2020年吉林省长春市中考数学模拟试卷含答案

合集下载

2020年长春市中考数学模拟试卷及答案解析

2020年长春市中考数学模拟试卷及答案解析

2020年长春市中考数学模拟试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列四个数中,最小的数是()A.−43B.﹣1C.0D.22.(3分)长白山位于吉林省延边州安图县和白山市抚松县境内,是中朝两国的界山、中华十大名山之一、国家5A级风景区.今年十一期间长白山景区共接待游客18.14万人次,将18.14万用科学记数法表示为()A.18.14×104B.1.814×104C.1.814×105D.1.814×106 3.(3分)李明为好友制作一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A.B.C.D.4.(3分)如果关于x的一元一次不等式组的解集在数轴上的表示如图所示,那么该不等式组的解集为()A.x≥﹣1B.x<2C.﹣1≤x≤2D.﹣1≤x<2 5.(3分)《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是( )A .{8y −x =37y −x =4B .{8y −x =37y −x =−4C .{y −8x =−37y −x =−4D .{8y −x =37y −y =4 6.(3分)如图,⊙O 的半径为6cm ,四边形ABCD 内接于⊙O ,连结OB 、OD ,若∠BOD=∠BCD ,则劣弧BD̂的长为( )A .4πB .3πC .2πD .1π7.(3分)在台风来临之前,有关部门用钢管加固树木(如图),固定点A 离地面的高度AC=m ,钢管与地面所成角∠ABC =∠a ,那么钢管AB 的长为( )A .m cosaB .m •sin aC .m •cos aD .m sina8.(3分)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =6x 在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD 为( )A .36B .12C .6D .3二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)分解因式:16x 4﹣1= .。

2020年吉林省长春市中考数学一模试卷

2020年吉林省长春市中考数学一模试卷

中考数学一模试卷一、选择题(本大题共6小题,共18.0分)1.如图,该几何体的俯视图是()A. B. C. D.2.下列事件是随机事件的是()A. 人长生不老B. 明天是2月30日C. 一个星期有七天D. 2020年奥运会中国队将获得45枚金牌3.已知反比例函数y=的图象的两支分别在第二、四象限内,那么k的取值范围是()A. k>-B. k>C. k<-D. k<4.在Rt△ABC中,∠C=90°,sin A=,则cos B的值为()A. B. C. D.5.如图,AB是⊙O的直径,点C,D在⊙O上.若∠ABD=50°,则∠BCD的度数为()A. 30°B. 35°C. 40°D. 45°6.如图,在平行四边形ABCD中,点E在边DC上,连接AE并延长交BC的延长线于点F,若AD=3CF,那么下列结论中正确的是()A. FC:FB=1:3B. CE:CD=1:3C. CE:AB=1:4D. AE:AF=1:2.二、填空题(本大题共8小题,共24.0分)7.点(-2,5)关于原点对称的点的坐标是______.8.在Rt△ABC中,∠C=90°,如果AB=6,cos A=,那么AC=______.9.抛物线y=5(x-4)2+3的顶点坐标是______.10.若关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是______.11.如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F,已知=,则的值为______.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为8,则这个反比例函数的解析式为______.13.如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为______.14.已知:如图,在平面直角坐标系中,抛物线y=ax2+x的对称轴为直线x=2,顶点为A.点P为抛物线对称轴上一点,连结OA、OP.当OA⊥OP时,P点坐标为______.三、解答题(本大题共12小题,共84.0分)15.计算:sin30°+3tan60°-cos245°.16.如图,一位测量人员,要测量池塘的宽度AB的长,他过A、B两点画两条相交于点O的射线,在射线上取两点D、E,使,若测得DE=37.2米,他能求出A、B之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.17.如图,在Rt△ABC中,∠C=90°,点D是AC边上一点,tan∠DBC=,且BC=6,AD=4.求cos A的值.18.在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).(1)求该二次函数的解析式;(2)若点C(-3,12)是抛物线上的另一点,求点C关于对称轴为对称的对称点D的坐标.19.A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外没有任何区别.(1)随机地从A中抽取一张,求抽到数字为2的概率;(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?20.如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF.(2)求CF的长.21.重庆是一座美丽的山坡,某中学依山而建,校门A处,有一斜坡AB,长度为13米,在坡顶B处看教学楼CF的楼顶C的仰角∠CBF=53°,离B点4米远的E处有一花台,在E处仰望C的仰角∠CEF=63.4°,CF的延长线交校门处的水平面于D点,FD=5米.(1)求斜坡AB的坡度i.(2)求DC的长.(参考数据:tan53°≈,tan63.4°≈2)22.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2)(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.23.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.24.如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=(x>0)的图象经过OB的中点E,且与边BC交于点D.(1)求反比例函数的解析式和点D的坐标;(2)求三角形DOE的面积;(3)若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,求此直线解析式.25.已知:如图,▱ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1).(1)当t为何值时,四边形AQDM是平行四边形?(2)证明:在P、Q运动的过程中,总有CQ=AM;(3)是否存在某一时刻t,使四边形ANPM的面积是平行四边形ABCD的面积的一半?若存在,求出相应的t值;若不存在,说明理由.26.如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=2,直线y=x-2经过点C,交y轴于点G.(1)求C,D坐标;(2)已知抛物线顶点y=x-2上,且经过C,D,若抛物线与y交于点M连接MC,设点Q是线段下方此抛物线上一点,当点Q运动到什么位置时,△MCQ的面积最大?求出此时点Q的坐标和面积的最大值.(3)将(2)中抛物线沿直线y=x-2平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:从几何体的上面看可得两个同心圆,故选:D.找到从几何体的上面看所得到的图形即可.本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.【答案】D【解析】解:A、人长生不老是不可能事件;B、明天是2月30日是不可能事件;C、一个星期有七天是必然事件;D、2020年奥运会中国队将获得45枚金牌是随机事件;故选:D.根据事件发生的可能性大小判断相应事件的类型.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【答案】C【解析】解:∵函数y=的图象分别位于第二、四象限,∴3k+1<0,解得k<-故选:C.先根据函数y=的图象分别位于第二、四象限列出关于k的不等式,求出k的取值范围即可.本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k<0时,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大是解答此题的关键.4.【答案】C【解析】解:设∠A、∠B、∠C所对的边分别为a、b、c,由于sin A==,∴cos B==故选:C.根据锐角三角函数的定义即可求出答案.本题考查互余的三角函数关系,解题的关键是正确理解锐角三角函数的定义,本题属于基础题型.5.【答案】C【解析】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=50°,∴∠DAB=90°-50°=40°,∴∠BCD=∠DAB=40°.故选:C.先根据圆周角定理求出∠ADB的度数,再由直角三角形的性质求出∠A的度数,进而可得出结论.本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.6.【答案】C【解析】解:∵在平行四边形ABCD中,∴AD∥BC,∴△ECF∽△ADE,∵AD=3CF,A、FC:FB=1:4,错误;B、CE:CD=1:4,错误;C、CE:AB=1:4,正确;D、AE:AF=3:4.错误;故选:C.由四边形ABCD是平行四边形得AD∥BC,证△ECF∽△ADE,进而判断即可.本题主要考查相似三角形的判定与性质及平行四边形的性质,熟练掌握相似三角形的判定和性质是解题的关键.7.【答案】(2,-5)【解析】解:根据关于原点对称的点的坐标的特点,∴点(-2,5)关于原点过对称的点的坐标是(2,-5).故答案为:(2,-5).根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.本题主要考查了关于原点对称的点的坐标的特点,比较简单.8.【答案】2【解析】解:如图所示.∵在Rt△ABC中,∠C=90°,AB=6,cos A=,∴cos A==,∴AC=AB=×6=2,故答案为2.利用锐角三角函数定义表示出cos A,把AB的长代入求出AC的长即可.此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.9.【答案】(4,3)【解析】【分析】此题考查二次函数的性质,掌握顶点式y=a(x-h)2+k中,顶点坐标是(h,k)是解决问题的关键.根据顶点式的坐标点直接写出顶点坐标.【解答】解:∵y=5(x-4)2+3是抛物线解析式的顶点式,∴顶点坐标为(4,3).故答案为(4,3).10.【答案】k≤1且k≠0【解析】解:∵关于x的一元二次方程kx2-2x+1=0有实数根,∴△=b2-4ac≥0,即:4-4k≥0,解得:k≤1,∵关于x的一元二次方程kx2-2x+1=0中k≠0,故答案为:k≤1且k≠0.根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为0.本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.11.【答案】【解析】解:∵l1∥l2∥l3,∴=,∵=,∴=;故答案为:.直接利用平行线分线段成比例定理进而得出=,再将已知数据代入求出即可.此题主要考查了平行线分线段成比例定理,得出=是解题的关键.12.【答案】y=-【解析】解:连接OA,如图所示.设反比例函数的解析式为y=(k≠0).∵AB⊥y轴,点P在x轴上,∴△ABO和△ABP同底等高,∴S△ABO=S△ABP=|k|=8,解得:k=±16.∵反比例函数在第二象限有图象,∴k=-16,∴反比例函数的解析式为y=-.故答案为:y=-.连接OA,设反比例函数的解析式为y=(k≠0),根据△ABO和△ABP同底等高,利用反比例函数系数k的几何意义结合△ABP的面积为4即可求出k值,再根据反比例函数在第二象限有图象,由此即可确定k值,此题得解.本题考查了反比例函数系数k的几何意义以及反比例函数图象,根据反比例函数系数k 的几何意义找出|k|=4是解题的关键.13.【答案】π【解析】【分析】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.连接OD、OE,先证明△AOD、△BOE是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.【解答】解:连接OD、OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OA=OD,OB=OE,∴△AOD、△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°,∵OA=AB=3,∴的长==π;故答案为π.14.【答案】(2,-4)【解析】解:∵抛物线y=ax2+x的对称轴为直线x=2,∴-=2,∴a=-,∴抛物线的表达式为:y=-x2+x,∴顶点A的坐标为(2,1),设对称轴与x轴的交点为E.如图,在直角三角形AOE和直角三角形POE中,tan∠OAE=,tan∠EOP=,∵OA⊥OP,∴∠OAE=∠EOP,∴=,∵AE=1,OE=2,∴=,解得PE=4,∴P(2,-4),故答案为:(2,-4).根据抛物线对称轴列方程求出a,即可得到抛物线解析式,再根据抛物线解析式写出顶点坐标,设对称轴与x轴的交点为E,求出∠OAE=∠EOP,然后根据锐角的正切值相等列出等式,再求解得到PE,然后利用勾股定理列式计算即可得解.本题是二次函数综合题型,主要利用了二次函数的对称轴公式,二次函数图象上点的坐标特征,锐角三角函数的定义,正确的理解题意是解题的关键.15.【答案】解:原式=+3×-()2=+3-=3.【解析】根据特殊角三角函数值,可得答案.本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.16.【答案】解:∵=,∠AOB=∠EOD(对顶角相等),∴△AOB∽△EOD,∴==,∴=,解得AB=111.6米.所以,可以求出A、B之间的距离为111.6米.【解析】先判定出△AOB和△EOD相似,再根据相似三角形对应边成比例计算即可得解.本题考查了相似三角形的应用,主要利用了相似三角形的判定与相似三角形对应边成比例的性质.17.【答案】解:在Rt△DBC中,∵∠C=90°,BC=6,∴tan∠DBC==.∴CD=8.∴AC=AD+CD=12在Rt△ABC中,由勾股定理得AB=,∴cos A=.【解析】先解Rt△DBC,求出DC的长,然后根据AC=AD+DC即可求得AC,再由勾股定理得到AB,最后再求cos A的值即可.本题主要考查了解直角三角形.熟练掌握三角函数的定义是解题的关键.18.【答案】解:(1)设抛物线的解析式是:y=a(x-1)2-4,根据题意得:a(3-1)2-4=0解得:a=1.则函数的解析式是:y=(x-1)2-4.(2)设点C关于对称轴为对称的对称点D的横坐标是m,则=1解得:m=5则点D的坐标是(5,12).【解析】(1)已知顶点,和经过的一个点,利用待定系数法即可求解;(2)关于对称轴为对称的对称点纵坐标相同,横坐标的平均数是对称轴的值,据此即可求解.本题主要考查了待定系数法求函数解析式,理解关于对称轴对称的两点坐标之间的关系是解决本题的关键.19.【答案】解:(1)P=;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P==,乙获胜的情况有2种,P==,所以,这样的游戏规则对甲乙双方不公平.【解析】(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比20.【答案】(1)证明:∵EF⊥BE,∴∠EFB=90°,∴∠DEF+∠AEB=90°.∵四边形ABCD为矩形,∴∠A=∠D=90°,∴∠AEB+∠ABE=90°,∴∠DEF=∠ABE,∴△ABE∽△DEF.(2)解:∵AD=12,AE=8,∴DE=4.∵△ABE∽△DEF,∴=,∴DF=,∴CF=CD-DF=6-=.【解析】(1)由同角的余角相等可得出∠DEF=∠ABE,结合∠A=∠D=90°,即可证出△ABE∽△DEF;(2)由AD、AE的长度可得出DE的长度,根据相似三角形的性质可求出DF的长度,将其代入CF=CD-DF即可求出CF的长.本题考查了相似三角形的判定与性质以及矩形的性质,解题的关键是:(1)利用同角的余角相等找出∠DEF=∠ABE;(2)利用相似三角形的性质求出DF的长度.21.【答案】解:(1)过B作BG⊥AD于G,则四边形BGDF是矩形,∴BG=DF=5米,∵AB=13米,∴AG==12米,∴AB的坡度i==1:2.4;(2)在Rt△BCF中,BF==,在Rt△CEF中,EF==,∵BE=4米,∴BF-EF═-=4,解得:CF=16.∴DC=CF+DF=16+5=21米.【解析】(1)过B作BG⊥AD于G,则四边形BGDF是矩形,求得BG=DF=5米,然后根据勾股定理求得AG,即可求得斜坡AB的坡度i.(2)在Rt△BCF中,BF==,在R t△CEF中,EF==,得到方程BF-EF=-=4,解得CF=16,即可求得求DC=21.本题考查了解直角三角形的应用-仰角和俯角问题,解直角三角形的应用-坡度和坡比问题,正确理解题意是解题的关键.22.【答案】解:(1)△A1BC1即为所求;(2)△A2B2C2即为所求,C2的坐标为(-6,4).【解析】(1)作出A、C的对应点A1、C1即可解决问题;(2)作出A、B、C的对应点A2、B2、C2即可;本题考查作图-位似变换、旋转变换等知识,解题的关键是熟练掌握位似变换和旋转变换的性质,所以中考常考题型.23.【答案】(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠C,∵∠ACB=90°,∴∠OEA=90°∴AC是⊙O的切线;(2)解:连接OE、OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,∴OH=CE,∵BF=6,∴BH=3,在Rt△BHO中,OB=5,∴OH==4,∴CE=4.【解析】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.(1)连接OE,证明∠OEA=90°即可;(2)连接OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,利用垂径定理和勾股定理计算出OH 的长,进而求出CE 的长.24.【答案】解:(1)∵矩形OABC 的顶点B 的坐标是(4,2),E 是矩形ABCD 的对称中心,∴点E 的坐标为(2,1),∵代入反比例函数解析式得=1,解得k =2,∴反比例函数解析式为y =,∵点D 在边BC 上,∴点D 的纵坐标为2,∴y =2时,=2,解得x =1,∴点D 的坐标为(1,2);(2)∵D 的坐标为(1,2),B (4,2),∴BD =3,OC =2.∵点E 是OB 的中点,∴S △DOE =S △OBD =××3×2=;(3)如图,设直线与x 轴的交点为F ,矩形OABC 的面积=4×2=8, ∵矩形OABC 的面积分成3:5的两部分,∴梯形OFDC 的面积为×8=3, 或×8=5, ∵点D 的坐标为(1,2),∴若(1+OF )×2=3, 解得OF =2,此时点F 的坐标为(2,0), 若(1+OF )×2=5, 解得OF =4,此时点F 的坐标为(4,0),与点A 重合,当D (1,2),F (2,0)时,, 解得, 此时,直线解析式为y =-2x +4,当D (1,2),F (4,0)时,, 解得.此时,直线解析式为y=-x+,综上所述,直线的解析式为y=-2x+4或y=-x+.【解析】(1)根据中心对称求出点E的坐标,再代入反比例函数解析式求出k,然后根据点D的纵坐标与点B的纵坐标相等代入求解即可得到点D的坐标;(2)根据点D的坐标求出BD的长,再由点E是OB的中点可知S△DOE=S△OBD,由此可得出结论;(3)设直线与x轴的交点为F,根据点D的坐标求出CD,再根据梯形的面积分两种情况求出OF的长,然后写出点F的坐标,再利用待定系数法求一次函数解析式求出直线解析式即可.本题考查的是反比例函数综合题,涉及到矩形的性质,待定系数法求反比例函数解析式,待定系数法求一次函数解析式,(1)根据中心对称求出点E的坐标是解题的关键,(3)难点在于要分情况讨论.25.【答案】解:(1)连结AQ、MD,∵当AP=PD时,四边形AQDM是平行四边形,∴3t=3-3t,解得:t=,∴t=s时,四边形AQDM是平行四边形.(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴△AMP∽△DQP,∴=,∴=,∴AM=t,即在P、Q运动的过程中,总有CQ=AM;(3)∵MN⊥BC,∴∠MNB=90°,∵∠B=45°,∴∠BMN=45°=∠B,∴BN=MN,∵BM=AB+AM=1+t,在Rt△BMN中,由勾股定理得:BN=MN=(1+t),∵四边形ABCD是平行四边形,∴AD∥BC,∵MN⊥BC,∴MN⊥AD,设四边形ANPM的面积为y,∴y=×AP×MN=×3t×(1+t)=t2+t(0<t<1).假设存在某一时刻t,四边形ANPM的面积是平行四边形ABCD的面积的一半,∴t2+t=×3×,整理得:t2+t-1=0,解得:t1=,t2=(舍去),∴当t=s时,四边形ANPM的面积是平行四边形ABCD的面积的一半.【解析】本题考查了相似性的综合,用到的知识点是相似三角形的性质和判定、平行四边形的性质、解直角三角形、勾股定理的应用,主要考查学生综合运用性质进行推理和计算的能力,是一道综合性较强的题,有一定难度.(1)连结AQ、MD,根据平行四边形的对角线互相平分得出AP=DP,代入求出即可;(2)根据已知得出△AMP∽△DQP,再根据相似三角形的性质得出=,求出AM的值,从而得出在P、Q运动的过程中,总有CQ=AM;(3)根据已知条件得出BN=MN,再根据BM=AB+AM,由勾股定理得出BN=MN=(1+t),根据四边形ABCD是平行四边形,得出MN⊥AD,设四边形ANPM的面积为y,得出y=×AP×MN,假设存在某一时刻t,四边形ANPM的面积是平行四边形ABCD的面积的一半,得出t2+t=×3×,最后进行整理,即可求出t的值.26.【答案】解:(1)令y=2,2=x-2,解得x=4,则OA=4-3=1,∴C(4,2),D(1,2);(2)由二次函数对称性得,顶点横坐标为=,令x=,则y=×-2=,∴顶点坐标为(,),∴设抛物线解析式为y=a(x-)2+,把点D(1,2)代入得,a=,∴解析式为y=(x-)2+,即,∴M(0,)又∵C(4,2),∴直线CM的解析式为y=过点Q作QH⊥x轴交直线CM于点H设Q(m,m2-m+),则H(m,-m+)∴S△MCQ==所以当m=2时,S△MCQ最大=,此时Q(2,)(3)设顶点E在直线上运动的横坐标为m,则E(m,m-2)(m>0)∴可设解析式为y=(x-m)2+m-2,①若FG=EG时,FG=EG=2m,则F(0,2m-2),代入解析式得+m-2=2m-2,得m=0(舍去),m=-,此时所求的解析式为:y=(x-+)2+3-;②若GE=EF时,FG=2m,则F(0,2m-2),代入解析式得:m2+m-2=2m-2,解得m=0(舍去),m=,此时所求的解析式为:y=(x-)2-;③若FG=FE时,∵平移后抛物线的顶点在y轴右侧,∴∠GEF为钝角,∴此种情况不存在.【解析】(1)先令y=2求出x的值,故可得出OA的长,根据正方形的性质即可得出C、D的坐标;(2)由二次函数对称性得出其顶点坐标,设抛物线解析式为y=a(x-)2+,把点D(1,2)代入求出a的值,故可得出二次函数的解析式,得出点M的坐标.利用待定系数法求出直线CM的解析式,再根据三角形的面积即可得出结论;(3)设顶点E在直线上运动的横坐标为m,则E(m,m-2)(m>0),故可设解析式为y=(x-m)2+m-2,再分FG=EG,GE=EF及FG=FE三种情况进行讨论.本题考查的是二次函数综合题,涉及到轴对称的性质、二次函数图象上点的坐标特点等知识,难度较大.。

2020年吉林省长春市中考数学一模试卷 (解析版)

2020年吉林省长春市中考数学一模试卷 (解析版)

2020年吉林省长春市中考数学一模试卷一、选择题(共8小题).1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.﹣12.今年初,党中央、国务院对湖北共派遣援鄂抗役医务人员42000多人,经过全国人民的共同努力,取得了这场战役的胜利:42000这个数用科学记数法表示为()A.42×103B.4.2×104C.4.2×105D.4.2×1033.某立体图形的左视图如图所示,则该立体图形不可能()A.B.C.D.4.不等式2x﹣2≤0的解集在数轴上表示正确的是()A.B.C.D.5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.7.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为32°,缆车速度为每分钟50米,从山脚下A到达山顶B缆车需要16分钟,则山的高度BC为()A.800•sin32°B.C.800•tan32°D.8.如图,点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上.若OA⊥OB,=2,则a的值为()A.﹣4B.4C.﹣2D.2二、填空题(每题3分,满分18分,将答案填在答题纸上)9.化简:﹣=.10.因式分解:m2﹣4m+4=.11.关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,则k的值为.12.如图,一束平行太阳光线照射到正五边形上,则∠1=.13.图①表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10cm.图②表示当钟面显示3点45分时,A点距桌面的高度为16cm,若钟面显示3点55分时,A点距桌面的高度为cm.14.如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则线段BC的长为.三、解答题:共78分.解答应写出文字说明、证明过程或演算步骤.15.先化简,再求值(a﹣1)2﹣2a(a﹣1)+(2a+1)(2a﹣1),其中a=.16.在一个不透明的盒子中装有三张卡片,分别标有数字为1,2,7,这些卡片除数字不同外其余均相同.洗匀后,小强从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.17.今年初,某爱心人士两次购买N95口罩支援武汉,第一次花了500000元,第二次花了770000,购买了同样的N95口罩,已知第二次购买的口罩的单价是第一次的1.4倍,且比第一次多购进了10000个,求该爱心人士第一次购进口罩的单价.18.如图,E是Rt△ABC的斜边AB上一点,以AE为直径的⊙O与边BC相切于点D,交边AC于点F,连结AD.(1)求证:AD平分∠BAC.(2)若AE=2,∠CAD=25°,求的长.19.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.20.图①,图②,图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段的端点均在格点上,在图①,图②,图③恰定的网格中按要求画图.(1)在图①中,画出格点C,使AC=BC,用黑色实心圆点标出点C所有可能的位置.(2)在图②中,在线段AB上画出点M,使AM=3BM.(3)在图③中,在线段AB上画出点P,使AP=2BP.(保留作图痕迹)要求:借助网格,只用无刻度的直尺,不要求写出画法.21.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y(米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为米/分,无人机在40米的高度上飞行了分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.22.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN 是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA =PB(请写出完整的证明过程)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线l、m、n分别是边AB、BC、AC的垂直平分线.求证:直线l、m、n交于一点.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=18,则DE的长为.23.在△ABC中,AC=5,BC=4,∠B=45°,点D在边AB上,且AD=3,动点P 从点A出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上做正方形PDMN,设点P运动的时间为t秒,正方形PDMN与△ABC重叠部分的面积为S.(1)用含有t的代数式表示线段PD的长.(2)当点N落在△ABC的边上时,求t的值.(3)求S与t的函数关系式.(4)当点P在线段AD上运动时,做点N关于CD的对称点N',当N'与△ABC的某一个顶点的连线平分△ABC的面积时,求t的值.24.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).(1)直接写出点A(2,1)的“伴随点”A′的坐标.(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.(3)点C、D在函数y=﹣x2+4的图象上,且点C、D关于y轴对称,点D的“伴随点”为D′.若点C在第一象限,且CD=DD′,求此时“伴随点”D′的横坐标.(4)点E在函数y=﹣x2+n(﹣1≤x≤2)的图象上,若其“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),直接写出实数n的取值范围.参考答案一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.﹣1【分析】直接利用数轴得出结果即可.解:数轴上蝴蝶所在点表示的数可能为﹣1,故选:D.2.今年初,党中央、国务院对湖北共派遣援鄂抗役医务人员42000多人,经过全国人民的共同努力,取得了这场战役的胜利:42000这个数用科学记数法表示为()A.42×103B.4.2×104C.4.2×105D.4.2×103【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数.10的指数n=原来的整数位数﹣1.解:42000=4.2×104,故选:B.3.某立体图形的左视图如图所示,则该立体图形不可能()A.B.C.D.【分析】找到各选项中从左面看不是所给视图的立体图形即可.解:各选项中只有选项D从左面看得到从左往右2列正方形的个数依次为2,1,1,故选:D.4.不等式2x﹣2≤0的解集在数轴上表示正确的是()A.B.C.D.【分析】利用不等式的基本性质,移项后再除以2,不等号的方向不变.解:移项,得2x≤2,系数化为1,得x≤1,不等式的解集在数轴上表示如下:.故选:D.5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【分析】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.解:设有x匹大马,y匹小马,根据题意得,故选:C.6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.【分析】如果△ACD∽△CBD,可得∠CDA=∠BDC=90°,即CD是AB的垂线,根据作图痕迹判断即可.解:当CD是AB的垂线时,△ACD∽△CBD.∵CD⊥AB,∴∠CDA=∠BDC=90°,∵∠ACB=90°,∴∠A+∠ACD=∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ACD∽△CBD.根据作图痕迹可知,A选项中,CD是∠ACB的角平分线,不符合题意;B选项中,CD不与AB垂直,不符合题意;C选项中,CD是AB的垂线,符合题意;D选项中,CD不与AB垂直,不符合题意;故选:C.7.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为32°,缆车速度为每分钟50米,从山脚下A到达山顶B缆车需要16分钟,则山的高度BC为()A.800•sin32°B.C.800•tan32°D.【分析】作BC⊥AC,垂足为C,在Rt△ABC中,利用三角函数解答即可.解:如图,作BC⊥AC,垂足为C.在Rt△ABC中,∠ACB=90°,∠BAC=32°,AB=50×16=800(米),sin∠BAC=,∴BC=sin∠BAC•AB=800•sin32°.故选:A.8.如图,点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上.若OA⊥OB,=2,则a的值为()A.﹣4B.4C.﹣2D.2【分析】过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,利用相似三角形的判定定理得出△AOM∽△OBN,再由反比例函数系数k的几何意义得出S△AOM:S△BON=1:(﹣a),进而可得出结论.解:过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,∴∠AMO=∠BNO=90°,∴∠AOM+∠OAM=90°,∵OA⊥OB,∴∠AOM+∠BON=90°,∴∠OAM=∠BON,∴△AOM∽△OBN,∵点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上,∴S△AOM:S△BON=1:(﹣a),∴AO:BO=1:,∵OB:OA=2,∴a=﹣4,故选:A.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.化简:﹣=.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.解:原式=2﹣=.故答案为:.10.因式分解:m2﹣4m+4=(m﹣2)2.【分析】原式利用完全平方公式分解即可.解:原式=(m﹣2)2.故答案为:(m﹣2)2.11.关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,则k的值为﹣.【分析】根据关于x的方程2x2﹣3x﹣k=0有两个相等的实数根可得△=(﹣3)2﹣4×2(﹣k)=0,求出k的值即可.解:∵关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,∴△=(﹣3)2﹣4×2(﹣k)=0,∴9+8k=0,∴k=﹣.故答案为:﹣.12.如图,一束平行太阳光线照射到正五边形上,则∠1=30°.【分析】作出平行线,根据两直线平行:内错角相等、同位角相等,结合三角形的内角和定理,即可得出答案.解:作出辅助线如图:则∠2=42°,∠1=∠3,∵五边形是正五边形,∴一个内角是108°,∴∠3=180°﹣∠2﹣∠3=30°,∴∠1=∠3=30°.故答案为:30°.13.图①表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10cm.图②表示当钟面显示3点45分时,A点距桌面的高度为16cm,若钟面显示3点55分时,A点距桌面的高度为(16+3)cm.【分析】根据当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分得出AD=10,进而得出A′C=16,从而得出FA″=3,得出答案即可.解:∵当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分.∴AD=10,∵钟面显示3点45分时,A点距桌面的高度为16公分,∴A′C=16,∴AO=A″O=6,则钟面显示3点55分时,∠A″OA′=45°,∴FA″=3,∴A点距桌面的高度为:16+3(cm).故答案为:().14.如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则线段BC的长为6.【分析】设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x﹣2)2+b+1的对称轴与线段BC交于点F,由抛物线的对称性结合BC═2(AE+AF),即可求出结论.解:设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x﹣2)2+b+1的对称轴与线段BC交于点F,如图所示.由抛物线的对称性,可知:BE=AE,CF=AF,∴BC=BE+AE+AF+CF=2(AE+AF)=2×[2﹣(﹣1)]=6.故答案为:6.三、解答题:共78分.解答应写出文字说明、证明过程或演算步骤.15.先化简,再求值(a﹣1)2﹣2a(a﹣1)+(2a+1)(2a﹣1),其中a=.【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a的值代入计算即可求出值.解:原式=a2﹣2a+1﹣2a2+2a+4a2﹣1=3a2,当a=时,原式=3×5=15.16.在一个不透明的盒子中装有三张卡片,分别标有数字为1,2,7,这些卡片除数字不同外其余均相同.洗匀后,小强从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.【分析】首先根据题意列表求得所有等可能的结果与抽到的两张卡片上的数字之和为偶数的情况,再利用概率公式即可求得答案.解:根据题意,列表如下:1271238234978914所以P(两次抽取的卡片上数字之和为偶数)=.17.今年初,某爱心人士两次购买N95口罩支援武汉,第一次花了500000元,第二次花了770000,购买了同样的N95口罩,已知第二次购买的口罩的单价是第一次的1.4倍,且比第一次多购进了10000个,求该爱心人士第一次购进口罩的单价.【分析】设该爱心人士第一次购进口罩的单价为x元/个.则第二次购进口罩的单价为1.4x 元/个,根据数量=总价÷单价结合第二次比第一次多购进了10000个,即可得出关于x 的分式方程,解之经检验后即可得出结论.解:设该爱心人士第一次购进口罩的单价为x元/个.则第二次购进口罩的单价为 1.4x 元/个,依题意,得:,解得:x=5,经检验,x=5是原方程的解,且符合题意.答;该爱心人士第一次购进口罩的单价为5元/个.18.如图,E是Rt△ABC的斜边AB上一点,以AE为直径的⊙O与边BC相切于点D,交边AC于点F,连结AD.(1)求证:AD平分∠BAC.(2)若AE=2,∠CAD=25°,求的长.【分析】(1)连接OD,如图,由切线的性质得到OD⊥BC,则OD∥AC,根据平行线的性质得到∠CAD=∠ODA,由∠ODA=∠OAD,所以∠CAD=∠DAE;(2)由(1)知,∠FAE=50°,由弧长公式可得答案.解:(1)如图,连结OD,∵⊙O与边BC相切于点D,∴OD⊥BC,∴∠ODB=90°,∵∠C=90°,∴∠C=∠ODB=90°,∴OD∥AC.∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠CAD,∴AD平分∠BAC;(2)如图,连结OF,∵AD平分∠BAC,且∠CAD=25°,∴12﹣3=9,∴∠EOF=100°,∴的长为.19.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为18;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.20.图①,图②,图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段的端点均在格点上,在图①,图②,图③恰定的网格中按要求画图.(1)在图①中,画出格点C,使AC=BC,用黑色实心圆点标出点C所有可能的位置.(2)在图②中,在线段AB上画出点M,使AM=3BM.(3)在图③中,在线段AB上画出点P,使AP=2BP.(保留作图痕迹)要求:借助网格,只用无刻度的直尺,不要求写出画法.【分析】(1)根据线段垂直平分线的性质画图即可;(2)根据相似三角形的性质,构造相似三角形即可;(3)由相似三角形的性质,构造相似三角形即可.解:(1)如图①所示,点C即为所求;(2)如图②所示,点M即为所求;(3)如图③所示,点P即为所求.21.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y(米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为20米/分,无人机在40米的高度上飞行了3分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.【分析】(1)利用图象信息,根据速度=计算即可解决问题;(2)利用待定系数法即可解决问题;(3)求出无人机从40米高度到60米高度的函数关系式为y=20x﹣60(5≤x≤6),分两种情形构建方程即可解决问题;解:(1)无人机上升的速度为=20米/分,无人机在40米的高度上飞行了6﹣1﹣2=3分.故答案为20,3;(2)设y=kx+b,把(9,60)和(12,0)代入得到,解得,∴无人机下落过程中,y与x之间的函数关系式为y=﹣20x+240.(3)易知无人机从40米高度到60米高度的函数关系式为y=20x﹣60(5≤x≤6),由20x﹣60=50,解得x=5.5,由﹣20x+240=50,解得x=9.5,综上所述,无人机距地面的高度为50米时x的值为5.5和9.5.22.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN 是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA =PB(请写出完整的证明过程)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线l、m、n分别是边AB、BC、AC的垂直平分线.求证:直线l、m、n交于一点.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=18,则DE的长为6.【分析】教材呈现:如图①中,证明△PAC≌△PBC即可解决问题.定理应用:(1)如图②中,设直线l、m交于点O,连结AO、BO、CO.利用线段的垂直平分线的判定和性质解决问题即可.(2)连接BD,BE,证明△BDE是等边三角形即可.【解答】教材呈现:解:如图①中,∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)证明:如图②中,设直线l、m交于点O,连结AO、BO、CO.∵直线l是边AB的垂直平分线,∴OA=OB,又∵直线m是边BC的垂直平分线,∴OB=OC,∴OA=OC,∴点O在边AC的垂直平分线n上,∴直线l、m、n交于点O.(2)解:如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=18,∴DE=AC=6.故答案为6.23.在△ABC中,AC=5,BC=4,∠B=45°,点D在边AB上,且AD=3,动点P 从点A出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上做正方形PDMN,设点P运动的时间为t秒,正方形PDMN与△ABC重叠部分的面积为S.(1)用含有t的代数式表示线段PD的长.(2)当点N落在△ABC的边上时,求t的值.(3)求S与t的函数关系式.(4)当点P在线段AD上运动时,做点N关于CD的对称点N',当N'与△ABC的某一个顶点的连线平分△ABC的面积时,求t的值.【分析】(1)分0<t≤3时,3<t≤7时,两种情形分别求解即可.(2)分两种情形①如图2中,当点N在AC上时,②如图3中,当点N在BC上时,利用平行线分线段成比例定理解决问题即可.(3)分三种情形:①如图4中,当0<t≤时,重叠部分是五边形EFPDM,②如图5或6中.当<t≤5时,重叠部分是正方形PDMN.③如图7中,当5<t≤7时,重叠部分是五边形EFPDM,分别求解即可.(4)分三种情形画出图形,利用平行线分线段成比例定理构建方程即可解决问题.解:(1)如图1中,作CD′⊥AB于D.∵∠B=45°,BC=4,∴CD′=BD′=4,∴AD′===3,∵AD=3,∴AD=AD′,∴D′与D重合,当0<t≤3时,PD=3﹣t.当3<t≤7时,PD=t﹣3;(2)①如图2中,当点N在AC上时,∵MN∥AD,∴,∴,解得t=;②如图3中,当点N在BC上时,∵MN∥BD,∴,∴,解得t=5;综上所述,满足条件的t的值为s或5s.(3)①如图4中,当0<t≤时,重叠部分是五边形EFPDM,S=S正方形MDPN﹣S△NEF=(3﹣t)2﹣•(3﹣t﹣t)2=﹣t+;②如图5或6中,当<t≤5时,重叠部分是正方形PDMN,S=t2﹣6t+9③如图7中,当5<t≤7时,重叠部分是五边形EFPDM,S=S正方形MNPD﹣S△EFN=(t ﹣3)2﹣•[(t﹣3)﹣(7﹣t)]2=﹣t2+14t﹣41.综上所述,S=.(4)如图8中,当点N′落在中线AE上时,作EK⊥BC于K,N′J⊥AB于J.∵JN′∥EK,∴,则,解得t=1;如图9中,当点N′落在中线BG上时,作GK⊥BC于K,N′J⊥AB于J.∵N′J∥GK,∴,∴,解得t=;如图10中,当点N′落在中线CF上时,∵MN′∥DF,∴,∴=,解得t=.综上所述,满足条件的t的值为1s或s或s.24.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).(1)直接写出点A(2,1)的“伴随点”A′的坐标.(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.(3)点C、D在函数y=﹣x2+4的图象上,且点C、D关于y轴对称,点D的“伴随点”为D′.若点C在第一象限,且CD=DD′,求此时“伴随点”D′的横坐标.(4)点E在函数y=﹣x2+n(﹣1≤x≤2)的图象上,若其“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),直接写出实数n的取值范围.【分析】(1)由题意即可求解;(2)分m≥0、m<0两种情况分别求解即可;(3)设点C的横坐标为n,点C在函数y=﹣x2+4的图象上,CD=DD′,即可求解;(4)通先分段表示出y',进而确定出最大值,最后用m的范围建立不等式组,即可得出结论.解:(1)由题意得:点A'的坐标为(2,1)(2)①当m≥0时,m+1=2,m=1∴B(1,2)∵点B在一次函数y=kx+3图象上,∴k+3=2,解得:k=﹣1∴一次函数解析式为y=﹣x+3②m<0时,m+1=﹣2,m=﹣3∴B(﹣3,﹣2)∵点B在一次函数y=kx+3图象上,∴﹣3k+3=﹣2解得:k=一次函数解析式为y=x+3.(3)设点C的横坐标为n,点C在函数y=﹣x2+4的图象上,∴点C的坐标为(n,﹣n2+4),∴点D的坐标为(﹣n,﹣n2+4),D′(﹣n,n2﹣4)∵CD=DD′,∴2n=2(﹣n2+4),解得:n=;∵点C在第一象限,∴D′的横坐标为;(4)当﹣1≤x≤0时,y'=x2﹣n,此时,﹣n≤y'≤1﹣n,当0≤x≤2时,y'=﹣x2+n,此时,n﹣4≤y'≤n,当n≥1﹣n时,即:n≥,y'的最大值是n,①∵“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),∴1≤n≤3,当n<时,y'最大值为1﹣n,②∵“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),∴1≤1﹣n≤3,∴﹣2≤n≤0,∴n的取值范围应为1≤n≤3或﹣2≤n≤0.。

2020年吉林省长春市中考数学模拟试卷(5)

2020年吉林省长春市中考数学模拟试卷(5)

1 场得 3 分,负一场扣 1 分,某队在
8 场比赛中得到 12 分,若设该队胜的场数为 x 负的场数为 y,则可列方程组为(

??+ ??= 8 A .{3??- ??= 12
??- ??= 8 B. { 3??- ??= 12
??+ ??= 18 C.{3??+ ??= 12
??- ??= 8 D. { 3??+ ??= 12

1 A .??≥ - 4
1 B .??≥ 4
1 C. ??≤ - 4
1 D. ??≤ 4
5.( 3 分)如图所示是一个旋转对称图形,若将它绕自身中心旋转一定角度之后能与原图重
合,则这个角度不可能是(

A .60°
B .90°
C. 120°
D. 180°
6.( 3 分)足球比赛中,每场比赛都要分出胜负每队胜
角边 AB 相交于点 C.若点 A 的坐标为(﹣ 8, 6),则△ AOC 的面积为(

A .20
B .18
C. 16
二.填空题(共 6 小题,满分 18 分,每小题 3 分)
D. 12
9.( 3 分)计算 √12 - √27 =

10.( 3 分)如果代数式
2
x +mx+9=(
ax+b)
2,那么
m 的值为

11.(3 分)如图, AD∥ BC, CE 平分∠ BCD,∠ DAC= 3∠ BCD,∠ ACD= 20°,当 AB 与
AC 互相垂直时,∠ B 的度数为

12.( 3 分)若关于 x 的一元二次方程 x2﹣4x+4= m 没有实数根, 则 m 的取值范围是

2020年吉林省长春市中考数学模拟试卷及答案解析

2020年吉林省长春市中考数学模拟试卷及答案解析
(1)当点D在边AC上时,正方形PDEF的边长为(用含t的代数式表示).
(2)当点E落在边BC上时,求t的值.
(3)当点D在边AC上时,求S与t之间的函数关系式.
14.如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=.
三、解答题(本大题共10小题,共78分)
应用:如图②,若AB=2,AD=5,利用探究得到的结论,求线段BG的长.
23.(10分)如图,在△ABC中,∠C=90°,AC=BC,AB=8.点P从点A出发,以每秒2个单位长度的速度沿边AB向点B运动.过点P作PD⊥AB交折线AC﹣CB于点D,以PD为边在PD右侧做正方形PDEF.设正方形PDEF与△ABC重叠部分图形的面积为S,点P的运动时间为t秒(0<t<4).
(2)在图②中找到一个格点D,使∠ADB是锐角,且tan∠ADB=1,并画出△ABD.
19.(7分)如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为3,CD=4,求BD的长.
20.(8分)某校“两会”知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验.
(3)甲出发多长时间与乙第一次相遇?
22.(9分)在矩形ABCD中,已知AD>AB.在边AD上取点E,使AE=AB,连结CE,过点E作EF⊥CE,与边AB或其延长线交于点F.
猜想:如图①,当点F在边AB上时,线段AF与DE的大小关系为.
探究:如图②,当点F在边AB的延长线上时,EF与边BC交于点G.判断线段AF与DE的大小关系,并加以证明.

2020年吉林省长春中考数学模拟试卷含答案

2020年吉林省长春中考数学模拟试卷含答案

中考数学模拟试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.3的相反数是( )A. -B.C. -3D. 32.2011年某市居民人均收入达到36 200元.将36 200这个数字用科学记数法表示为( )A. 362×102B. 3.62×104C. 3.62×105D. 0.362×1053.如图是由5个完全相同的小正方体组成的几何体,其左视图是( )A.B.C.D.4.不等式3x≥-6的解集在数轴上表示为( )A. B.C. D.5.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是( )A. 26°.B. 44°.C. 46°.D. 72°6.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),则AC的长是( )A. 5米B. 10米C. 15米D. 10米7.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是( )A. B. C. D.8.如图,双曲线(x>0),(x>0)将第一象限分成了A、B、C三个部分.点Q(a,2)在B部分,则a的取值范围是()A. 2<a<4B. 1<a<3C. 1<a<2D. 2<a<3二、填空题(本大题共6小题,共18.0分)9.比较大小:3______(填“>”、“<”或“=”).10.一元二次方程x2-4x+4=0的解是______.11.计算:(a2b)3=______.12.直线y=k1x+3与直线y=k2x-4在平面直角坐标系中的位置如图所示,它们与y轴的交点分别为点A、B.以AB为边向左作正方形ABCD,则正方形ABCD的周长为______.13.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=______.14.如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是______.三、解答题(本大题共10小题,共78.0分)15.先化简,再求值:(1+)•,其中x=3.16.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.17.甲队有50辆汽车,乙队有41辆汽车,将甲队一部分汽车调到乙队,使乙队的车数比甲队车数的2倍还多1辆,求从甲队调到乙队汽车的辆数.18.图①、图②均是边长为1的小方形组成的5×5的网格,每个小方形的顶点称为格点.线段AB的端点均在格点上.在图①、图②分别找到两个格点P、Q,连结PQ,交AB于点O.(1)在图①中,线段PQ垂直平分AB;(2)在图②中,使得BO=,要求保留画图痕迹,标好字母.19.如图,OA、OB是⊙O的半径,OA⊥OB,C为OB延长线上一点,CD切⊙O于点D,E为AD与OC的交点,连接OD.已知CE=5,求线段CD的长.20.校文学社在全校范围内随机抽取一部分读者对社刊中最感兴趣的文学栏目进行了投票.每人一张选票,每张选票只能投给一个栏目,经统计无弃权票,根据投票结果绘制的条形统计图如下:(1)这次参加投票的总人数为______.(2)若全校有3000名读者,估计其中对“写作指导”最感兴趣的人数.(3)在全校3000名读者中,若对某个栏目最感兴趣的人数少于300人将会影响社刊的销售,这个栏目就需要被撤换.请通过计算判断,“新书上架”栏目是否需要被撤换.21.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示.(1)甲的速度为______千米/分,甲乙相遇时,乙走了______分钟.乙的速度为______千米/分.(2)求从乙出发到甲乙相遇时,y与x的函数关系式.(3)乙到达A地时,甲还需______分钟到达终B地.22.【探究】如图①,在等边△ABC中,AB=4,点D、E分别为边BC、AB上的点,连结AD、DE,若∠ADE=60°,BD=3,求BE的长.【拓展】如图②,在△ABD中,AB=4,点E为边AB上的点,连结DE,若∠ADE=∠ABD=45°,若DB=3,=______.23.在△ABC中,∠C=90°,AC=BC=8,动点P自A出发,沿线段AB,以每秒个单位的速度向点B运动,同时,动点Q自B出发,沿折线B-C-A,以每秒2个单位的速度向点A运动,连结PQ,以PQ、CQ邻边作平行四边形CQPE,设点P运动时间为t(秒),平行四边形CQPE与△ABC的重合部分图形面积为S.(1)用含有t的代数式表示线段QC的长度.(2)当点E落在△ABC的边上时,求t的值.(3)当四边形CQPE与△ABC的重合部分图形不是平行四边形时,求S与t之间的函数关系式.(4)连结CP,过点B作BM⊥CP点,交直线CP于点M,直接写出点M经过的路径的长度.24.如图,抛物线L:y=-(x-t)(x-t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(x>0,k>0)于点P.(1)当t=1时,求AB长,并求直线MP与L对称轴之间的距离;(2)当直线MP与L对称轴之间的距离为1时,求t的值.(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.答案和解析1.【答案】C【解析】解:3的相反数是-3.故选:C.只有符号不同的两个数叫做互为相反数.本题主要考查的是相反数的定义,熟练掌握相反数的定义是解题的关键.2.【答案】B【解析】解:36 200=3.62×104.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于36 200有5位,所以可以确定n=5-1=4.此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.【答案】B【解析】解:从左面看易得有一列有2个正方形.故选:B.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.【答案】A【解析】解;3x≥-6,x≥-2,故选:A.根据解不等式的步骤,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.本题考查了不等式的解集,从-2向右的方向,包括-2点,注意-2点用实心点表示.5.【答案】A【解析】解:∵图中是正五边形.∴∠EAB=108°.∵太阳光线互相平行,∠ABG=46°,∴∠FAE=180°-∠ABG-∠EAB=180°-46°-108°=26°.故选:A.先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补,解题的关键是:根据正五边形的性质求出∠EAB的度数.6.【答案】A【解析】解:Rt△ABC中,BC=5米,tan A=1:;∴AC=BC÷tan A=5米;故选:A.Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.7.【答案】C【解析】解:根据勾股定理,AC==2,BC=,所以,夹直角的两边的比为=2,观各选项,只有C选项三角形符合,与所给图形的三角形相似.故选:C.可利用正方形的边把对应的线段表示出来,利用三边对应成比例两个三角形相似,分别计算各边的长度即可解题.此题考查了勾股定理在直角三角形中的运用,三角形对应边比值相等判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长是解题的关键.8.【答案】B【解析】解:把y=2分别代入y=(x>0)、y=(x>0)中,得:x=1和x=3,∵点Q(a,2)在B部分,∴1<a<3,故选:B.首先将y=2代入两个反比例函数的解析式求得x的值,然后根据点Q(a,2)在B部分,确定a的取值范围即可.考查了反比例函数的图象的知识,解题的关键是了解点Q在B部分的意义,难度不大.9.【答案】<【解析】解:32=9,=10,∴3<.首先把两个数平方法,由于两数均为正数,所以该数的平方越大数越大.此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法等.10.【答案】x1=x2=2【解析】解:x2-4x+4=0,(x-2)2=0,x-2=0,x=2,即x1=x2=2,故答案为:x1=x2=2.先根据完全平方公式进行变形,再开方,即可求出答案.本题考查了解一元二次方程的应用,能正确配方是解此题的关键.11.【答案】a6b3【解析】解:(a2b)3=(a2)3b3=a6b3.故答案为:a6b3.根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘计算.本题主要考查积的乘方的性质,幂的乘方的性质,熟练掌握运算性质是解题的关键.12.【答案】28【解析】解:当x=0时,y=k1x+3=3,∴点A的坐标为(0,3);当x=0时,y=k2x-4=-4,∴点B的坐标为(0,-4),∴AB=3-(-4)=7,∴C正方形ABCD=4AB=4×7=28.故答案为:28.将x=0分别代入两直线解析式中求出y值,由此可得出点A、B的坐标,进而可得出线段AB的长度,再根据正方形的周长公式即可求出正方形ABCD的周长.本题考查了一次函数图象上点的坐标特征以及正方形的性质,利用一次函数图象上点的坐标特征求出点A、B的坐标是解题的关键.13.【答案】55°【解析】解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°;故答案为:55°.由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可.本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.14.【答案】(-2,0)【解析】解:由C(0,c),D(m,c),得函数图象的对称轴是x=,设A点坐标为(x,0),由A、B关于对称轴x=,得=,解得x=-2,即A点坐标为(-2,0),故答案为:(-2,0).根据函数值相等两点关于对称轴对称,可得对称轴,根据A、B关于对称轴对称,可得A点坐标.本题考查了抛物线与x轴的交点,利用函数值相等的点关于对称轴对称是解题关键.15.【答案】解:原式=•=,当x=3时,原式==.【解析】先化简分式,然后将x的值代入求值.本题考查了分式的化简求值,熟练分解因式是解题的关键.16.【答案】解:画树状图得:∵共有6种等可能的结果,小丹获胜的情况有3种,∴P(小丹获胜)==.【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,再利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.17.【答案】解:设应从甲车队调x辆车到乙车队,根据题意,得方程41+x=2(50-x)+1解得:x=20.答:应从甲车队调20辆车到乙车队.【解析】若设从甲车队调x辆车到乙车队,注意两个车队的同时变化.本题考查了一元一次方程的应用,解题的关键是仔细读题并找到灯亮关系,难度不大.18.【答案】解:(1)如图,线段PQ垂直平分线段AB,点O即为所求.(2)如图,点O即为所求.【解析】(1)取格点P,Q,使得A,P,B,Q四点构成正方形,对角线的交点O即为所求.(2)取格点E,F,G,使得AEFG是平行四边形,可得格点M,N,连接MN交AB 于点O,点O即为所求.本题考查作图-应用与设计,线段的垂直平分线的性质,平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【答案】解:∵CD切⊙O于点D,∴∠ODC=90°;又∵OA⊥OC,即∠AOc=90°,∴∠A+∠AEO=90°,∠ADO+∠ADC=90°;∵OA=OD,∴∠A=∠ADO,∴∠ADC=∠AEO;又∵∠AEO=∠DEC,∴∠DEC=∠ADC,∴CD=CE,∵CE=5,∴CD=5.【解析】根据切线的性质,以及直角三角形的性质,直角三角形的两锐角互余,即可证明∠ADC=∠AEO,从而得到∠DEC=∠ADC,根据三角形中,等角对等边即可证明△CDE 是等腰三角形,即CD=CE.本题主要考查了等腰三角形的判定定理,等角对等边,以及切线的性质定理,已知圆的切线时,常用的辅助线是连接圆心与切点构造垂直.20.【答案】500【解析】解:(1)投票总人数=76+88+97+42+60+111+26=500人;(2)3000×=360人;(3)∵3000×=252<300∴这个栏目将被撤换.(1)将统计图中所有数据相加即可得到总人数;(2)用总人数乘以写作感兴趣的比例即可得到答案;(3)求出新书上架的人数与300比较即可得到答案.本题考查了条形统计图的知识,难度不是很大,解题的关键是正确的识图.21.【答案】 10 78【解析】解:(1)观察图象知A、B两地相距为16km,∵甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,∴甲的速度是千米/分钟;由纵坐标看出乙走了:16-6=10(分),设乙的速度是x千米/分钟,由题意,得10x+16×=16,解得x=,∴乙的速度为千米/分钟.故答案为:24,10;;(2)设y与x的函数关系式为y=kx+b,根据题意得,,解得,∴y=;(3)相遇后乙到达A站还需(16×)÷=(千米)相遇后乙到达A站还需(16×)÷=2(分钟),相遇后甲到达B站还需(10×)÷=80分钟,当乙到达终点A时,甲还需80-2=78分钟到达终点B.故答案为:78.(1)观察图象知A、B两地相距为16km,由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,则甲的速度是千米/分钟;(2)再运用待定系数法解答即可;(3)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.注意求出相遇后甲、乙各自的路程和时间.22.【答案】【解析】【探究】解:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC=4,过点A作AF⊥BC于F,如图①所示:则BF=CF=BC=2,AF===2,∴DF=BD-BF=3-2=1,∴AD===,根据三角形的内角和定理得,∠ADB+∠BAD=120°,∵∠ADE=60°,∴∠BAD+∠AED=120°,∴∠ADB=∠AED,∵∠B=∠ADE=60°,∴△ABD∽△ADE,∴=,即:=,解得:AE=,∴BE=AB-AE=4-=;【拓展】解:过点A作AF⊥BC于F,如图②所示:∵∠ABD=45°,∴△ABF是等腰直角三角形,∴AF=BF=AB=2,∴DF=DB-BF=3-2=,∴AD===,∵∠ADE=∠ABD=45°,∠A=∠A,∴△ADE∽△ABD,∴=,∴AE===,∴BD=AB-AE=4-=,∴===;故答案为:.【探究】过点A作AF⊥BC于F,由等边三角形的性质得出BF=CF=BC=2,由勾股定理求出AF==2,则DF=BD-BF=1,由勾股定理求出AD==,证得△ABD∽△ADE,得出=,解得AE=,即可得出结果;【拓展】过点A作AF⊥BC于F,易证△ABF是等腰直角三角形,则AF=BF=AB=2,DF=DB-BF=,由勾股定理求出AD==,证得△ADE∽△ABD,得出=,求出AE=,BD=AB-AE=,则=即可得出结果.本题考查了相似三角形的判定与性质、等腰直角三角形的判定与性质、等边三角形的性质、勾股定理、三角形面积的计算等知识,熟练掌握相似三角形的判定是解题的关键.23.【答案】解:(1)由题意当0<t≤4时,CQ=8-2t,当4<t≤8时,CQ=2t-8.(2)如图1中,当点E在AC上时,在Rt△ABC中,∵∠C=90°,AC=BC=8,∴AB===8,∵PQ∥AC,∴=,∴=,解得t=.如图2中,当点E落在BC上时,∵PQ∥BC,∴=,∴=,解得t=.综上所述,满足条件的t的值为s或s.(3)如图3中,当0<t<时,S=•CM=•(8-t)=t2-20t+64.如图4中,当<t≤8时,S=•CM=•t=t2.综上所述,S=.(4)如图5中,取AC,BC的中点G,H,连接GH交PC于M.∵AG=CG,CH=HB,∴GH=AB=4,GH∥AB,∴CM=PM,∴点M的运动轨迹是线段GH,∴点M经过的路径的长度为4.【解析】(1)分两种情形分别求解即可.(2)分两种情形:如图1中,当点E在AC上时,如图2中,当点E落在BC上时,利用平行线分线段成比例定理,构建方程即可解决问题.(3)分两种情形:如图3中,当0<t<时,根据S=•CM求解即可.如图4中,当<t≤8时,根据S=•CM求解即可.(4)如图5中,取AC,BC的中点G,H,连接GH交PC于M.利用三角形的中位线定理即可解决问题.本题属于四边形综合题,考查了等腰直角三角形的性质,解直角三角形,平行线分线段成比例定理,三角形的中位线定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.24.【答案】解:(1)当t=1时,令y=0,得:-(x-1)(x-1+4)=0,解得:x1=1,x2=-3,∴A(1,0),B(-3,0),∴AB=4;∵M为OA中点,∴M(,0)∵抛物线L:y=-(x-1)(x+3)=-(x+1)2+2,∴抛物线L的对称轴为直线x=-1,∴直线MP与L对称轴之间的距离为;(2)∵抛物线L:y=-(x-t)(x-t+4)的对称轴为:直线x=t-2,抛物线L与x轴交点为A(t,0),B(t-4,0)∴线段OA的中点M(,0)由题意得:-(t-2)=1,解得:t=2,∴t=2;(3)∵y=-(x-t)(x-t+4)=-[x-(t-2)]2+2∴当t-2≤,即t≤4时,图象G最高点的坐标为顶点(t-2,2)当t-2>,即t>4时,图象G最高点的坐标为直线MP与抛物线L的交点(,-+t);(4)如图,∵4≤x0≤6,x0=,∴4≤≤6,∴1≤y0≤,即抛物线L与双曲线在C(4,),D(6,1)之间的一段有一个交点①由=(4-t)(4-t+4),解得:t=5或7,②由1=-(6-t)(6-t+4),解得:t=8-或8+,随着t的逐渐增加,抛物线L的位置随着A(t,0)向右平移,当t=5时,L右侧过点C;当t=8-<7时,L右侧过点D,即5≤t≤8-;当8-<t<7时,L右侧离开了点D,而左侧未到达点C,即L与该段无交点,舍去;当t=7时,L左侧过点C,当t=8+时,L左侧过点D,即7≤t≤8+.综上所述,t的取值范围为:5≤t≤8-或7≤t≤8+.【解析】(1)当t=1时,令y=0,可求得A(1,0),B(-3,0),再由M为OA中点,可求得M(,0),配方法可得到抛物线L的对称轴为直线x=-1,即可得到结论;(2)配方法可得对称轴为:直线x=t-2,再求得线段OA的中点M(,0),即可求得结论;(3)根据对称轴位于直线MP左侧或右侧两种情形讨论即可;(4)先根据反比例函数由4≤x0≤6,可得1≤y0≤,再由抛物线L可得1≤(4-t)(4-t+4)≤或1≤-(6-t)(6-t+4)≤,即可求得t的范围.本题考查了二次函数的图象和性质,二次函数最值应用,反比例函数图象和性质,解不等式组等;属于代数综合题.解题时要注意运用数形结合进行分析,运用方程思想解决问题.。

2020年吉林省长春市中考数学仿真试卷(有解析)

2020年吉林省长春市中考数学仿真试卷(有解析)

2020年吉林省长春市中考数学仿真试卷一、单选题1.数轴上的点A 表示的数是2-,将点A 向左移动3个单位,终点表示的数是( )A .1B .2-C .5D .5-2.若关于x 的不等式()11m x m ->-的解集是1x <,则m 的取值范围是()A .1m ≠B .1mC .1m <D .0m <3.一个几何体的展开图如图所示,则该几何体的顶点有( )A .10个B .8个C .6个D .4个4.如图,已知点A 是射线BE 上一点,过A 作CA ⊥BE 交射线BF 于点C ,AD ⊥BF 交射线BF 于点D ,给出下列结论:①∠1是∠B 的余角;②图中互余的角共有3对;③∠1的补角只有∠ACF ;④与∠ADB 互补的角共有3个.则上述结论正确的是( )A .①②④B .②③C .④D .①④5.如图,在四边形ABCD 中,//AB CD ,AB CD =,60B ∠=︒,AD =B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点P 和Q ,直线PQ 与BA 延长线交于点E ,连接CE ,则BCE ∆的内切圆半径是( )A .4B .C .2D .6.规定:如果关于x 的一元二次方程ax 2+bx+c =0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论①方程x 2+2x ﹣8=0是倍根方程;②若关于x 的方程x 2+ax+2=0是倍根方程,则a =±3; ③若(x ﹣3)(mx ﹣n )=0是倍根方程,则n =6m 或3n =2m ;④若点(m ,n )在反比例函数y =2x的图象上,则关于x 的方程mx 2﹣3x+n =0是倍根方程. 上述结论中正确的有( )A .①②B .③④C .②③D .②④ 7.如图,已知⊙O 上三点A ,B ,C ,半径OC=1,∠ABC=30°,切线PA 交OC 延长线于点P ,则PA 的长为( )A .2BCD .128.据大连市公安局统计,2016年全市约有410000人换二代居民身份证,将410000用科学记数法表示应为( )A .0.41×104B .41×104C .4.1×106D .4.1×105二、填空题9.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________10.记函数()265326y x x a x =--+-≤≤的图像为图形M ,函数 4y x =-+的图像为图形N ,若N 与N 没有公共点,则a 的取值范围是___________.11.分解因式:29b -=______.12.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米。

2020年吉林省长春市新区中考数学一模试卷 (解析版)

2020年吉林省长春市新区中考数学一模试卷 (解析版)

2020年吉林省长春市新区中考数学一模试卷一、选择题(共8小题).1.(3分)如图,数轴上被遮挡住的整数的相反数是()A.1B.﹣3C.﹣1D.02.(3分)据长春海关统计数据显示,2020年一季度,全省出口总额为7 810 000 000元,7 810 000 000这个数用科学记数法表示为()A.0.781×103B.7.81×109C.78.1×109D.7.81×1010 3.(3分)如图是由6个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.4.(3分)a6可以表示为()A.6a B.a2•a3C.(a3)2D.a12÷a25.(3分)《孙子算经》是中国古代重要的数学著作,其中第三卷中记载一题:今有兽,六首四足;禽,二首二足,上有七十六首,下有四十六足,问:禽、兽各几何?译文:今有一只怪兽,有6个头4只脚,一只怪鸟,有2个头2只脚,现在上面有76个头,下面有46只脚,问怪兽、怪鸟各有多少?设怪兽为x只,怪鸟为y只,可列方程组为()A.B.C.D.6.(3分)小致利用测角仪和皮尺测量学校旗杆的高度,如图,小致在D处测得顶端P的仰角∠PDC=α,D到旗杆的距离CD=5米,测角仪BD的高度为1米,则旗杆PA的高度表示为()A.5tanα+1B.5sinα+1C.5cosα+1D.+1 7.(3分)如图,在△ABC中,按以下步骤作图:①以B为圆心,适当长度为半径作弧,交AB于点D,交BC于点E;②分别以D,E为圆心,以大于长为半径作弧,两弧交于点M;③作射线BM交AC于点N,若AB=BN,∠A=74°,则∠C的大小为()A.32°B.42°C.37°D.40°8.(3分)如图,Rt△AOB的顶点A在第一象限,顶点B在x轴的正半轴,函数y=(k >0,x>0)的图象经过OA的中点D,与直角边AB交于点C,若点A的坐标为(4,3),则△AOC的面积为()A.5B.3C.D.4.5二、填空题(共6小题,每小题3分,共18分)9.(3分)比较大小:2(填“>”、“<”或“=”)10.(3分)分解因式:a2﹣9=.11.(3分)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的值可以是(写出一个即可).12.(3分)如图,直线PQ∥MN,将一个有30°角的三角尺按如图所示的方式摆放,若∠CBA=43°,则∠PAC的大小为度.13.(3分)如图,在矩形ABCD中,AB=3,AD=5,E是AB上一点,连结CE,将△BCE沿CE翻折,使点B的对应点F落在边AD上,则△AEF的面积为.14.(3分)如图是一座截面边缘为抛物线的拱形桥,当拱顶离水面2米高时,水面l为4米,则当水面下降1米时,水面宽度增加米.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣3,b=.16.(6分)一个不透明的口袋中有三个小球,上面分别标有数字﹣2、0、1,每个小球除数字不同外其余均相同,小致先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字,用画树状图(或列表)的方法,求小致两次摸出的小球的数字之和是负数的概率.17.(6分)某市为落实“2020脱贫攻坚政策”,甲工程队计划将该市的900套老旧房屋进行翻新改造,为尽快完成任务,实际每天翻新改造的数量是原来计划的1.5倍,结果提前30天完成任务,求甲工程队原计划每天翻新改造老旧房屋的数量.18.(7分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的直线交OP于点C,且∠CBP=∠ADB.(1)求证:BC为⊙O的切线;(2)若OA=2,AB=,则线段BP的长为.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上,在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求长写出画法.(1)在图①中以线段AB为边画一个直角△ABM;(2)在图②中以线段CD为边画一个轴对称△CDN,使其面积为5;(3)在图③中以线段EF为边画一个轴对称四边形EFGH,使其面积为6.20.(7分)某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数2m10621b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为;②一分钟仰卧起坐成绩的中位数为;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.17.77.57.57.37.27.0 6.5一分钟仰卧起*4247*4752*49坐其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.21.(8分)甲、乙两车沿同一条道路从A地出发向1200km外的B地输送紧急物资,甲在途中休息了3小时,休息前后的速度不同,最后两车同时到达B地,如图甲、乙两车到A地的距离y(千米)与乙车行驶时间x(小时)之间的函数图象.(1)甲车休息前的行驶速度为千米/时,乙车的速度为千米/时;(2)当9≤x≤15,求甲车的行驶路程y与x之间的函数关系式;(3)直接写出甲出发多长时间与乙在途中相遇.22.(9分)问题呈现:下图是小致复习全等三角形时遇到的一个问题并引发的思考,请帮助小致完成以下学习任务.如图,OC平分∠AOB,点P在OC上,M、N分别是OA、OB上的点,OM=ON,求证:PM=PN.小致的思考:要证明PM=PM,只需证明△POM≌△PON即可.请根据小致的思路,结合图①,解出完整的证明过程.结论应用:(1)如图②,在四边形ABCD中,AB=AD+BC,∠DAB的平分线和∠ABC的平分线交于CD边上点P,求证:PC=PD.(2)在(1)的条件下,如图③,若AB=10,tan∠PAB=,当△PBC有一个内角是45°时,△PAD的面积是.23.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=12,AB=20.点P从点B出发,以每秒5个单位长度的速度沿BC向终点C运动,同时点M从点A出发,以相同速度沿AB向终点B运动.过点P作PQ⊥AB于点Q,以PQ、MQ为邻边作矩形PQMN,当点P运动到终点时,整个运动停止,设矩形PQMN与△ABC重叠部分图形的面积为S(S >0),点P的运动时间为t秒.(1)①BC的长为;②用含t的代数式表示线段PQ的长为.(2)当QM的长度为10时,求t的值;(3)求S与t的函数关系式;(4)当过点Q和点N的直线垂直于Rt△ABC的一边时,直接写出t的值.24.(12分)如图,在平面直角坐标系中,矩形ABCD的四个顶点坐标分别是A(﹣1,﹣1)、B(4,﹣1)、C(4,1),D(﹣1,1).函数y=(m为常数).(1)当此函数的图象经过点D时,求此函数的表达式.(2)在(1)的条件下,当﹣2≤x≤2时,求函数值y的取值范围.(3)当此函数的图象与矩形ABCD的边有两个交点时,直接写出m的取值范围.(4)记此函数在m﹣1≤x≤m+1范围内的纵坐标为y0,若存在1≤y0≤2时,直接写出m的取值范围.参考答案一、选择题(共8小题).1.(3分)如图,数轴上被遮挡住的整数的相反数是()A.1B.﹣3C.﹣1D.0【分析】被遮挡的左边是整数﹣2,右边是0,因此被遮挡的整数是﹣1,再求相反数即可.解:被遮住的左边是整数﹣2,右边是0,因此被遮挡的整数是﹣1,﹣1的相反数是1,故选:A.2.(3分)据长春海关统计数据显示,2020年一季度,全省出口总额为7 810 000 000元,7 810 000 000这个数用科学记数法表示为()A.0.781×103B.7.81×109C.78.1×109D.7.81×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:7 810 000 000=7.81×109.故选:B.3.(3分)如图是由6个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.解:这个立体图形的俯视图有两层,上层三个正方形,下层一个正方形,右齐.故选:D.4.(3分)a6可以表示为()A.6a B.a2•a3C.(a3)2D.a12÷a2【分析】根据同底数幂的乘法、幂的乘方、同底数幂的除法分别计算可得.解:A、6a表示6×a,此选项不符合题意;B、a2•a3=a5,此选项不符合题意;C、(a3)2=a6,此选项符合题意;D、a12÷a2=a10,此选项不符合题意;故选:C.5.(3分)《孙子算经》是中国古代重要的数学著作,其中第三卷中记载一题:今有兽,六首四足;禽,二首二足,上有七十六首,下有四十六足,问:禽、兽各几何?译文:今有一只怪兽,有6个头4只脚,一只怪鸟,有2个头2只脚,现在上面有76个头,下面有46只脚,问怪兽、怪鸟各有多少?设怪兽为x只,怪鸟为y只,可列方程组为()A.B.C.D.【分析】根据怪兽和怪鸟的头数及脚数,即可得出关于x,y的二元一次方程,此题得解.解:依题意,得:.故选:C.6.(3分)小致利用测角仪和皮尺测量学校旗杆的高度,如图,小致在D处测得顶端P的仰角∠PDC=α,D到旗杆的距离CD=5米,测角仪BD的高度为1米,则旗杆PA的高度表示为()A.5tanα+1B.5sinα+1C.5cosα+1D.+1【分析】根据题意可得,四边形ABDC是矩形,根据锐角三角函数即可表示旗杆PA的高度.解:根据题意可知:四边形ABDC是矩形,∴∠PCD=90°,AC=BD=1,在Rt△PCD中,PC=CD tanα=5tanα,∴PA=PC+AC=5tanα+1.答:旗杆PA的高度表示为5tanα+1.故选:A.7.(3分)如图,在△ABC中,按以下步骤作图:①以B为圆心,适当长度为半径作弧,交AB于点D,交BC于点E;②分别以D,E为圆心,以大于长为半径作弧,两弧交于点M;③作射线BM交AC于点N,若AB=BN,∠A=74°,则∠C的大小为()A.32°B.42°C.37°D.40°【分析】依据等腰三角形的性质即可得到∠ABN的度数,再根据角平分线的定义以及三角形内角和定理,即可得到∠C的度数.解:∵AB=BN,∠A=74°,∴∠ANB=74°,∠ABN=180°﹣2×74°=32°,由作图痕迹可得,BN平分∠ABC,∴∠ABC=2∠ABN=64°,∴△ABC中,∠C=180°﹣∠A﹣∠ABC=180°﹣74°﹣64°=42°,故选:B.8.(3分)如图,Rt△AOB的顶点A在第一象限,顶点B在x轴的正半轴,函数y=(k >0,x>0)的图象经过OA的中点D,与直角边AB交于点C,若点A的坐标为(4,3),则△AOC的面积为()A.5B.3C.D.4.5【分析】直接根据点D是OA的中点即可求出D点坐标,由D点坐标即可求出反比例函数的解析式,故可得出△OBC的面积,由S△AOC=S△AOB﹣S△OBC即可得出结论.解:∵D是OA的中点,点A的坐标为(4,3),∴D(2,),把D(2,)代入反比例函数y=的图象上,∴k=2×=3,∵点C在反比例函数y=的图象上,∴S△OBC=×3=,∴S△AOC=S△AOB﹣S△OBC=×4×3﹣=.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)比较大小:<2(填“>”、“<”或“=”)【分析】首先利用二次根式的性质可得2=,再比较大小即可.解:∵2=,∴<2,故答案为:<.10.(3分)分解因式:a2﹣9=(a+3)(a﹣3).【分析】直接利用平方差公式分解因式进而得出答案.解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).11.(3分)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的值可以是0(写出一个即可).【分析】先利用判别式的意义得到22﹣4k>0,再解不等式确定k的范围,然后在此范围内取一个值即可.解:根据题意得△=22﹣4k>0,解得k<1.所以k可以取0.故答案为0.12.(3分)如图,直线PQ∥MN,将一个有30°角的三角尺按如图所示的方式摆放,若∠CBA=43°,则∠PAC的大小为107度.【分析】根据平行线的性质得到∠BAP=137°,由角的和差关系得到∠PAC的大小即可.解:∵PQ∥MN,∴∠BAP=180°﹣∠CBA=137°,∴∠PAC=137°﹣30°=107°.故答案为:107.13.(3分)如图,在矩形ABCD中,AB=3,AD=5,E是AB上一点,连结CE,将△BCE沿CE翻折,使点B的对应点F落在边AD上,则△AEF的面积为.【分析】根据矩形的性质得到∠A=∠B=∠D=90°,CD=AB=3,BC=AD=5,根据折叠的性质得到CF=CB=5,EF=BE,根据勾股定理得到DF==4,AE =,于是得到结论.解:∵在矩形ABCD中,AB=3,AD=5,∴∠A=∠B=∠D=90°,CD=AB=3,BC=AD=5,∵将△BCE沿CE翻折,使点B的对应点F落在边AD上,∴CF=CB=5,EF=BE,∴DF==4,∴AF=AD﹣DF=5﹣4=1,∵EF2=AE2+AF2,∴(3﹣AE)2=AE2+12,解得:AE=,∴△AEF的面积=AE•AF=×1=故答案为:.14.(3分)如图是一座截面边缘为抛物线的拱形桥,当拱顶离水面2米高时,水面l为4米,则当水面下降1米时,水面宽度增加(2﹣4)米.【分析】建立平面直角坐标系,根据题意设出抛物线解析式,利用待定系数法求出解析式,根据题意计算即可.解:建立平面直角坐标系如图:则抛物线顶点C坐标为(0,2),设抛物线解析式y=ax2+2,将A点坐标(﹣2,0)代入,可得:0=4a+2,解得:a=﹣,故抛物线解析式为y=﹣x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,将y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度为2米,故水面宽度增加了(2﹣4)米,故答案为:(2﹣4).三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣3,b=.【分析】直接利用完全平方公式以及单项式乘以多项式计算得出答案.解:a(a﹣2b)+(a+b)2=a2﹣2ab+a2+b2+2ab=2a2+b2,当a=﹣3,b=时,原式=2a2+b2=2×(﹣3)2+()2=23.16.(6分)一个不透明的口袋中有三个小球,上面分别标有数字﹣2、0、1,每个小球除数字不同外其余均相同,小致先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字,用画树状图(或列表)的方法,求小致两次摸出的小球的数字之和是负数的概率.【分析】列举出符合题意的各种情况的个数,再根据概率公式即可求出两次摸出的小球上的数字之和是负数的概率.解:列表得:﹣201和﹣2﹣4﹣2﹣10﹣2011﹣112共有9种等情况数,其中小致两次摸出的小球的数字之和是负数的有5种,则小致两次摸出的小球的数字之和是负数的概率是.17.(6分)某市为落实“2020脱贫攻坚政策”,甲工程队计划将该市的900套老旧房屋进行翻新改造,为尽快完成任务,实际每天翻新改造的数量是原来计划的1.5倍,结果提前30天完成任务,求甲工程队原计划每天翻新改造老旧房屋的数量.【分析】设甲工程队原计划每天翻新改造老旧房屋x套,则实际每天翻新改造老旧房屋1.5x套,根据工作时间=工作总量÷工作效率结合提前30天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设甲工程队原计划每天翻新改造老旧房屋x套,则实际每天翻新改造老旧房屋1.5x 套,依题意,得:﹣=30,解得:x=10,经检验,x=10是原方程的解,且符合题意.答:甲工程队原计划每天翻新改造老旧房屋10套.18.(7分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的直线交OP于点C,且∠CBP=∠ADB.(1)求证:BC为⊙O的切线;(2)若OA=2,AB=,则线段BP的长为.【分析】(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据等腰三角形的性质和已知条件证出∠OBC=90°,即可得出结论;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.【解答】(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵OA=OB,∴∠A=∠OBA,∵∠CBP=∠ADB,∴∠OBA+∠CBP=90°,∴∠OBC=180°﹣90°=90°,∴BC⊥OB,∴BC是⊙O的切线;(2)解:∵OA=2,∴AD=2OA=4,∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∵∠A=∠A,∴△AOP∽△ABD,∴=,即=,解得:BP=,故答案为:.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上,在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求长写出画法.(1)在图①中以线段AB为边画一个直角△ABM;(2)在图②中以线段CD为边画一个轴对称△CDN,使其面积为5;(3)在图③中以线段EF为边画一个轴对称四边形EFGH,使其面积为6.【分析】(1)根据网格即可在图①中以线段AB为边画一个直角△ABM;(2)根据网格和勾股定理即可在图②中以线段CD为边画一个轴对称△CDN,使其面积为5;(3)根据网格和梯形面积公式即可在图③中以线段EF为边画一个轴对称四边形EFGH,使其面积为6.解:(1)图①中直角△ABM即为所求;(2)图②中△CDN即为所求;(3)图③中四边形EFGH即为所求.20.(7分)某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数2m10621b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为9;②一分钟仰卧起坐成绩的中位数为45;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.17.77.57.57.37.27.0 6.5一分钟仰卧起坐*4247*4752*49其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.【分析】(1)①根据题意和表格中的数据可以求得m的值;②根据条形统计图中数据和中位数的定义可以得到这组数据的中位数;(2)①根据题意和表格中的数据可以求得全年级女生实心球成绩达到优秀的人数;②根据题意和表格中的数据可以解答本题.解:(1)①m=30﹣2﹣10﹣6﹣2﹣1=9,故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,故答案为:45;(2)①∵实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3,∴实心球成绩在7.0≤x<7.4这一组优秀的有4人,∴全年级女生实心球成绩达到优秀的人数是:150×=65,答:全年级女生实心球成绩达到优秀的有65人;②同意,理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.21.(8分)甲、乙两车沿同一条道路从A地出发向1200km外的B地输送紧急物资,甲在途中休息了3小时,休息前后的速度不同,最后两车同时到达B地,如图甲、乙两车到A地的距离y(千米)与乙车行驶时间x(小时)之间的函数图象.(1)甲车休息前的行驶速度为120千米/时,乙车的速度为80千米/时;(2)当9≤x≤15,求甲车的行驶路程y与x之间的函数关系式;(3)直接写出甲出发多长时间与乙在途中相遇.【分析】(1)根据甲在途中休息了3小时,结合函数图象可求出b的值,进而由路程÷时间=速度,便可求得结果;(2)用待定系数法进行解答便可;(3)设甲出发x小时与乙在途中相遇,分两种情况:在甲中途休息前相遇,甲中途休息时相遇.分别列出一元一次方程解答.解:(1)由题意知,b=9﹣3=6,∴甲车休息前的行驶速度为:600÷(b﹣1)=600÷(6﹣1)=120(千米/时),乙车的速度为:1200÷15=80(千米/时),故答案为:120;80;(2)设当9≤x≤15时,甲车的行驶路程y与x之间的函数关系式为y=kx+b(k≠0),把(9,600),(12,1200)代入得,,解得,,∴当9≤x≤15时,甲车的行驶路程y与x之间的函数关系式为:y=100x﹣300;(3)设甲出发x小时与乙在途中相遇,根据题意得,①在甲途中休息前相遇,有120x﹣80x=80×1,解得,x=2;②在甲途中休息时相遇,有80(x+1)=600,解得,x=6.5,综上,甲出发2小时或6.5小时与乙在途中相遇.22.(9分)问题呈现:下图是小致复习全等三角形时遇到的一个问题并引发的思考,请帮助小致完成以下学习任务.如图,OC平分∠AOB,点P在OC上,M、N分别是OA、OB上的点,OM=ON,求证:PM=PN.小致的思考:要证明PM=PM,只需证明△POM≌△PON即可.请根据小致的思路,结合图①,解出完整的证明过程.结论应用:(1)如图②,在四边形ABCD中,AB=AD+BC,∠DAB的平分线和∠ABC的平分线交于CD边上点P,求证:PC=PD.(2)在(1)的条件下,如图③,若AB=10,tan∠PAB=,当△PBC有一个内角是45°时,△PAD的面积是8或.【分析】问题呈现:由“SAS”可证△MOP≌△NOP,可得PM=PN;结论应用:(1)在AB上截取AE=AD,连接PE,由“SAS”可证△ADP≌△AEP,△BPC≌△BPC,可得PD=PE=PC;(2)延长AP,BC交于点H,由“ASA”可证△ADP≌△HCP,可得CP=DP,AD=CH,S△ADP=S△CPH,分三种情况讨论,由角平分线的性质和锐角三角函数可求解.解:问题呈现:∵OC平分∠AOB,∴∠AOC=∠BOC,又∵OP=OP,OM=ON,∴△MOP≌△NOP(SAS),∴PM=PN;结论应用:(1)如图②,在AB上截取AE=AD,连接PE,∵AP平分∠DAB,∴∠DAP=∠BAP,又∵AD=AE,AP=AP,∴△ADP≌△AEP(SAS),∴DP=PE,∠D=∠AEP,∵AB=AD+BC,AB=AE+BE,∴BE=BC,∵BP平分∠ABC,∴∠ABP=∠CBP,又∵BP=BP,∴△BPC≌△BPE(SAS),∴CP=PE,∠PCB=∠PEB,∴PC=PD=PE;(2)由(1)可证∠D=∠AEP,∠PCB=∠PEB,∵∠AEP+∠PEB=180°,∴∠PCB+∠D=180°,∴AD∥BC,∴∠DAC+∠ABC=180°,∵∠DAB的平分线和∠ABC的平分线交于CD边上点P,∴∠DAC=2∠PAB,∠ABC=2∠ABP,∴2∠PAB+2∠ABP=180°,∴∠PAB+∠ABP=90°,∴∠APB=90°,∵AB=10,tan∠PAB==,∴PA=2PB,∵PA2+PB2=AB2,∴PB=2,PA=4,如图③,延长AP,BC交于点H,∵AD∥BC,∴∠DAP=∠H,∴∠H=∠BAP,∴AB=BH=10,又∵PB平分∠ABC,∴BP⊥AP,AP=PH=4,∵∠DAP=∠H,AP=PH,∠DPA=∠CPH,∴△ADP≌△HCP(ASA),∴CP=DP,AD=CH,S△ADP=S△CPH,若∠PBC=45°时,则∠PBC=∠H=45°,∴PB=PH(不合题意舍去),若∠BPC=45°时,则∠HPC=∠BPC=45°,如图④,过点C作CN⊥BP于N,CM⊥PH于M,∴CM=CN,∵S△PBH=×BP×PH=×BP×CN+×PH×CM,∴CM=CN=,∴S△PCH=×4×==S△ADP;若∠PCB=45°时,如图⑤,过点P作PF⊥BC于F,∵∠PAB=∠H,∴tan H=tan∠PAB=,∴,∴FH=2PF,∵PF2+FH2=PH2=80,∴PF=4,FH=8,∵PF⊥BC,∠BCP=45°,∴∠PCB=∠FPC=45°,∴CF=PF=4,∴CH=4,∴S△ADP=S△CPH=×4×4=8,故答案为:8或.23.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=12,AB=20.点P从点B出发,以每秒5个单位长度的速度沿BC向终点C运动,同时点M从点A出发,以相同速度沿AB向终点B运动.过点P作PQ⊥AB于点Q,以PQ、MQ为邻边作矩形PQMN,当点P运动到终点时,整个运动停止,设矩形PQMN与△ABC重叠部分图形的面积为S(S >0),点P的运动时间为t秒.(1)①BC的长为16;②用含t的代数式表示线段PQ的长为3t.(2)当QM的长度为10时,求t的值;(3)求S与t的函数关系式;(4)当过点Q和点N的直线垂直于Rt△ABC的一边时,直接写出t的值.【分析】(1)①由勾股定理可求解;②由锐角三角函数可求解;(2)分两种情况讨论,由QM的长度为10,列出方程可求解;(3)分两种情况讨论,由面积公式可求解;(4)分两种情况讨论,由锐角三角函数可求解.解:(1)①∵∠ACB=90°,AC=12,AB=20,∴BC===16,故答案为:16;②∵sin B=,∴,∴PQ=3t,故答案为:3t;(2)在Rt△PQB中,BQ==4t,当点M与点Q相遇,20=4t+5t,∴t=,当0<t<时,MQ=AB﹣AM﹣BQ,∴20﹣4t﹣5t=10,∴t=,当<t≤时,MQ=AM+BQ﹣AB,∴4t+5t﹣20=10,∵>,∴不合题意舍去,综上所述:当QM的长度为10时,t的值为;(3)当0<t<时,S=3t×(20﹣9t)=﹣27t2+60t;当<t≤时,如图,∵四边形PQMN是矩形,∴PN=QM=9t﹣20,PQ=3t,PN∥AB,∴∠B=∠NPE,∴tan B=tan∠NPE,∴,∴NE==﹣15,∴S=3t×(9t﹣20)﹣×(9t﹣20)×(﹣15)=﹣;(4)如图,若NQ⊥AC,∴NQ∥BC,∴∠B=∠MQN,∴tan B=tan∠MQN,∴=,∴t=,如图,若NQ⊥BC,∴NQ∥AC,∴∠A=∠BQN,∴tan A=tan∠BQN,∴,∴,∴t=综上所述:当t=s或s时,过点Q和点N的直线垂直于Rt△ABC的一边.24.(12分)如图,在平面直角坐标系中,矩形ABCD的四个顶点坐标分别是A(﹣1,﹣1)、B(4,﹣1)、C(4,1),D(﹣1,1).函数y=(m为常数).(1)当此函数的图象经过点D时,求此函数的表达式.(2)在(1)的条件下,当﹣2≤x≤2时,求函数值y的取值范围.(3)当此函数的图象与矩形ABCD的边有两个交点时,直接写出m的取值范围.(4)记此函数在m﹣1≤x≤m+1范围内的纵坐标为y0,若存在1≤y0≤2时,直接写出m的取值范围.【分析】(1)根据矩形的性质结合平面直角坐标系先确定点D的坐标,再判断出经过点D的函数,代入点D的坐标求出m的值即可;(2)当﹣2≤x≤2时分﹣2≤x<和≤x≤2两种情况,结合函数图象进一步确定函数的取值范围;(3)首先确定当x<m时,y有最小值为﹣(x﹣m)2+3,再根据m的不同取值,结合图象与矩形的边的交点个数确定m的取值范围;(4)根据x的不同取值,分别得到关于m的不等式(组),求解不等式(组)即可.解:(1)由题意得,点D的坐标为(﹣1,1),当x=﹣1时,y=,∴函数的图象不经过点D,∴函数y=x2﹣2mx+2m+2(x<m)的图象经过点D,∴(﹣1)2﹣2m×(﹣1)+2m+2=1,解得,,∴;(2)由(1)可知,当﹣2≤x≤2时,分段讨论:①当﹣2≤x<时,y=x2+x+1,该二次函数的对称轴为直线x=﹣,且开口向上,如图,∴当﹣2≤x<时,y随x的增大而减小,当x=﹣2时,y取最大值,最大值=4﹣2+1=3;当x=﹣时(取不到),y最小值=;所以,<y≤3;②当﹣≤x≤2时,,二次函数的对称轴为x=2,开口向下,如图所示,∴﹣≤x≤2时,y随x的增大而增大,当x=﹣时,y最小值=﹣,当x=2时,y最大值是1,∴.综上,当﹣2≤x<时,<y≤3;当﹣≤x≤2时,;∴y的取值范围是:;(3)过点E(0,﹣1),F(2,1),B(4,﹣1)三点,=(x﹣m)2﹣(m﹣1)+3恒过(1,3),对称轴为直线x=m,在x<m时,y随x的增大而减小,y有最小值,最小值=m2﹣2m2+2m+2=﹣(m﹣1)2+3.①若m≤0,x≥0时,则y1与矩形的边有3个交点,不符合题意;②若0<m≤2时,y1与矩形的边有F、B两个交点,即y2与矩形的边无交点,∴y最小值≥1,∴﹣(m﹣1)2+3≥1,解得,,即:0<m≤2;③若2<m≤4,x≥m时,y1与矩形的边的交点只有B,∴y2有且只有一个交点,∴﹣1≤﹣(m﹣1)2+3<1,解得,﹣1≤﹣(m﹣1)2+3<1,解得:或,∴,④若m>4,y1与矩形的边无交点,则y2与矩形的边有两个交点,即:当x=4时,y2<1,有两个交点,即16﹣8m+2m+2<1,∴m>,∴m>4,综上,m的取值范围是:0<m≤2或或m>4;(4)①当m≤x≤m+1时,,若存在1≤y0≤2,仅有y0=1,即x=2时,y1=1,∴m≤2≤m+1,∴1≤m≤2;②当m﹣1≤x <m时,,若存在1≤y 0≤2,则,即满足最小值小于2,最大值大于等于1即可,∴,∴或;综合①、②得:或.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.2的相反数是( )A. -2B. -C.D. 22.今年清明小长假期问,长春净月某景区接待游客约为51700人次,数字51700用科学记数法表示为( )A. 51.7×103B. 5.17×104C. 5.17×105D. 0.517×1053.如图所示的正六棱柱的主视图是( )A. B.C. D.4.不等式3x-3≤0解集在数轴上表示正确的是( )A. B.C. D.5.如图,AE∥DB,∠1=85°,∠2=28°,则∠C的度数为( )A. 55°B. 56°C. 57°D. 60°6.如图,要测量河两相对的两点P、A之间的距离,可以在AP的垂线PB上取点C,测得PC=100米,用测角仪测得∠ACP=40°,则AP的长为( )A. 100sin40°米B. 100tan40°米C.米 D. 米7.如图,O为圆心,AB是直径,C是半圆上的点,D是上的点.若∠BOC=40°,则∠D的大小为( )A. 110°B. 120°C. 130°D. 140°8.如图,在平面直角坐标系中,Rt△ABC的顶点A、B的坐标分别为(-1,1)、(3,0),直角顶点C在x轴上,在△ADE中,∠E=90°,点D在第三象限的双曲线y=上,且边AE经过点C.若AB=AD,∠BAD=90°,则k的值为( )A. 3B. 4C. -6D. 6二、填空题(本大题共6小题,共18.0分)9.分解因式:a3b-ab=______.10.一元二次方程2x2-4x+1=0______实数根(填“有”或“无”)11.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题,”今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”若设鸡有x只,兔有y只,则列出的方程组为______(列出方程组即可,不求解).12.如图,在△ABC中,∠ACB=90°,按一下步骤作图:分别以点A和点B为圆心,大于AB的长为半径作圆弧,两弧交于点E和点F,作直线EF交AB于点D,连结CD,若AC=8,BC=6,则CD的长为______.13.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(-6,4),则△AOC的面积为______.14.在平面直角坐标系中,将二次函数y=﹣x2+x+6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,将这个新函数的图象记为G(如图所示).当直线y =m 与图象G 有4个交点时,则m 的取值范围是____.三、计算题(本大题共1小题,共7.0分)15.如图,线段AB 经过圆心O ,交⊙O 于点A 、C ,点D 为⊙O 上一点,连结AD 、OD 、BD ,∠A =∠B =30°.(1)求证:BD 是⊙O 的切线.(2)若OA =5,求OA 、OD 与AD 围成的扇形的面积.四、解答题(本大题共9小题,共71.0分)16.先化简,再求值:(-1)÷,其中x =217.某校期末评选出四名“优秀课代表”,其中有2名男生和2名女生,若从他们中任选2人作为代表发言,请用画树状图(或列表)的方法,求恰好选中1男1女的概率.18.用A 、B 两种机器人搬运大米,A 型机器人比B 型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B 型机器人搬运500袋大米所用时间相等.求A 、B 型机器人每小时分别搬运多少袋大米.19.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=2,DE=3,求菱形ABCD的面积.20.某校学生会为了解本校学生每天体育锻炼所用时间情况,采用问卷的方式对一部分学生进行调查确定调查对象时,大家提出以下几种方案:(A)对各班体育委员进行调査;(B)对某班的全体学生进行调查;(C)从全校每班随机抽5名学生进行调查在问卷调查时,每位被调查的学都选择了问卷中适合自己的十个时间段,学生会将收集到的数据整理后续制成如下的统计表:被调查的学生每天体育锻炼所用时间统计表组别时间x(小时)频数一0≤x≤0.515二0.6<x≤127三1<x≤1.538四 1.5<x≤213五x>27(1)为了使收集到的数据具有代表性,学生会在确定调查对象时选择了方案______(填A、B或C);(2)被调查的学生每天体育锻炼所用时间的中位数落在______组;(3)根据以上统计结果,估计该校900名学生中每天体育锻炼时间不超过0.5小时的人数,并根据你计算的结果提出一条合理化建议.21.一辆轿车从甲地驶往乙地,到达乙地后立即返回甲地,速度是原来的1.5倍,往返共用t小时;一辆货车同时从甲地驶往乙地,到达乙地后停止,两车同时出发,匀速行驶,设轿车行驶的时间为x(h),两车离开甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图所示.(1)轿车从乙地返回甲地的速度为______km/h,t=______;(2)求轿车从乙地返回甲地时y与x之间的函数关系式;(3)当轿车从甲地返回乙地的途中与货车相遇时,求相遇处到甲地的距离.22.图①、图②、图③均为方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.【探究】在图①中,点A、B、C、D均为格点.证明:BD平分∠ABC.【应用】在图②、图③中,点M、O、N均为格点.(1)利用【探究】的方法,在图②、图③中分别找到一个格点P,使OP平分∠MON .要求:图②、图③中所画的图形不相同,保留画图痕迹.(2)cos∠MOP的值为______.23.如图,在矩形ABCD中,AB=6,BC=3动点P从点A出发,沿AC以每秒4个单位长度的速度向终点C运动.过点P(不与点A、C重合)作EF⊥AC,交AB 或BC于点E,交AD或DC于点F,以EF为边向右作正方形EFGH设点P的运动时间为t秒.(1)①AC=______.②当点F在AD上时,用含t的代数式直接表示线段PF的长______.(2)当点F与点D重合时,求t的值.(3)设方形EFGH的周长为l,求1与t之间的函数关系式.(4)直接写出对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为1:2时t的值.24.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.例如:点(5,6)的“伴随点”为点(5,6);点(-5,6)的“伴随点”为点(-5,-6).(1)直接写出点A(2,1)的“伴随点”A′的坐标.(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.(3)点C、D在函数y=-x2+4的图象上,且点C、D关于y轴对称,点D的“伴随点”为D′.若点C在第一象限,且CD=DD′,求此时“伴随点”D′的横坐标.(4)点E在函数y=-x2+n(-1≤x≤2)的图象上,若其“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),直接写出实数n的取值范围.答案和解析1.【答案】A【解析】解:2的相反数是-2.故选:A.利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.此题主要考查了相反数的概念,正确把握定义是解题关键.2.【答案】B【解析】解:51700=5.17×104.故选:B.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10-n,其中1≤|a|<10,确定a与n的值是解题的关键.3.【答案】A【解析】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.根据主视图是从正面看到的图象判定则可.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.【答案】D【解析】解:3x-3≤0,3x≤3,x≤1,故选:D.根据解一元一次不等式基本步骤:移项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.【答案】C【解析】解:∵AE∥DB,∠1=85°,∴∠ADB=∠1=85°,∵∠ADB是△BCD的外角,∴∠C=∠ADB-∠2=85°-28°=57°,故选:C.依据平行线的性质以及三角形外角性质,即可得到∠C的度数.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.6.【答案】B【解析】解:∵PA⊥PB,PC=100米,∠PCA=40°,在Rt△APC中,tan∠ACP=,∴小河宽PA=PC tan∠PCA=100tan40°米.故选:B.在Rt△APC中,由PC的长及tan∠PCA的值可得出AP的长.考查了解直角三角形的应用,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.7.【答案】A【解析】解:∵∠BOC=40°,∴∠AOC=180°-40°=140°,∴∠D==110°,故选:A.根据互补得出∠AOC的度数,再利用圆周角定理解答即可.此题考查圆周角定理,关键是根据互补得出∠AOC的度数.8.【答案】D【解析】解:∵点A、B的坐标分别为(-1,1)、(3,0),∴AC=1,BC=4,∵∠BAD=90°,∴∠BAC+∠DAE=90°,而∠BAC+∠ABC=90°,∴∠DAE=∠ABC,在△ADE和△BAC中,∴△ADE≌△BAC(AAS),∴DE=AC=1,AE=BC=4,∴D(-2,-3),∵点D在第三象限的双曲线y=上,∴k=-2×(-3)=6.故选:D.利用点A、B的坐标得到AC=1,BC=4,再证明△ADE≌△BAC得到DE=AC=1,AE=BC=4,从而得到D(-2,-3),然后把点D坐标代入y=可求出k的值.本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.【答案】ab(a+1)(a-1)【解析】解:原式=ab(a2-1)=ab(a+1)(a-1).故答案为:ab(a+1)(a-1).先提取公因式ab,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a-b)(a+b ).本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.10.【答案】有【解析】解:因为△=(-4)2-4×2×1=8>0,所以方程有两个不相等的实数根.故答案为有.先计算判别式的值,然后根据判别式的意义进行判断.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.11.【答案】【解析】解:设鸡有x只,兔有y只,由题意得:.故答案为.根据等量关系:上有三十五头,下有九十四足,即可列出方程组.此题考查了由实际问题抽象出二元一次方程组,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.12.【答案】5【解析】解:∵在△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10.∵由题意可知,EF是线段AB的垂直平分线,∴点D是线段AB的中点,∴CD=AB=5.故答案为:5.先根据勾股定理求出AB的长,再由作图的方法得出EF是线段AB的垂直平分线,故可得出点D是线段AB的中点,由直角三角形的性质即可得出结论.本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键.13.【答案】9【解析】解:∵点D为△OAB斜边OA的中点,且点A的坐标(-6,4),∴点D的坐标为(-3,2),把(-3,2)代入双曲线,可得k=-6,即双曲线解析式为y=-,∵AB⊥OB,且点A的坐标(-6,4),∴C点的横坐标为-6,代入解析式y=-,y=1,即点C坐标为(-6,1),∴AC=3,∴S△AOC=×AC×OB=9.故答案为:9.要求△AOC的面积,已知OB为高,只要求AC长,即点C的坐标即可,由点D为三角形OAB斜边OA的中点,且点A的坐标(-6,4),可得点D的坐标为(-3,2),代入双曲线可得k,又AB⊥OB,所以C点的横坐标为-6,代入解析式可得纵坐标,继而可求得面积.本题考查反比例函数系数k的几何意义及其函数图象上点的坐标特征,体现了数形结合的思想.14.【答案】-<m<0【解析】【分析】本题考查了抛物线与x轴的交点、二次函数图象与几何变换、二次函数的性质等知识点,根据翻折变换规律得到抛物线G的顶点坐标是解题的难点.如图,通过y=-x2+x+6=-(x-)2+和对称的性质得到D(,-),结合函数图象得到答案.【解答】解:y=-x2+x+6=-(x-)2+.因为新函数的图象G是由二次函数y=-x2+x+6在x轴上方的图象沿x轴翻折到x轴下方得到的,所以新函数的图象G的顶点坐标D(,-),当直线y=m与图象G有4个交点时,则m的取值范围是-<m<0.故答案是:-<m<0.15.【答案】解:(1)证明:∵∠ADO=∠BAD=30°,∴∠DOB=60°∵∠ABD=30°,∴∠ODB=90°∴OD⊥BD.∵点D为⊙O上一点,∴BD是⊙O的切线.(2)解:∵∠DOB=60°,∴∠AOD=120°.∴OA、OD与AD围成的扇形的面积为.【解析】(1)求出∠A=∠ADO=30°,求出∠DOB=60°,求出∠ODB=90°,根据切线的判定推出即可;(2)根据扇形的面积公式即可求出答案.本题考查了圆周角定理,切线的判定,扇形面积的计算,正确的理解题意是解题的关键.16.【答案】解:原式=•=-x+1当x=2时原式=-2+1=-1.【解析】先将分式化简,再选择适当的x值代入求值即可.本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.【答案】解:由题意可得,恰好选中1男1女的概率是:.【解析】根据题意可以画出相应的树状图,从而可以求得相应的概率.本题考查列表法与树状图法,解答本题的关键是明确题意,求出相应的概率.18.【答案】解:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x-20)袋,依题意得:=,解这个方程得:x=70经检验x=70是方程的解,所以x-20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【解析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x-20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间=,B型机器人所用时间=,由所用时间相等,建立等量关系.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.19.【答案】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=2,DE=OC=3.∵四边形ABCD是菱形,∴AC=2OC=6,BD=2OD=4,∴菱形ABCD的面积为:AC•BD=×6×4=12.【解析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.考查了矩形的判定与性质,菱形的性质.此题中,矩形的判定,首先要判定四边形是平行四边形,然后证明有一内角为直角.20.【答案】C三【解析】解:(1)为了使收集到的数据具有代表性,学生会在确定调查对象时选择方案C,故答案为:C.(2)由于共有100个数据,其中位数是第50、51个数据的平均数,而第50、51个数据均落在第三组,所以被调查的学生每天体育锻炼所用时间的中位数落在第三组,故答案为:三.(3)900×=135(人)答:该校900名学生中每休育锻炼时间不超过0.5/小时的约有135人.建议:学生应加强体育锻炼,保证每天的锻炼时间最好在1个小时以上等.(1)由抽样调查的数据需要具有代表性求解可得;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.【答案】120【解析】解:(1)轿车从甲地到乙地的速度是:=80(千米/小时),则轿车从乙地返回甲地的速度为80×1.5=120(千米/小时),则t=+=(小时).故答案是:120,;(2)设y与x的函数解析式是y=kx+b,则,解得:,则函数解析式是y=-120x+300;(3)设货车的解析式是y=mx,则2m=120,解得:m=60,则函数解析式是y=60x.根据题意得:,解得:,则轿车从甲地返回乙地的途中与货车相遇时,相遇处到甲地的距离是100千米.(1)根据图象可得当x=小时时,据甲地的距离是120千米,即可求得轿车从甲地到乙地的速度,进而求得轿车从乙地返回甲地的速度和t的值;(2)利用待定系数法即可求解;(3)利用待定系数法求得轿车从乙地到甲地的函数解析式和货车路程和时间的函数解析式,求交点坐标即可.本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,正确解函数的解析式是关键.22.【答案】【解析】【探宄】证明:∵AB==5,BC=5,∴AB=BC∵AD=CD==.BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,即BD平分∠ABC.【应用】解:(1)射线OP如图所示.(2)如图②连接MN交OP于K,∵四边形OMPN是菱形,∴MN⊥OP,∵OP=,OM=5,∴OK=,∴cos∠MOP==.探究:通过计算证明利用SSS证明三角形全等即可解决问题.应用:(1)根据要求画出图形即可.图②中,构造边长为5的菱形即可解决问题.图③中,构造全等三角形解决问题即可.(2)利用菱形的性质解决问题即可.本题考查作图-应用与设计,解直角三角形的应用等知识,解题的关键是理解题意,学会用数形结合的思想解决问题,属于中考常考题型.23.【答案】15 8t【解析】解:(1)①∵四边形ABCD是矩形,∴∠B=90°,∴AC====15;故答案为:15;②∵四边形ABCD是矩形,∴∠D=90°,AD=BC=3,CD=AB=6,∵EF⊥AC,∴∠APF=90°=∠D,∵∠PAF=∠DAC,∴△APF∽△ADC,∴=,即=,解得:PF=8t;故答案为:8t;(2)当点F与点D重合时,如图1所示:∵∠APD=∠ADC=90°,∠PAD=∠DAC,∴△APD∽△ADC,∴=,即=,解得:t=;(3)分情况讨论:①当0<t≤时,如图2所示:由(1)②得:PF=8t,同理:PE=2t,∴EF=10t,∴l=4(8t+2t)=40t;②当<t≤3时,如图3所示:EF=10t=,l=4×=30.③当3<t<时,如图4所示:同(1)①得:△CPF∽△ABC∽△EPC,∴=,=,即=,=,解得:PF=(15-4t),PE=2(15-4t),∴EF=PF+PE=(15-4t),∴l=4×(15-4t)=-40t+150;(4)如图3所示:对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为1:2时,则PE:PF=1:2,或PF:PE=1:2,①PE:PF=1:2时,∵EF=,∴PF=EF=5,同理可证:△CPF∽△CDA,∴=,即=,解得:PF=(15-4t),∴(15-4t)=5,解得:t=;②PF:PE=1:2时,PF=EF=,则(15-4t)=,解得:t=;综上所述,对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为1:2时t的值为或.(1)①由矩形的性质和勾股定理即可得出结果;②由矩形的性质得出∠D=90°,AD=BC=3,CD=AB=6,证明△APF∽△ADC,得出=,即可得出结果;(2)当点F与点D重合时,证明△APD∽△ADC,得出=,即可得出结果;(3)分情况讨论:①当0<t≤时,由(1)②得:PF=8t,同理:PE=2t,得出EF=10t,即可得出结果;②当<t≤3时,EF=10t=,即可得出结果;③当3<t<时,同(1)①得:△CPF∽△ABC∽△EPC,得出=,=,得出PF=(15-4t),PE=2(15-4t),求出EF=PF+PE=(15-4t)即可;(4)由题意得出PE:PF=1:2,或PF:PE=1:2,①PE:PF=1:2时,得出PF=EF=5,同理可证:△CPF∽△CDA,得出=,即可得出结果;②PF:PE=1:2时,PF=EF=,则(15-4t)=,解得:t=即可.本题是四边形综合题目,考查了矩形的性质、正方形的性质、勾股定理、相似三角形的判定与性质等知识;本题综合性强,证明三角形相似是解题的关键.24.【答案】解:(1)由题意得:点A'的坐标为(2,1)(2)①当m≥0时,m+1=2,m=1∴B(1,2)∵点B在一次函数y=kx图象上,∴k+3=2,解得:k=+1∴一次函数解析式为y=-x+3②m<0时,m+1=-2,m=-3∴B(-3,-2)∵点B在一次函数y=kx+3图象上,∴-3k+3=-2解得:k=一次函数解析式为y=x+3.(3)设点C的横坐标为n,点C在函数y=-x2+4的图象上,∴点C的坐标为(n,-n2+4),∴点D的坐标为(-n,-n2+4),D′(-n,n2-4)∵CD=DD′,∴2n=2(n2+4),解得:n=;∵点C在第一象限,∴D′的横坐标为;(4)-2≤n≤0、1≤n≤3,当左边的抛物线在上方时,如图①、图②:-2≤n≤0;当右边的抛物线在上方时,如图③、图④:1≤n≤3.【解析】(1)由题意即可求解;(2)分m≥0、m<0两种情况分别求解即可;(3)设点C的横坐标为n,点C在函数y=-x2+4的图象上,CD=DD′,即可求解;(4)通过画图即可求解.本题为二次函数综合应用题,此类新定义类型题目,通常按照题设顺序逐次求解,比较容易求解.。

相关文档
最新文档