴AE =CE ,∴E (﹣1.5,﹣1.5),且B (1,0),∴直线BE 的解析式为y =0.6x ﹣0.6.∴0.6x ﹣0.6=x 2+2x ﹣3,解得x 1=﹣,x 2=1, ∴D (﹣,﹣).(3)由题意可得平移后解析式为y=x2,设E(t,t2),F(n,n2),设直线PE为y=k1(x﹣t)+t2,由题意可得x2﹣k1x+k1t﹣t2=0,∴△=k12﹣4(k1t﹣t2)=(k1﹣2t)2=0,∴k1=2t.∴直线PE为y=2t(x﹣t)+t2,即y=2tx﹣t2.令y=﹣2,得x P=,同理,设直线PF为y=k2(x﹣n)+n2,∴x P=,∴=,∵t≠n,∴tn=﹣2.设直线EF的解析式为y=kx+b,得x2﹣kx﹣b=0,∴x E•x F=﹣b,即tn=﹣b,∴b=2.∴直线EF为y=kx+2,过定点(0,2).21.解:(1)由图可得,,解得,,答:甲的速度是60km/h乙的速度是80km/h;(2)m=(1.5﹣1)×(60+80)=0.5×140=70,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=,若甲车没有故障停车,则可以提前:1.5﹣=(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇.22.解:(1)如图1中,∵四边形ABCD是平行四边形,∴AB∥CB,∠ADC+∠DAB=180°,∵∠DAB=60°,∴∠ADC=120°.(2)如图1中,作AH⊥CD交CD的延长线于H.在Rt△ADH中,∵∠H=90°,∠ADH=60°,AD=2,∴AH=AD•sin60°=,DH=AD•cos60°=,∵DE=EC=,∴EH=DH+DE=2,∴AE===,∵CF⊥AF,∴∠F=∠H=90°,∵∠AEH=∠CEF,∴△AEH∽△CEF,∴=,∴=,∴EF=.(3)如图2中,作△AFC的外接圆⊙O,作AH⊥CD交CD的郯城县于H,作OK⊥CD于K,交⊙O于M,作FP∥CD交AD的延长线于P,作MN∥CD交AD的延长线于M,作NQ⊥CD于Q.∵DE∥PF,∴=,∵AD是定值,∴PA定值最大时,定值最大,观察图象可知,当点F与点M重合时,PA定值最大,最大值=AN的长,由(2)可知,AH=,CH=,∠H=90°,∴AC===,∴OM=AC=,∵OK∥AH,AO=OC,∴KH=KC,∴OK==,∴MK=NQ=﹣,在Rt△NDQ中,DN===﹣,∴AN=AD+DN=+,∴的最大值==+.23.解:【观察猜想】:结论:AE=BD.∠APD=60°.理由:设AE交CD于点O.∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAO=∠ODP,∵∠AOC=∠DOP,∴∠DPO=∠ACO=60°,即∠APD=60°.故答案为AE=BD,60°.【数学思考】:结论仍然成立.理由:设AC交BD于点O.∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD,∠PAO=∠ODC,∵∠AOP=∠DOC,∴∠APO=∠DCO=60°,即∠APD=60°.【拓展应用】:设AC交BE于点O.∵△ADC,△ECB都是等腰直角三角形,∴ED=EA,∠AED=∠BEC=90°,CE=EB,∴∠AEC=∠DEB∴△AEC≌△DEB(SAS),∴AC=BD=10,∠PBO=∠OCE,∵∠BOP=∠EOC,∴∠BPO=∠CEO=90°,∴AC⊥BD,=•AC•DP+•AC•PB=•AC•(DP+PB)=•AC•BD=50.∴S四边形ABCD故答案为50.24.解:(1)联立x+y=10和y=2x+1并解得:x=3,y=7,故“合适点”的坐标为(3,7);(2)联立x+y=10和y=x2﹣5x﹣2并解得:x=﹣2或6,故点A、B的坐标分别为:(﹣2,12)、(6,4),则AB==8;(3)将点(4,6)代入二次函数表达式得:16a+16+c=6…①,联立y=10﹣x和y=ax2+4x+c并整理得:ax2+5x+(c﹣10)=0,△=25﹣4a(c﹣10)=0…②,联立①②并解得:a=﹣,c=0,故抛物线的表达式为:y=﹣x2+4x;(4)图象G,如下图所示:G 2的顶点坐标为(n,3),则G2的函数表达式为:y=﹣2(x﹣n)2+3,x+y=10,则y=10﹣x,设直线m为:y=10﹣x,①当直线m与图象G2只有一个交点时,直线m与图象G有3个交点,即有3个“合适点”,联立直线m与G2的表达式得:y=﹣2(x﹣n)2+3=10﹣x,整理得:2x2﹣(4n+1)x+(2n2+7)=0,△=b2﹣4ac=8n﹣55=0,解得:n=,故当n<时,图象G恰好有2个“合适点”;②当直线m经过点A、B时,直线m与图象G有3个交点,即有3个“合适点”,则在这两个点之间有2个“合适点”,吉林省长春市2019年中考数学模拟试卷(包含答案)直线m与x轴的交点为(10,0),将(10,0)代入y=2(x﹣n)2﹣3并解得:n=10,故10﹣<n<10+;综上,n的取值范围为:n<或10﹣<n<10+.21 / 21。

2019-2020学年吉林省中考数学模拟试题(有标准答案)(Word版)

2019-2020学年吉林省中考数学模拟试题(有标准答案)(Word版)

吉林省中考数学试卷一、单项选择题(每小题2分,共12分)1.计算(﹣1)2的正确结果是()A.1 B.2 C.﹣1 D.﹣2【答案】A.【解析】考点:有理数的乘方.2.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.【答案】B.【解析】试题解析:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.3.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2【答案】C.【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.4.不等式x+1≥2的解集在数轴上表示正确的是()A.B. C. D.【答案】A.【解析】考点:解一元一次不等式;在数轴上表示不等式的解集.5.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70° B.44° C.34° D.24°【答案】C.【解析】试题解析:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.考点:三角形内角和定理.6.如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB交⊙O于点C.若AB=12,OA=5,则BC的长为()A.5 B.6 C.7 D.8【答案】D.【解析】考点:切线的性质.二、填空题(每小题3分,共24分)7.2016年我国资助各类家庭困难学生超过84 000 000人次.将84 000 000这个数用科学记数法表示为.【答案】8.4×107【解析】试题解析:84 000 000=8.4×107考点:科学记数法—表示较大的数.8.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克元(用含x的代数式表示).【答案】0.8x.【解析】试题解析:依题意得:该苹果现价是每千克80%x=0.8x.考点:列代数式.9.分解因式:a2+4a+4= .【答案】(a+2)2.【解析】试题解析:a2+4a+4=(a+2)2.考点:因式分解﹣运用公式法.10.我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是.【答案】同位角相等,两直线平行.【解析】∵∠1=∠2,∴a∥b(同位角相等,两直线平行);考点:平行线的判定.11.如图,在矩形ABCD 中,AB=5,AD=3.矩形ABCD 绕着点A 逆时针旋转一定角度得到矩形AB'C'D'.若点B 的对应点B'落在边CD 上,则B'C 的长为 .【答案】1. 【解析】试题解析:由旋转的性质得到AB=AB′=5, 在直角△AB′D 中,∠D=90°,AD=3,AB′=AB=5, 所以B′D=222254AB AD '-=-=4,所以B′C=5﹣B′D=1. 故答案是:1.考点:旋转的性质;矩形的性质.12.如图,数学活动小组为了测量学校旗杆AB 的高度,使用长为2m 的竹竿CD 作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O 处重合,测得OD=4m ,BD=14m ,则旗杆AB 的高为 m .【答案】9. 【解析】即旗杆AB 的高为9m .考点:相似三角形的应用.13.如图,分别以正五边形ABCDE 的顶点A ,D 为圆心,以AB 长为半径画»BE,ºCE .若AB=1,则阴影部分图形的周长为 (结果保留π).【答案】65π+1. 【解析】试题解析:∵五边形ABCDE 为正五边形,AB=1, ∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴»BE=ºCE =10831805AB ππ︒⨯⨯=︒, ∴C 阴影=»BE+ºCE +BC=65π+1. 考点:正多边形和圆.14.我们规定:当k ,b 为常数,k ≠0,b ≠0,k ≠b 时,一次函数y=kx+b 与y=bx+k 互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为 . 【答案】1. 【解析】考点:两条直线相交或平行问题.三、解答题(每小题5分,共20分)15.某学生化简分式21211x x ++-出现了错误,解答过程如下:原式=12(1)(1)(1)(1)x x x x ++-+-(第一步)=1+2(1)(1)x x +-(第二步)=231x -.(第三步) (1)该学生解答过程是从第 步开始出错的,其错误原因是 ; (2)请写出此题正确的解答过程.【答案】(1)一、分式的基本性质用错;(2)过程见解析. 【解析】试题分析:根据分式的运算法则即可求出答案. 试题解析:(1)一、分式的基本性质用错; (2)原式=12(1)(1)(1)(1)x x x x x -++-+-=x+1(1)(1)x x +-=11x -. 考点:分式的加减法.16.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km ,隧道累计长度的2倍比桥梁累计长度多36km .求隧道累计长度与桥梁累计长度. 【答案】隧道累计长度为126km ,桥梁累计长度为216km . 【解析】解得:126216x y ⎧=⎨=⎩.答:隧道累计长度为126km ,桥梁累计长度为216km . 考点:二元一次方程组的应用.17.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率. 【答案】49. 【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.试题解析:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.考点:列表法与树状图法.18.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】证明见解析.【解析】考点:全等三角形的判定与性质.四、解答题(每小题7分,共28分)19.某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:月份销售额人员第1月第2月第3月第4月第5月甲7.2 9.6 9.6 7.8 9.3乙 5.8 9.7 9.8 5.8 9.9丙 4 6.2 8.5 9.9 9.9统计值平均数(万元)中位数(万元)众数(万元)数值人员甲9.3 9.6乙8.2 5.8丙7.7 8.5【答案】(1)8.7,9.7,9.9;(2)甲,理由见解析.【解析】(2)我赞同甲的说法.甲的平均销售额比乙、丙都高.考点:众数;加权平均数;中位数.20.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【答案】(1)作图见解析;(2)作图见解析.【解析】(2)如图③所示,▱ABCD即为所求.考点:等腰三角形的判定;等边三角形的性质;平行四边形的判定.21.如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)【答案】求A,B两点间的距离约为1.7km.【解析】∴OA=OC•tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km,答:求A,B两点间的距离约为1.7km.考点:解直角三角形的应用﹣仰角俯角问题.22.如图,在平面直角坐标系中,直线AB与函数y=kx(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=12OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.【答案】(1)4;8;4;(2)4.3 【解析】∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴12CD•AC=6,∴AC=4,即m=4,则点A的坐标为(4,2),将其代入y=kx可得k=8,∵点B(2,n)在y=8x的图象上,∴n=4;(2)如图,过点B作BE⊥AC于点E,则BE=2,∴S△ABC=12AC•BE=12×4×2=4,即△ABC的面积为4.考点:反比例函数与一次函数的交点问题.五、解答题(每小题8分,共16分)23.如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.【答案】(1)证明见解析;(2)43;(3)6+3或23+3.【解析】∴∠ADB=60°,由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'为BD中点,∴Rt△ABD中,AB'=12BD=DB',又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB',∴四边形AB'C'D是菱形;(2)由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,∴AB∥C'D',∴四边形ABC'D'是平行四边形,由(1)可得,AC'⊥B'D,∴四边形ABC'D'是菱形,∵AB=3AD=3,∴四边形ABC'D′的周长为43,∴矩形周长为6+3或23+3.考点:菱形的判定与性质;矩形的性质;图形的剪拼;平移的性质.24.如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.【答案】(1)10;(2)y=58x+52(12≤x≤28);(3)4秒【解析】(2)设线段AB对应的函数解析式为:y=kx+b,∵图象过A(12,0),B(28,20),∴1202820k bk b⎧+=⎨+=⎩,解得:5852kb⎧=⎪⎪⎨⎪=⎪⎩,∴线段AB对应的解析式为:y=58x+52(12≤x≤28);(3)∵28﹣12=16(cm),∴没有立方体时,水面上升10cm,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.考点:一次函数的应用.六、解答题(每小题10分,共20分)25.如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.【答案】(1)x;(2)x=45;(3)见解析;(4)1<x<32.【解析】(3)如图②,当0<x≤45时,根据正方形的面积公式得到y=x2;如图③,当45<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=12AB=2,根据正方形和三角形面积公式得到y=﹣232x2+20x﹣8;如图④,当1<x<2时,PQ=4﹣2x,根据三角形的面积公式得到结论;(4)当Q与C重合时,E为BC的中点,得到x=1,当Q为BC的中点时,BQ=2,得到x=32,于是得到结论.试题解析:(1)∵∠ACB=90°,∠A=45°,PQ⊥AB,∴∠AQP=45°,∴PQ=AP=2x,∵D为PQ中点,∴DQ=x,∵D为PQ中点,∴DQ=x,∴GP=2x,∴2x+x+2x=4,∴x=45;(3)如图②,当0<x≤45时,y=S正方形DEFQ=DQ2=x2,∴y=x2;如图③,当45<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=12AB=2,∵PQ=AP=2x,CK=2﹣2x,∴MQ=2CK=4﹣4x,FM=x﹣(4﹣4x)=5x﹣4,∴y=S正方形DEFQ﹣S△MNF=DQ2﹣12FM2,∴y=x2﹣12(5x﹣4)2=﹣232x2+20x﹣8,∴y=﹣232x2+20x﹣8;∴DQ=2﹣x,∴y=S△DEQ=12DQ2,∴y=12(2﹣x)2,∴y=12x2﹣2x+2;(4)当Q与C重合时,E为BC的中点,即2x=2,∴x=1,当Q为BC的中点时,BQ=2,PB=1,∴AP=3,∴2x=3,∴x=32,∴边BC的中点落在正方形DEFQ内部时x的取值范围为:1<x<32.考点:四边形综合题.26.《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a= .【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.【答案】【问题】:a=13;【操作】:y=2214(2)(0或4)3314(2)(04)33xx x xx<<⎧--≤≥⎪⎪⎨⎪--+⎪⎩;【探究】:当1<x<2或x>2+7时,函数y随x增大而增大;【应用】:m=0或m=4或m≤2﹣或m≥2+.【解析】试题分析:【问题】:把(0,0)代入可求得a的值;【操作】:先写出沿x轴折叠后所得抛物线的解析式,根据图象可得对应取值的解析式;【探究】:令y=0,分别代入两个抛物线的解析式,分别求出四个点CDEF的坐标,根据图象呈上升趋势的部分,即y随x增大而增大,写出x的取值;【应用】:先求DE的长,根据三角形面积求高的取值h≥1;分三部分进行讨论:①当P 在C 的左侧或F 的右侧部分时,设P[m ,214(2)33m --],根据h ≥1,列不等式解出即可; ②如图③,作对称轴由最大面积小于1可知:点P 不可能在DE 的上方; ③P 与O 或A 重合时,符合条件,m=0或m=4. 试题解析:【问题】 ∵抛物线y=a (x ﹣2)2﹣43经过原点O , ∴0=a (0﹣2)2﹣43, a=13; 【操作】:如图①,抛物线:y=13(x ﹣2)2﹣43, 对称轴是:直线x=2,由对称性得:A (4,0), 沿x 轴折叠后所得抛物线为:y=﹣13(x ﹣2)2+43如图②,图象G 对应的函数解析式为:y=2214(2)(0或4)3314(2)(04)33x x x x x <<⎧--≤≥⎪⎪⎨⎪--+⎪⎩;解得:x 1=3,x 2=1, ∴D (1,1),E (3,1),由图象得:图象G 在直线l 上方的部分,当1<x <2或x >7时,函数y 随x 增大而增大; 【应用】:∵D (1,1),E (3,1), ∴DE=3﹣1=2, ∵S △PDE =12DE•h≥1, ∴h ≥1;②如图③,作对称轴交抛物线G于H,交直线CD于M,交x轴于N,∵H(2,43),∴HM=43﹣1=13<1,∴当点P不可能在DE的上方;③∵MN=1,且O(0,0),a(4,0),∴P与O或A重合时,符合条件,∴m=0或m=4;综上所述,△PDE的面积不小于1时,m的取值范围是:m=0或m=4或m≤210或m≥10.考点:二次函数综合题.。

长春市2019中考数学模拟试题(带解答)

长春市2019中考数学模拟试题(带解答)

长春市2019中考数学模拟试题一、选择题(本大题共8小题,每小题3分,共24分) 1.﹣51的绝对值是( ) A .5 B .﹣5 C .51 D .﹣51 解:﹣51的绝对值是51 【答案】C2.作为“一带一路”倡议的重大先行项目,中国、巴基斯坦经济走廊建设进展快,成效显著,两年来,已有18个项目在建或建成,总投资额达185********美元,将“185********”用科学记数法可表示为( ) A .1.85×109B .1.85×1010C .1.85×1011D .185×108解:185********=1.85×1010【答案】B3.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .解:这个几何体的主视图为:【答案】A4.一元一次不等式组⎩⎨⎧-≥->+1212x xx 的解集在数轴上表示正确的是( )A .B .C .D .解:{)()(112212-≥->+x xx由(1)得:x ≤2, 由(2)得:x >﹣1,则不等式组的解集为﹣1<x ≤2, 表示在数轴上,如图所示:【答案】C5.如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )A .75°B .55°C .40°D .35° 解:∵直线a ∥b ,∠1=75°, ∴∠4=∠1=75°, ∵∠2+∠3=∠4,∴∠3=∠4﹣∠2=75°﹣35°=40°. 【答案】C6.如图,在△ABC 中,∠C =90°,AB =13,AC =12,下列三角函数表示正确的是( )A .sin A =1312 B .cos A =1312C .tan A =512D .tan B =125 解:∵∠C =90°,AB =13,AC =12, ∴BC =5, 则sinA =AB BC =135,cosA =AB AC =1312,tanA =AC BC =125,tanB =BC AC =512, 【答案】B7.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x 张甲种票,y 张乙种票,则所列方程组正确的是( )A .B .C .D .解:设买了x 张甲种票,y 张乙种票,根据题意可得:{35y x 7501824=+=+y x【答案】B8.如图,已知,第一象限内的点A 在反比例函数y =x2的图象上,第四象限内的点B 在反比例函数y =xk的图象上.且OA ⊥OB ,∠OAB =60°,则k 的值为( )A .23B .6C .﹣23D .﹣6 解:如图,作AC ⊥x 轴,BD ⊥x 轴.∵OA ⊥OB , ∴∠AOB =90°,∵∠OAC+∠AOC =90°,∠AOC+∠BOD =90°, ∴∠OAC =∠BOD , ∴△ACO ∽△ODB , ∴OB OA =BD OC =ODAC, ∵∠OAB =60°, ∴OBOA =33,设A (x ,x2) BD =3OC =3x ,OD =3AC =x32,∴B (3x ,﹣x32) 把点B 代入y =x k得,﹣x 32=xk 3,解得x =﹣6.【答案】D二、填空题(本大题共6小题,每小题3分,共18分)9.比较实数的大小:、“<”或“=”). 解:∵3=9,9>5, ∴3>5. 【答案】>10.分解因式:x 2y ﹣xy 2= . 解:原式=xy (x ﹣y ).11.若关于x 的一元二次方程x 2+4x +k =0有两个不相等的实数根,则k 的取值范围是 . 解:∵关于x 的一元二次方程x 2+4x +k =0有两个不相等的实数根, ∴△=42﹣4k >0, 解得k <4. 【答案】k <412.如图,直线l 1、l 2、…、l 6是一组等距离的平行线,过直线l 1上的点A 作两条射线m 、n ,射线m 与直线l 3、l 6分别相交于B 、C ,射线n 与直线l 3、l 6分别相交于点D 、E .若BD =1,则CE 的长为 .解:∵l 3∥l 6,∴BD ∥CE , ∴△ABD ∽△ACE , ∴AC AB =CE BD =52, ∵BD =1,∴CE =25. 【答案】2513.在平行四边形ABCD 中,连接AC ,按以下步骤作图,分别以A 、C 为圆心,以大于21AC 的长为半径画弧,两弧分别相交于点M 、N ,作直线MN 交CD 于点E ,交AB 于点F .若AB =6,BC =4,则△ADE 的周长为 .解:∵四边形ABCD 是平行四边形, ∴AD =BC =4,CD =AB =6,∵由作法可知,直线MN 是线段AC 的垂直平分线, ∴AE =CE , ∴AE +DE =CD =6,∴△ADE 的周长=AD +(DE +AE )=4+6=10. 【答案】1014.如图,一段抛物线:y =﹣x (x ﹣2)(0≤x ≤2)记为C 1,它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…如此进行下去,直至得到C 6,若点P (11,m )在第6段抛物线C 6上,则m = .解:∵y =﹣x (x ﹣2)(0≤x ≤2),∴配方可得y =﹣(x ﹣1)2+1(0≤x ≤2), ∴顶点坐标为(1,1), ∴A 1坐标为(2,0) ∵C 2由C 1旋转得到,∴OA 1=A 1A 2,即C 2顶点坐标为(3,﹣1),A 2(4,0); 照此类推可得,C 3顶点坐标为(5,1),A 3(6,0); C 4顶点坐标为(7,﹣1),A 4(8,0); C 5顶点坐标为(9,1),A 5(10,0); C 6顶点坐标为(11,﹣1),A 6(12,0); ∴m =﹣1. 【答案】﹣1三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(x +1)2﹣(x +2)(x ﹣2),其中x =﹣21. 解:当x =﹣21时, 原式=x 2+2x +1﹣x 2+4 =2x +5 =﹣1+5 =416.(6分)一个不透明的袋子里装有三个分别标有数字﹣2、1、2的小球,除所标有的字不同外,其它方面均相同,现随机从中摸出一个小球,记录所摸出的小球上的数字后放回并搅匀,再随机摸出一个小球,记录小球上的数字.请用画树状图(或列表)的方法,求两次记录数字之和是正数的概率. 解:列表如下所有等可能的情况有9种,其中两次记录数字之和是正数的有4种结果,所以两次记录数字之和是正数的概率为.17.(6分)甲乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,求甲乙每小时各做多少个零件?解:设甲每小时做x个零件,乙每小时做y个零件.由题意得:解得:,经检验x=18,y=12是原方程组的解.答:甲每小时做18个,乙每小时做12个零件.18.(6分)图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点.线段AB 的端点均在格点上,按下列要求画出图形.(1)在图①中找到一个格点C,使∠ABC是锐角,且tan∠ABC=,并画出△ABC.(2)在图②中找到一个格点D,使∠ADB是锐角,且tan∠ADB=1,并画出△ABD.解:(1)如图①所示:答案不唯一;(2)如图②所示:答案不唯一.19.(7分)如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,CD=4,求BD的长.(1)证明:如图,连接OC.∵AB是⊙O的直径,C是⊙O上一点,∴∠ACB=90°,即∠ACO+∠OCB=90°.∵OA=OC,∠BCD=∠A,∴∠ACO=∠A=∠BCD,∴∠BCD+∠OCB=90°,即∠OCD=90°,∴CD是⊙O的切线.(2)解:在Rt△OCD中,∠OCD=90°,OC=3,CD=4,∴OD==5,∴BD=OD﹣OB=5﹣3=2.20.(8分)某校“两会”知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验.①收集数据:分别记录甲、乙两名学生10次测验成绩(单位:分)②整理数据:两组数据的平均数、中位数、众数、方差如下表所示:③分析数据:根据甲、乙两名学生10次测验成绩绘制折线统计图:④得出结论:结合上述统计全过程,回答下列问题:(1)补全②中的表格.(2)判断甲、乙两名学生谁的成绩比较稳定,说明判断依据.(3)如果你是决策者,从甲、乙两名学生中选择一人代表学校参加知识竞赛,你会选择(填“甲”或“乙),理由是:.解:(1)甲10次测验的成绩排序后,最中间的两个数据是84和86,故中位数为85;乙10次测验的成绩中,81出现的次数最多,故众数为81;故答案为:85,81;(2)甲的成绩较稳定.两人的成绩在平均数相同的情况下,甲成绩的方差较小,反映出甲的成绩比较稳定.(3)选择甲.理由如下:两人的成绩的平均数相同,但甲的中位数较高,说明甲的成绩多次高于乙的成绩,此外甲的成绩比较稳定.(答案不唯一)故答案为:甲;两人的成绩的平均数相同,但甲的中位数较高,说明甲的成绩多次高于乙的成绩,此外甲的成绩比较稳定.21.(8分)某景区的三个景点A、B、C在同一线路上.甲、乙两名游客从景点A出发,甲步行到景点C;乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C;甲、乙两人同时到达景点C.甲、乙两人距景点A的路程y(米)与甲出发的时间x(分)之间的函数图象如图所示.(1)乙步行的速度为米/分.(2)求乙乘景区观光车时y与x之间的函数关系式.(3)甲出发多长时间与乙第一次相遇?解:(1)乙步行的速度为:(5400﹣3000)÷(90﹣60)=80(米/分).故答案为:80.(2)设乙乘景区观光车时y与x之间的函数关系式为y=kx+b(k≠0),将(20,0),(30,3000)代入y=kx+b得:,解得:,∴乙乘景区观光车时y与x之间的函数关系式为y=300x﹣6000(20≤x≤30).(3)甲步行的速度为:5400÷90=60(米/分),∴甲步行y与x之间的函数关系式为y=60x.联立两函数关系式成方程组,,解得:,∴甲出发25分钟与乙第一次相遇.22.(9分)在矩形ABCD中,已知AD>AB.在边AD上取点E,使AE=AB,连结CE,过点E作EF⊥CE,与边AB或其延长线交于点F.猜想:如图①,当点F在边AB上时,线段AF与DE的大小关系为.探究:如图②,当点F在边AB的延长线上时,EF与边BC交于点G.判断线段AF与DE的大小关系,并加以证明.应用:如图②,若AB=2,AD=5,利用探究得到的结论,求线段BG的长.解:①AF =DE ;②AF =DE ,证明:∵∠A =∠FEC =∠D =90°,∴∠AEF =∠DCE ,在△AEF 和△DCE 中,,∴△AEF ≌△DCE ,∴AF =DE .③∵△AEF ≌△DCE ,∴AE =CD =AB =2,AF =DE =3,FB =F A ﹣AB =1,∵BG ∥AD , ∴AE BG =FAFB ∴BG =32 23.(10分)如图,在△ABC 中,∠C =90°,AC =BC ,AB =8.点P 从点A 出发,以每秒2个单位长度的速度沿边AB 向点B 运动.过点P 作PD ⊥AB 交折线AC ﹣CB 于点D ,以PD 为边在PD 右侧做正方形PDEF .设正方形PDEF 与△ABC 重叠部分图形的面积为S ,点P 的运动时间为t 秒(0<t <4).(1)当点D 在边AC 上时,正方形PDEF 的边长为 (用含t 的代数式表示).(2)当点E 落在边BC 上时,求t 的值.(3)当点D 在边AC 上时,求S 与t 之间的函数关系式.(4)作射线PE 交边BC 于点G ,连结DF .当DF =4EG 时,直接写出t 的值.解:(1)∵∠C =90°,AC =BC ,∴∠A =45°=∠B ,且DP ⊥AB ,∴∠A =∠ADP =45°,∴AP =DP =2t ,故答案为2t ,(2)如图,∵四边形DEFP 是正方形∴DP =DE =EF =PF ,∠DPF =∠EFP =90°∵∠A =∠B =45°∴∠A =∠ADP =∠B =∠BEF =45°∴AP =DP =2t =EF =FB =PF∵AB =AP +PF +FB∴2t +2t +2t =8∴t =34 (3)当0<t ≤34时,正方形PDEF 与△ABC 重叠部分图形的面积为正方形PDEF 的面积,即S =DP 2=4t 2,当34<t ≤2时,如图,正方形PDEF 与△ABC 重叠部分图形的面积为五边形PDGHF 的面积,∵AP =DP =PF =2t ,∴BF =8﹣AP ﹣PF =8﹣4t ,∵BF =HF =8﹣4t ,∴EH =EF ﹣HF =2t ﹣(8﹣4t )=6t ﹣8,∴S =S 正方形DPFE ﹣S △GHE ,∴S =4t 2﹣×(6t ﹣8)2=﹣14t 2+48t ﹣32, (4)如图,当点E 在△ABC 内部,设DF 与PE 交于点O ,∵四边形PDEF 是正方形,∴DF =PE =2PO =2EO ,∠DFP =45°,∴∠DFP =∠ABC =45°,∴DF ∥BC , ∴PG PO =PBPF ∵DF =4EG∴设EG =a ,则DF =4a =PE ,PO =2a =EO ,∴PG =5a , ∴PG PO =PB PF =aa 52 ∴t t 282-=52 ∴t =78 如图,当点E 在△ABC 外部,设DF 与PE 交于点O ,∵四边形PDEF 是正方形,∴DF =PE =2PO =2EO ,∠DFP =45°,∴∠DFP =∠ABC =45°,∴DF ∥BC , ∴PG PO =PBPF ∵DF =4EG∴设EG =a ,则DF =4a =PE ,PO =2a =EO ,∴PG =3a , ∵PG PO =PB PF =a3a 2 ∴t t 282-=32 ∴t =58 综上所述:t =78或58 24.(12分)定义:如图1,在平面直角坐标系中,点M 是二次函数C 1图象上一点,过点M 作l ⊥x 轴,如果二次函数C 2的图象与C 1关于l 成轴对称,则称C 2是C 1关于点M 的伴随函数.如图2,在平面直角坐标系中,二次函数C 1的函数表达式是y =﹣2x 2+2,点M是二次函数C1图象上一点,且点M的横坐标为m,二次函数C2是C1关于点M的伴随函数.(1)若m=1,①求C2的函数表达式.②点P(a,b1),Q(a+1,b2)在二次函数C2的图象上,若b1≥b2,a的取值范围为.(2)过点M作MN∥x轴,①如果MN=4,线段MN与C2的图象交于点P,且MP:PN=1:3,求m的值.②如图3,二次函数C2的图象在MN上方的部分记为G1,剩余的部分沿MN翻折得到G2,由G1和G2所组成的图象记为G.以A(1,0)、B(3,0)为顶点在x轴上方作正方形ABCD.直接写出正方形ABCD与G有三个公共点时m的取值范围.解:(1)①当m=1时,抛物线C2与抛物线C1关于直线x=1对称∴抛物线C2的顶点时(2,2)∴抛物线C2的解析式为y=﹣2(x﹣2)2+2=﹣2x2+8x﹣6②∵点P(a,b1),Q(a+1,b2)在二次函数C2的图象上∴b2﹣b1=﹣2(a+1)2+8(a+1)﹣6﹣(﹣2a2+8a﹣6)=﹣4a+6当b1≥b2时﹣4a+6≤03∴a≥23故答案为:a≥2(2)①∵MN∥x轴,MP:PN=1:3∴MP =1当m >0时,2m =1m =21 当m <0时,﹣2m =1 m =﹣21 ②分析图象可知:当m =21时,可知C 1和G 的对称轴关于直线x =21对称,C 2的顶点恰在AD 上,此时G 与正方形恰由2个交点.当m =1时,直线MN 与x 轴重合,G 与正方形恰由三个顶点.当m =2时,G 过点B (3,0)且G 对称轴左侧部分与正方形有两个交点 当m =2或21<m ≤1时,G 与正方形ABCD 有三个公共点.。

2019-2020长春市数学中考试题带答案

2019-2020长春市数学中考试题带答案

24.4 月 18 日,一年一度的“风筝节”活动在市政广场举行 ,如图,广场上有一风筝 A,小
江抓着风筝线的一端站在 D 处,他从牵引端 E 测得风筝 A 的仰角为 67°,同一时刻小芸在
附近一座距地面 30 米高(BC=30 米)的居民楼顶 B 处测得风筝 A 的仰角是 45°,已知小江
与居民楼的距离 CD=40 米,牵引端距地面高度 DE=1.5 米,根据以上条件计算风筝距地
A.110°
B.125°
C.135°
9.下列各曲线中表示 y 是 x 的函数的是( )
D.140°
A.
B.
C.
D.
10.“绿水青山就是金山银山”.某工程队承接了 60 万平方米的荒山绿化任务,为了迎接雨 季的到来,实际工作时每天的工作效率比原计划提高了 25%,结果提前 30 天完成了这一任 务.设实际工作时每天绿化的面积为 x 万平方米,则下面所列方程中正确的是( )
A.1
B.2
C.3
D.4
4.下列命题中,真命题的是( )
A.对角线互相垂直的四边形是菱形
B.对角线互相垂直平分的四边形是正方形
C.对角线相等的四边形是矩形
D.对角线互相平分的四边形是平行四边形
5.如图,在直角坐标系中,直线
y1
2x
2
与坐标轴交于
A、B
两点,与双曲线
y2
k x
( x 0 )交于点 C,过点 C 作 CD⊥x 轴,垂足为 D,且 OA=AD,则以下结论:
平方米,
依题意得:
60 x
60 x
30 ,即
60 1
25%
60
30

1 25%
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吉林省长春市中考数学模拟试卷(六)一、选择题1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 0025米,把0.000 0025用科学记数法表示为()A.2.5×106B.0.25×10﹣5C.25×10﹣7D.2.5×10﹣63.一个正方体的展开图如图所示,将它折成正方体后,数字“0”的对面是()A.数B.5 C.1 D.学4.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的大小为()A.60° B.50° C.40° D.30°5.一元一次不等式2x+1≥0的解集是()A.x≥B.x≤C.x≥﹣D.x≤﹣6.方程x2﹣x+=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根7.如图,在⊙O中,弦AC与半径OB平行,若∠BOC=50°,则∠B的大小为()A.25° B.30° C.50° D.60°8.如图,在平面直角坐标系,直线y=﹣3x+3与坐标轴分别交于A、B两点,以线段AB为边,在第一象限内作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在直线y=3x﹣2上,则a 的值为()A.1 B.2 C.﹣1 D.﹣1.5二、填空题9.比较大小:﹣π﹣3.(填“>”、“=”、“<”)10.计算:(﹣x2y)3= .11.如图,BD为⊙O的直径,AB与⊙O相切于点B,连结AO,AO与⊙O交于点C,若∠A=40°,⊙O的半径为2,则的长为.12.如图,在平面直角坐标系中,Rt△AOB的直角边OA、OB分别在x轴、y轴正半轴上,OA=1,∠OBA=30°,将△AOB绕点A顺时针旋转,使AB的对应边AD恰好落在x轴上,点O的对应点C落在函数y=(x>0)的图象上,则k的值为.13.如图,在四边形ABCD中,∠A=90°,AB=5,AD=3,点M在边AB上,则DM的最大值为.14.如图,在平面直角坐标系中,顶点为A的抛物线y=a1(x﹣2)2+2与x轴交于点O、C.顶点为B的抛物线y=a2(x﹣2)2﹣3与x轴交于点D、E.若点D的坐标为(﹣1,0),则△ADE与△BOC的面积比为.三、解答题(本大题共10小题,共78分)15.先化简,再求值: +,其中x=﹣1.16.为了吸引顾客.某超市设计了如下促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.顾客在本超市一次性消费满200元,就可以在箱子里先摸出一个球.记下钱数后放回,搅匀后再摸一个球,记下钱数后放回,两次记下的钱数之和就是顾客得到的购物券的金额.某顾客刚好消费200元.求该顾客所获得购物券的金额不低于30元的概率.17.某快递公司今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件.求该快递公司投递总件数的平均月增长率.18.如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.19.一架直升机到某失事地点进行搜救,直升机飞到A处时,探测前方地面上B处有一生命体,从A处观测B处的俯角为29°,该直升机一直保持在距地面100米高度直线飞行搜索,飞行速度为10米/秒,求该直升机从A处飞到生命体的正上方时所用的时间.(结果精确到0.1秒)【参考数据:sin29°=0.48,cos29°=0.87,tan29°=0.55】20.某中学开展“阳光体育一小时”活动.根据学校事假情况,决定开设四项运动项目:A:踢毽子;B:篮球;C:跳绳;D:乒乓球.为了解学生最喜欢哪一种运动项目,随机抽取了n名学生进行问卷调查,每位学生在问卷调查时都按要求只选择了其中一种喜欢的运动项目.收回全部问卷后,将收集到的数据整理并绘制成如下的统计图,若参与调查的学生中喜欢A方式的学生的人数占参与调查学生人数的40%.根据统计图提供的信息,解答下列问题:(1)求n的值.(2)求参与调查的学生中喜欢C的学生的人数.(3)根据统计结果,估计该校1800名学生中喜欢C方式的学生比喜欢B方式的学生多的人数.21.有甲、乙两个容器,甲容器装有一个进水管和一个出水管,乙容器只装有一个进水管,每个水管出水均匀.折线段CD﹣DE﹣EF为甲容器中的水量y(升)与乙容器注水时间x(分)的函数图象,线段AB为乙容器中的水量y(升)与乙容器注水时间x(分)的部分函数图象.(1)求甲容器的进水管和出水管的水流速度.(2)如果乙容器进水管水流速度保持不变,求4分钟后两容器水量相等时x的值.(3)若使两容器第12分钟时水量相等,则乙容器4分钟后进水速度应变为多少?请说明理由.22.探究:如图①,在矩形ABCD中,E是边CD的中点,点F在边BC上,∠DAE=∠FAE.判断AE与EF的位置关系,并加以证明.拓展:如图②,在▱ABCD中,E是边CD的中点,点F在边BC上,∠DAE=∠FAE,若AD=,CF=,EF=,则sin∠DAE= .23.我们定义:只有一组对角相等的凸四边形叫做等对角四边形.(1)四边形ABCD是等对角四边形,∠A≠∠C,若∠A=70°,∠B=80°,则∠C= °,∠D= °.(2)图①、图②均为4×4的正方形网格,线段AB、BC的端点均在格点上,按要求以AB、BC为边在图①、图②中各画一个等对角四边形ABCD.要求:四边形ABCD的顶点D在格点上,且两个四边形不全等.(3)如图③,在▱ABCD中,∠A=60°,AB=5,AD=4,BE⊥DC于点E.点P在射线BE上,设BP=x,求四边形ABPD为等对角四边形时x的值.24.如图①,在平面直角坐标系中,点A的坐标为(8,6),连结OA,动点P从点O出发,以每秒5个单位长度的速度沿OA向终点A运动.以P为顶点的抛物线y=(x﹣h)2+k与y轴交于点B,过点B作BC∥x 轴交抛物线于另一点C,动点Q从点A出发,以每秒5个单位长度的速度沿AO向终点O运动,以Q为顶点,作边长为4的正方形QDEF.使得DQ∥x轴,且点D在点Q左侧,点F在点Q的下方.点P、Q同时出发,设运动时间为t.(1)用含有t的代数式表示点P的坐标(,)(2)当四边形BCFE为平行四边形时,求t的值.(3)当点C落在线段DE或QF上时,求t的值.(4)如图②,以OB、BC为邻边作矩形OBCG,当点Q在矩形OBCG内部时,设矩形OBCG与正方形QDEF重叠部分图形的周长为l,求l与t之间的函数关系式.吉林省长春市中考数学模拟试卷(六)参考答案与试题解析一、选择题1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 0025米,把0.000 0025用科学记数法表示为()A.2.5×106B.0.25×10﹣5C.25×10﹣7D.2.5×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0025=2.5×10﹣6,故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.一个正方体的展开图如图所示,将它折成正方体后,数字“0”的对面是()A.数B.5 C.1 D.学【考点】专题:正方体相对两个面上的文字.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:正方体的平面展开图中,相对的面一定相隔一个正方形,所以“0”字的对面是“5”.故选B.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的大小为()A.60° B.50° C.40° D.30°【考点】平行线的性质.【分析】先根据直角三角形的性质得出∠D的度数,再由平行线的性质即可得出结论.【解答】解:∵FE⊥DB,∵∠DEF=90°.∵∠1=50°,∴∠D=90°﹣50°=40°.∵AB∥CD,∴∠2=∠D=40°.故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.5.一元一次不等式2x+1≥0的解集是()A.x≥B.x≤C.x≥﹣D.x≤﹣【考点】解一元一次不等式.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:2x≥﹣1,系数化为1,得:x≥﹣,故选:C.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.方程x2﹣x+=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根【考点】根的判别式.【分析】首先把方程转化为2x2﹣x+3=0,然后求出根的判别式的值,进而作出判断.【解答】解:∵原方程两边同时乘以2可以变成:2x2﹣x+3=0,∴△=1﹣4×2×3=﹣23<0,∴此方程没有实数根,故选:C.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.7.如图,在⊙O中,弦AC与半径OB平行,若∠BOC=50°,则∠B的大小为()A.25° B.30° C.50° D.60°【考点】圆周角定理.【分析】由弦AC与半径OB平行,若∠BOC=50°,可求得∠C的度数,继而求得∠AOC的度数,继而求得∠AOB的度数,然后由等腰三角形的性质,求得答案.【解答】解:∵弦AC∥OB,∠BOC=50°,∴∠C=∠BOC=50°,∵OA=OC,∴∠OAC=∠C=50°,∴∠AOC=80°,∴∠AOB=∠AOC+∠BOC=130°,∵OA=OB,∴∠B=∠OAB=25°.故选A.【点评】此题考查了圆周角定理、平行线的性质以及等腰三角形的性质.注意求得∠AOB的度数是关键.8.如图,在平面直角坐标系,直线y=﹣3x+3与坐标轴分别交于A、B两点,以线段AB为边,在第一象限内作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在直线y=3x﹣2上,则a 的值为()A.1 B.2 C.﹣1 D.﹣1.5【考点】一次函数图象与几何变换.【分析】如图作CN⊥OB于N,DM⊥OA于M,利用三角形全等,求出点D坐标即可解决问题.【解答】解:如图作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,∵直线y=﹣3x+3与x轴、y轴分别交于B、A两点,∴点A(0,3),点B(1,0),∵四边形ABCD是正方形,∴AB=AD=DC=BC,∠ABC=90°,∵∠BAO+∠ABO=90°,∠ABO+∠CBN=90°,∴∠BAO=∠CBN,在△BAO和△CBN中,,∴△BAO≌△CBN,∴BN=AO=3,CN=BO=1,同理可以得到:DF=AM=BO=1,CF=DM=AO=3,∴点F(4,4),D(3,4),∵将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在直线y=3x﹣2上,∴把y=4代入y=3x﹣2得,x=2,∴a=3﹣2=1,∴正方形沿x轴负方向平移a个单位长度后,点D恰好落在直线y=3x﹣2上时,a=1,故选A.【点评】本题考查反比例函数与一次函数的交点、正方形的性质、全等三角形的判定和性质等知识,解题的关键是添加辅助线构造全等三角形,属于中考常考题型.二、填空题9.比较大小:﹣π<﹣3.(填“>”、“=”、“<”)【考点】实数大小比较.【分析】根据两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:∵π>3,∴﹣π<﹣3,故答案:<.【点评】本题考查了实数的大小比较法则的应用,能熟记实数的大小比较法则是解此题的关键.10.计算:(﹣x2y)3= ﹣x6y3..【考点】幂的乘方与积的乘方.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.【解答】解:(﹣x2y)3=(﹣1)3(x2)3y3=﹣x6y3.故答案为:﹣x6y3.【点评】本题主要考查积的乘方的性质,熟练掌握并灵活运用是解题的关键,解题时注意符号.11.如图,BD为⊙O的直径,AB与⊙O相切于点B,连结AO,AO与⊙O交于点C,若∠A=40°,⊙O的半径为2,则的长为π.【考点】切线的性质;弧长的计算.【专题】计算题.【分析】先根据切线的性质得到∠ABO=90°,再利用三角形外角性质求出∠COD的度数,然后根据弧长公式计算的长度.【解答】解:∵AB与⊙O相切于点B,∴OB⊥AB,∴∠ABO=90°,∴∠COD=∠A+∠ABO=40°+90°=130°,∴的长度==π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.解决问题的关键是求出∠COD的度数.12.如图,在平面直角坐标系中,Rt△AOB的直角边OA、OB分别在x轴、y轴正半轴上,OA=1,∠OBA=30°,将△AOB绕点A顺时针旋转,使AB的对应边AD恰好落在x轴上,点O的对应点C落在函数y=(x>0)的图象上,则k的值为.【考点】反比例函数图象上点的坐标特征;坐标与图形变化﹣旋转.【专题】计算题.【分析】作CH⊥x轴于H,如图,先计算出∠BAO=60°,再根据旋转的性质得到∠DAC=∠BAO=60°,AC=AO=1,在Rt△ACH中利用含30度的直角三角形三边的关系得到AH=AC=,CH=AH=,于是得到C点坐标,然后根据反比例函数图象上点的坐标特征可计算出k的值.【解答】解:作CH⊥x轴于H,如图,在Rt△OAB中,∵∠OBA=30°,∴∠BAO=60°,∵△AOB绕点A顺时针旋转,使AB的对应边AD恰好落在x轴上,∴∠DAC=∠BAO=60°,AC=AO=1,在Rt△ACH中,∵∠ACH=30°,∴AH=AC=,CH=AH=,∴C(,),∵点O的对应点C落在函数y=(x>0)的图象上,∴k=×=.故答案为.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了旋转的性质.13.如图,在四边形ABCD中,∠A=90°,AB=5,AD=3,点M在边AB上,则DM的最大值为.【考点】勾股定理.【分析】连结BD,作辅助线构建直角三角形,根据勾股定理即可求出DM的最大值.【解答】解:连结BD,∵∠A=90°,AB=5,AD=3,∴在Rt△ABD中,BD==,即DM的最大值为,故答案为:,【点评】本题考查了勾股定理、关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.14.如图,在平面直角坐标系中,顶点为A的抛物线y=a1(x﹣2)2+2与x轴交于点O、C.顶点为B的抛物线y=a2(x﹣2)2﹣3与x轴交于点D、E.若点D的坐标为(﹣1,0),则△ADE与△BOC的面积比为1:1 .【考点】抛物线与x轴的交点;二次函数的性质.【专题】二次函数图象及其性质.【分析】因为两条抛物线对称轴均为直线x=2,开口向下的抛物线过原点O,所以C点坐标为(4,0),开口向上的抛物线过D(﹣1,0),所以E点坐标为(5,0),所以可得OC=4,DE=6,由题意又可得△ADE的高为2,△OBC的高为3,所以△ADE与△BOC的面积比为1:1.【解答】解:依题意得:A点坐标为(2,2),B点坐标为(2,﹣3),又因为顶点为A的抛物线与x轴交于O、C,所以C点坐标为(4,0),顶点为B的抛物线与x轴交于D、E,且D(﹣1,0),所以E点坐标为(5,0),所以OC=4,DE=6,所以S△ADE=×6×2=6,S△BOC=×4×3=6,所以两个三角形面积比为1:1.故答案为:1:1.【点评】本题主要考查了抛物线的对称性,关键是由解析式确定顶点坐标及对称轴,然后再由与x轴的一个交点确定另一个交点坐标.三、解答题(本大题共10小题,共78分)15.先化简,再求值: +,其中x=﹣1.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=﹣==x+1,当x=﹣1时,原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.16.为了吸引顾客.某超市设计了如下促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.顾客在本超市一次性消费满200元,就可以在箱子里先摸出一个球.记下钱数后放回,搅匀后再摸一个球,记下钱数后放回,两次记下的钱数之和就是顾客得到的购物券的金额.某顾客刚好消费200元.求该顾客所获得购物券的金额不低于30元的概率.【考点】列表法与树状图法.【分析】首先根据题列出表格,然后由表格即可求得所有等可能的结果与该顾客所获得购物券的金额不低于30元的情况,再利用概率公式即可求得答案.【解答】解:列表得:第二次0 10 20 30第一次0 0 10 20 3010 10 20 30 4020 20 30 40 5030 30 40 50 60∵共有16种等可能结果,该顾客所获得购物券的金额不低于30元的共有10种可能结果,∴该顾客所获得购物券的金额不低于30元的概率为: =.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17.某快递公司今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件.求该快递公司投递总件数的平均月增长率.【考点】一元二次方程的应用.【分析】利用五月份完成投递的快递总件数为:三月份完成投递的快递总件数×(1+x)2,进而得出等式求出答案.【解答】解:设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得:x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%.【点评】此题主要考查了一元二次方程的应用,根据题意正确用未知数表示出五月份完成投递的快递总件数是解题关键.18.如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.19.一架直升机到某失事地点进行搜救,直升机飞到A处时,探测前方地面上B处有一生命体,从A处观测B处的俯角为29°,该直升机一直保持在距地面100米高度直线飞行搜索,飞行速度为10米/秒,求该直升机从A处飞到生命体的正上方时所用的时间.(结果精确到0.1秒)【参考数据:sin29°=0.48,cos29°=0.87,tan29°=0.55】【考点】解直角三角形的应用﹣仰角俯角问题.【专题】探究型.【分析】要求该直升机从A处飞到生命体的正上方时所用的时间,只要求出BD的长度,然后根据时间等于路程除以时间即可解答本题.【解答】解:过点A作AD⊥BD于点D,如右图所示,由题意可得,∠ABD=∠BAC=29°,AD=100,在Rt△ABD中,∠ADB=90°,∵tan∠ABC=,∴BD=,(秒)即该直升机从A处飞到生命体的正上方时所用的时间约为18.2秒.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是明确题意,找出所求问题需要的条件,画出相应的图象,利用锐角三角函数解答问题.20.某中学开展“阳光体育一小时”活动.根据学校事假情况,决定开设四项运动项目:A:踢毽子;B:篮球;C:跳绳;D:乒乓球.为了解学生最喜欢哪一种运动项目,随机抽取了n名学生进行问卷调查,每位学生在问卷调查时都按要求只选择了其中一种喜欢的运动项目.收回全部问卷后,将收集到的数据整理并绘制成如下的统计图,若参与调查的学生中喜欢A方式的学生的人数占参与调查学生人数的40%.根据统计图提供的信息,解答下列问题:(1)求n的值.(2)求参与调查的学生中喜欢C的学生的人数.(3)根据统计结果,估计该校1800名学生中喜欢C方式的学生比喜欢B方式的学生多的人数.【考点】用样本估计总体.【分析】(1)根据喜欢A方式的学生的人数占参与调查学生人数的40%得出总人数即可;(2)根据图中数据得出参与调查的学生中喜欢C的学生的人数即可;(3)根据样本根据总体进行解答即可.【解答】解:(1)80÷40%=200(人);(2)200﹣80﹣30﹣50=40(人);(3)×1800=90(人),答:该校1800名学生中喜欢C方式的学生比喜欢B方式的学生多90人.【点评】本题考查了条形统计图、扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.有甲、乙两个容器,甲容器装有一个进水管和一个出水管,乙容器只装有一个进水管,每个水管出水均匀.折线段CD﹣DE﹣EF为甲容器中的水量y(升)与乙容器注水时间x(分)的函数图象,线段AB为乙容器中的水量y(升)与乙容器注水时间x(分)的部分函数图象.(1)求甲容器的进水管和出水管的水流速度.(2)如果乙容器进水管水流速度保持不变,求4分钟后两容器水量相等时x的值.(3)若使两容器第12分钟时水量相等,则乙容器4分钟后进水速度应变为多少?请说明理由.【考点】一次函数的应用.【分析】(1)根据“进水速度=进水量÷进水时间”即可算出甲容器的进水速度,再根据“出水速度=进水速度﹣水量增大速度”即可算出甲容器的出水速度;(2)根据函数图象上给出的点的坐标,利用待定系数法可求出y CD关于x的函数关系式,代入x=3,求出y 值,再根据该点的坐标利用待定系数法求出y AB关于x的函数关系式,分段令y=10求出x值得解.(3)求出B的坐标,然后根据待定系数法即可求得.【解答】解:(1)由图象可知,甲容器在CD段只开进水管,在EF段进水管和出水管同时打开,=5,5﹣=3,∴甲容器的进水速度为5升/分,出水管的水流速度为3升/分;(2)设CD段的函数关系式为y CD=kx+b,有,解得:,此时y CD=5x﹣10,当x=3时,y CD=5×3﹣10=5(升).设直线AB的函数关系式为y AB=ax+2,将(3,5)代入y AB=ax+2中,得:5=3a+2,解得:a=1,∴y AB=x+2.令y=10,即10=x+2,解得:x=8,∴乙容器进水管打开8分钟时,两容器的水量相等;(3)把x=4代入y=x+2得,y=6,∴B(4,6),∵F(12,18),设直线BF的解析式为为y=mx+n,∴解得m=,∴乙容器4分钟后进水速度应变为升/分,两容器第12分钟时水量相等.【点评】本题考查了一次函数的应用、一次函数的图象以及待定系数法求函数解析式,结合点的坐标利用待定系数法求出函数解析式是关键.22.探究:如图①,在矩形ABCD中,E是边CD的中点,点F在边BC上,∠DAE=∠FAE.判断AE与EF的位置关系,并加以证明.拓展:如图②,在▱ABCD中,E是边CD的中点,点F在边BC上,∠DAE=∠FAE,若AD=,CF=,EF=,则sin∠DAE= .【考点】矩形的性质;全等三角形的判定与性质;平行四边形的性质.【分析】探究:延长AE交BC的延长线与G,由矩形的性质得出∠DAE=∠G,由AAS证明△ADE≌△GCE,得出AE=GE,AD=GC,由已知条件得出∠G=∠FAE,证出AF=GF,再由等腰三角形的三线合一性质即可得出结论;拓展:延长AE交BC的延长线与G,由平行四边形的性质得出∠DAE=∠G,由AAS证明△ADE≌△GCE(AAS),得出AE=GE,AD=GC,证出∠G=∠FAE,得出AF=GF,由等腰三角形的性质得出AE⊥EF,求出AF=GF=CF+CG=CF+AD=3,由三角函数得出isn∠DAE=sjn∠FAE==即可.【解答】探究:解:AE⊥EF;理由如下:延长AE交BC的延长线与G,如图1所示:∵E是CD的中点,∴DE=CE,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠G,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴AE=GE,AD=GC,∵∠DAE=∠FAE,∴∠G=∠FAE,∴AF=GF,∵AE=GE,∴AE⊥EF;拓展:解:延长AE交BC的延长线与G,如图1所示:∵E是CD的中点,∴DE=CE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠G,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴AE=GE,AD=GC,∵∠DAE=∠FAE,∴∠G=∠FAE,∴AF=GF,∵AE=GE,∴AE⊥EF,∴∠AEF=90°,∵AF=GF=CF+CG=CF+AD=+=3,∴sin∠DAE=sin∠FAE===.故答案为:.【点评】本题考查了矩形的性质、平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数等知识;熟练掌握矩形和平行四边形的性质,证明三角形全等是解决问题的关键.23.我们定义:只有一组对角相等的凸四边形叫做等对角四边形.(1)四边形ABCD是等对角四边形,∠A≠∠C,若∠A=70°,∠B=80°,则∠C= 130 °,∠D= 80 °.(2)图①、图②均为4×4的正方形网格,线段AB、BC的端点均在格点上,按要求以AB、BC为边在图①、图②中各画一个等对角四边形ABCD.要求:四边形ABCD的顶点D在格点上,且两个四边形不全等.(3)如图③,在▱ABCD中,∠A=60°,AB=5,AD=4,BE⊥DC于点E.点P在射线BE上,设BP=x,求四边形ABPD为等对角四边形时x的值.【考点】四边形综合题.【分析】(1)由等对角四边形得出∠B=∠D,再由四边形内角和即可求出∠C;(2)连接BD,由AB=AD,得出∠ABD=∠ADB,证出∠CBD=∠CDB,即可得出CB=CD;(3)过点D作DH⊥AB于点H,则四边形DHBE为矩形,根据三角函数求出AH和HD,分两种情况进行讨论,①当∠ADP=∠ABP=90°时;②当∠DPB=∠A=60°时,即可得出答案.【解答】解:(1)∵四边形ABCD是“等对角四边形”,∠A≠∠C,∴∠D=∠B=80°,∴∠C=360°﹣∠A﹣∠B﹣∠D=360°﹣70°﹣80°﹣80°=130°;故答案为:130,80;(2)如图所示,(3)过点D作DH⊥AB于点H,则四边形DHBE为矩形,∴DE=BH,BE=DH,∵∠A=60°,∠DHA=90°,∴AH=AD•cos60°=4×=2,DH=AD•sin60°=4×=2,∴BE=DH=2,BH=AB﹣AH=5﹣2=3,∴DE=BH=3,如图3,当∠ADP=∠ABP=90°时,∠BPD=120°,∴∠DPE=180°﹣∠BPD=60°,又∵∠DEP=90°,∴PE===,∴x=BE﹣EP=2﹣=;如图4,当∠DPB=∠A=60°时,∵∠P=60°,∠PED=90°,∴PE=DE•cot60°=3×=,∴BP=BE+PE=2+=3.综上,当四边形ABPD为等对角四边形时x的值为或3.【点评】本题是四边形综合题目,考查了新定义、四边形内角和定理、等腰三角形的判定与性质、勾股定理、三角函数、矩形的判定与性质等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.24.(12分)(2016•长春模拟)如图①,在平面直角坐标系中,点A的坐标为(8,6),连结OA,动点P 从点O出发,以每秒5个单位长度的速度沿OA向终点A运动.以P为顶点的抛物线y=(x﹣h)2+k与y轴交于点B,过点B作BC∥x轴交抛物线于另一点C,动点Q从点A出发,以每秒5个单位长度的速度沿AO 向终点O运动,以Q为顶点,作边长为4的正方形QDEF.使得DQ∥x轴,且点D在点Q左侧,点F在点Q 的下方.点P、Q同时出发,设运动时间为t.(1)用含有t的代数式表示点P的坐标(4t ,3t )(2)当四边形BCFE为平行四边形时,求t的值.(3)当点C落在线段DE或QF上时,求t的值.(4)如图②,以OB、BC为邻边作矩形OBCG,当点Q在矩形OBCG内部时,设矩形OBCG与正方形QDEF重叠部分图形的周长为l,求l与t之间的函数关系式.【考点】二次函数综合题.【分析】(1)由点A的坐标为(8,6),根据相似三角形的性质,即可求得点P的坐标;(2)由P(4t,3t),可得抛物线的解析式为:y=(x﹣4t)2+3t,易得当BC=EF时,四边形BCFE为平行四边形,继而求得答案;(3)首先求得点C的坐标,继而可得点Q的坐标为:(8﹣4t,6﹣3t),点E的坐标为(4﹣4t,2﹣3t),然后分别令8t=4﹣4t与8t=8﹣4t,去分析求解即可求得答案;(4)分别从当点Q在CG上时,当点Q在y轴上时,当<t<1时,当1≤t<2时,去分析求解即可求得答案.【解答】解:(1)∵点A的坐标为(8,6),∴OA==10,∵OP=5t,∴=,∴x=4t,y=3t,∴点P的坐标为:(4t,3t);故答案为:4t,3t;(2)∵P(4t,3t),∴抛物线的解析式为:y=(x﹣4t)2+3t,由对称性可得:BC=8t,∵BC∥x轴,EF∥x轴,∴BC∥EF,∴当BC=EF时,四边形BCFE为平行四边形,∴8t=4,解得:t=;(3)当x=8t时,y=(8t﹣4t)2+3t=16t2+3t,∴点C的坐标为(8t,16t2+3t),。

相关文档
最新文档