2019-2020学年长春市中考数学模拟试卷(有标准答案)(word版)

合集下载

吉林省长春市2019-2020学年中考第四次模拟数学试题含解析

吉林省长春市2019-2020学年中考第四次模拟数学试题含解析

吉林省长春市2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.452.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是()A.2 B.3 C.4 D.53.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.45°B.85°C.90°D.95°4.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的()A.平均数B.中位数C.众数D.方差5.下列各式计算正确的是()A.a4•a3=a12B.3a•4a=12a C.(a3)4=a12D.a12÷a3=a46.下列计算正确的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-47.2017年,太原市GDP突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为()A.3382×108元B.3.382×108元C.338.2×109元D.3.382×1011元8.已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定9.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9 10.实数4的倒数是()A.4 B.14C.﹣4 D.﹣1411.在3-,1-,0,1这四个数中,最小的数是()A.3-B.1-C.0 D.112.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.2C3D.3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x 是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=_____.14.在平面直角坐标系xOy中,位于第一象限内的点A(1,2)在x轴上的正投影为点A′,则cos∠AOA′=__.15.不等式组29611x xx k+>+⎧⎨-<⎩的解集为2x<,则k的取值范围为_____.16.已知线段a=4,b=1,如果线段c是线段a、b的比例中项,那么c=_____.17.方程21x-=1的解是_____.18.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?20.(6分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,2)(1)求抛物线的表达式;(2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使△BMP与△ABD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.21.(6分)如图1,抛物线l1:y=﹣x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣5).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.22.(8分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜.如果指针落在分割线上,则需要重新转动转盘.请问这个游戏对甲、乙双方公平吗?说明理由.23.(8分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.24.(10分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n.(1)请用列表或树状图的方式把(m,n)所有的结果表示出来.(2)求选出的(m,n)在二、四象限的概率.25.(10分)如图1,抛物线y=ax2+(a+2)x+2(a≠0),与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求抛物线的解析式;(2)若PN :PM =1:4,求m 的值;(3)如图2,在(2)的条件下,设动点P 对应的位置是P 1,将线段OP 1绕点O 逆时针旋转得到OP 2,旋转角为α(0°<α<90°),连接AP 2、BP 2,求AP 2+232BP 的最小值. 26.(12分)如图1,直角梯形OABC 中,BC ∥OA ,OA=6,BC=2,∠BAO=45°.(1)OC 的长为 ;(2)D 是OA 上一点,以BD 为直径作⊙M ,⊙M 交AB 于点Q .当⊙M 与y 轴相切时,sin ∠BOQ= ; (3)如图2,动点P 以每秒1个单位长度的速度,从点O 沿线段OA 向点A 运动;同时动点D 以相同的速度,从点B 沿折线B ﹣C ﹣O 向点O 运动.当点P 到达点A 时,两点同时停止运动.过点P 作直线PE ∥OC ,与折线O ﹣B ﹣A 交于点E .设点P 运动的时间为t (秒).求当以B 、D 、E 为顶点的三角形是直角三角形时点E 的坐标.27.(12分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表: 商品名称甲 乙 进价(元/件)40 90 售价(元/件) 60 120设其中甲种商品购进x 件,商场售完这100件商品的总利润为y 元.写出y 关于x 的函数关系式;该商场计划最多投入8000元用于购买这两种商品,①至少要购进多少件甲商品?②若销售完这些商品,则商场可获得的最大利润是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.2.A【解析】试题分析:已知AB是⊙O的弦,半径OC⊥AB于点D,由垂径定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.考点:垂径定理;勾股定理.3.B【解析】【分析】【详解】解:∵AC是⊙O的直径,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分线BD交⊙O于点D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故选B.【点睛】本题考查圆周角定理;圆心角、弧、弦的关系.4.B【解析】【分析】根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数. 【详解】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,故选B.【点睛】本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。

吉林省长春市2019-2020学年中考五诊数学试题含解析

吉林省长春市2019-2020学年中考五诊数学试题含解析

吉林省长春市2019-2020学年中考五诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列大学的校徽图案是轴对称图形的是( )A .B .C .D .2.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p (p a )与它的体积v (m 3)的乘积是一个常数k ,即pv=k (k 为常数,k >0),下列图象能正确反映p 与v 之间函数关系的是( )A .B .C .D .3.如图,已知点A (1,0),B (0,2),以AB 为边在第一象限内作正方形ABCD ,直线CD 与y 轴交于点G ,再以DG 为边在第一象限内作正方形DEFG ,若反比例函数xk y 的图像经过点E ,则k 的值是 ( )(A )33 (B )34 (C )35 (D )364.已知a=127+1)2,估计a 的值在( ) A .3 和4之间B .4和5之间C .5和6之间D .6和7之间 5.已知⊙O 的半径为3,圆心O 到直线L 的距离为2,则直线L 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .不能确定6.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( )A .平均数和中位数不变B .平均数增加,中位数不变C .平均数不变,中位数增加D .平均数和中位数都增大7.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m≤7D .4<m≤78.如图,AB 与⊙O 相切于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,则劣弧»BC的长是( )A .2πB .3πC .4πD .6π 9.如果,则a 的取值范围是( ) A .a>0 B .a≥0 C .a≤0 D .a<010.如图,在△ABC 中,∠B =46°,∠C =54°,AD 平分∠BAC ,交BC 于D ,DE ∥AB ,交AC 于E ,则∠CDE 的大小是( )A .40°B .43°C .46°D .54° 11.若31x -与4x 互为相反数,则x 的值是( ) A .1 B .2 C .3 D .412.如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次的运算结果是____________(用含字母x和n的代数式表示).14.化简:÷(﹣1)=_____.15.函数123y xx=-+-中自变量x的取值范围是___________.16.如图所示,直线y=x+b交x轴A点,交y轴于B点,交双曲线8(0)y xx=>于P点,连OP,则OP2﹣OA2=__.17.2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有________万人.184x-x的取值范围为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知,抛物线y=14x2﹣x+34与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F.(1)A点坐标为;B点坐标为;F点坐标为;(2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BM=FM,在直线AC下方的抛物线上是否存在点P,使S△ACP=4,若存在,请求出点P的坐标,若不存在,请说明理由;(3)如图2,D、E是对称轴右侧第一象限抛物线上的两点,直线AD、AE分别交y轴于M、N两点,若OM•ON=14,求证:直线DE必经过一定点.20.(6分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.21.(6分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.22.(8分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.23.(8分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.(1)求证:△ADC∽△CDB;(2)若AC=2,AB=32CD,求⊙O半径.24.(10分)如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.(1)求证:四边形ABCD是平行四边形;(2)若AB=BE=2,sin∠ACD=3 2,求四边形ABCD的面积.25.(10分)(1)化简:221m2m11m2m4++⎛⎫-÷⎪+-⎝⎭(2)解不等式组31234(1)9xxx+⎧>+⎪⎨⎪+->-⎩.26.(12分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?27.(12分)计算:30﹣|﹣3|+(﹣1)2015+(12)﹣1.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2.C【解析】【分析】根据题意有:pv=k (k 为常数,k >0),故p 与v 之间的函数图象为反比例函数,且根据实际意义p 、v 都大于0,由此即可得.【详解】∵pv=k (k 为常数,k >0)∴p=k v(p >0,v >0,k >0), 故选C .【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.3.D【解析】试题分析:过点E 作EM ⊥OA ,垂足为M ,∵A (1,0),B (0,2),∴OA-1,OB=2,又∵∠AOB=90°,∴AB=22OB OA +=5,∵AB//CD ,∴∠ABO=∠CBG ,∵∠BCG=90°,∴△BCG ∽△AOB ,∴OACB OB CG =,∵BC=AB=5,∴CG=25,∵CD=AD=AB=5,∴DG=35,∴DE=DG=35,∴AE=45,∵∠BAD=90°,∴∠EAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠EAM=∠ABO ,又∵∠EMA=90°,∴△EAM ∽△ABO ,∴OB AM OA EM AB AE ==,即21554AM EM ==,∴AM=8,EM=4,∴AM=9,∴E (9,4),∴k=4×9=36;故选D .考点:反比例函数综合题.4.D【解析】【分析】的范围,进而可得的范围.【详解】解:a=12×(,∵2<3,∴6<<7,∴a 的值在6和7之间,故选D .【点睛】此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.5.A【解析】试题分析:根据圆O 的半径和,圆心O 到直线L 的距离的大小,相交:d <r ;相切:d=r ;相离:d >r ;即可选出答案.解:∵⊙O 的半径为3,圆心O 到直线L 的距离为2,∵3>2,即:d <r ,∴直线L 与⊙O 的位置关系是相交.故选A .考点:直线与圆的位置关系.6.B【解析】【分析】本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.【详解】解:设这家公司除经理外50名员工的工资和为a 元,则这家公司所有员工去年工资的平均数是20000051a +元,今年工资的平均数是22500051a +元,显然 2000002250005151a a ++<; 由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变.故选B .【点睛】本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.7.A【解析】【分析】先解出不等式,然后根据最小整数解为2得出关于m 的不等式组,解之即可求得m 的取值范围.【详解】解:解不等式3x ﹣m+1>0,得:x >13m -, ∵不等式有最小整数解2,∴1≤13m -<2, 解得:4≤m <7,故选A .【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.8.B【解析】解:连接OB ,OC .∵AB 为圆O 的切线,∴∠ABO=90°.在Rt △ABO 中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC ∥OA ,∴∠OBC=∠AOB=60°.又∵OB=OC ,∴△BOC 为等边三角形,∴∠BOC=60°,则劣弧BC 的弧长为601180π⨯=13π.故选B .点睛:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解答本题的关键.9.C【解析】【分析】根据绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1.若|-a|=-a,则可求得a的取值范围.注意1的相反数是1.【详解】因为|-a|≥1,所以-a≥1,那么a的取值范围是a≤1.故选C.【点睛】绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1.10.C【解析】【分析】根据DE∥AB可求得∠CDE=∠B解答即可.【详解】解:∵DE∥AB,∴∠CDE=∠B=46°,故选:C.【点睛】本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.11.D【解析】由题意得31x+4x=0,去分母3x+4(1-x)=0, 解得x=4.故选D.12.B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形. 故选:B .【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2(21)1n n x x -+ 【解析】试题分析:根据题意得121x y x =+;2431x y x =+;3871x y x =+;根据以上规律可得:n y =2(21)1n n x x -+. 考点:规律题.14.﹣.【解析】【分析】直接利用分式的混合运算法则即可得出.【详解】原式.故答案为:.【点睛】 此题主要考查了分式的化简,正确掌握运算法则是解题关键.15.x≤2【解析】试题解析:根据题意得:20 {x30x-≥-≠解得:2x≤. 16.1【解析】解:∵直线y=x+b与双曲线8yx=(x>0)交于点P,设P点的坐标(x,y),∴x﹣y=﹣b,xy=8,而直线y=x+b与x轴交于A点,∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案为1.17.1【解析】分析:用总人数乘以样本中出境游东南亚地区的百分比即可得.详解:出境游东南亚地区的游客约有700×(1﹣16%﹣15%﹣11%﹣13%)=700×45%=1(万).故答案为1.点睛:本题主要考查扇形统计图与样本估计总体,解题的关键是掌握各项目的百分比之和为1,利用样本估计总体思想的运用.18.x≤1【解析】【分析】根据二次根式有意义的条件可求出x的取值范围.【详解】由题意可知:1﹣x≥0,∴x≤1故答案为:x≤1.【点睛】本题考查二次根式有意义的条件,解题的关键是利用被开方数是非负数解答即可.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)(1,0),(3,0),(0,34);(2)在直线AC 下方的抛物线上不存在点P ,使S △ACP =4,见解析;(3)见解析【解析】【分析】 (1)根据坐标轴上点的特点建立方程求解,即可得出结论;(2)在直线AC 下方轴x 上一点,使S △ACH =4,求出点H 坐标,再求出直线AC 的解析式,进而得出点H 坐标,最后用过点H 平行于直线AC 的直线与抛物线解析式联立求解,即可得出结论;(3)联立直线DE 的解析式与抛物线解析式联立,得出213(1)044x k x m -++-=,进而得出44a b k ++=,34ab m -=,再由DAG MAO ∆∆∽得出DG AG MO AO =,进而求出1(3)4OM a -=,同理可得1(3)4ON b -=,再根据111(3)(3)444OM ON a b ⋅-⋅-==,即可得出结论. 【详解】(1)针对于抛物线21344y x x =-+, 令x =0,则34y =, ∴3(0)4F ,,令y =0,则213044x x -+=, 解得,x =1或x =3,∴(10)(30)A B ,,,, 综上所述:0(1)A ,,(30)B ,,3(0)4F ,; (2)由(1)知,(30)B ,,3(0)4F ,, ∵BM =FM , ∴33(,)28M , ∵0(1)A ,, ∴直线AC 的解析式为:33y x 44=-, 联立抛物线解析式得:233441344y x y x x ⎧=-⎪⎪⎨⎪=-+⎪⎩,解得:111 0x y =⎧⎨=⎩或226154xy=⎧⎪⎨=⎪⎩,∴15(6,)4C,如图1,设H是直线AC下方轴x上一点,AH=a且S△ACH=4,∴115424a⨯=,解得:3215a=,∴47(,0)15H,过H作l∥AC,∴直线l的解析式为347420y x=-,联立抛物线解析式,解得2535620x x-+=,∴4949.60.60∆--<==,即:在直线AC下方的抛物线上不存在点P,使4ACPSV=;(3)如图2,过D,E分别作x轴的垂线,垂足分别为G,H,设213(,)44D a a a-+,213(,)44E b b b-+,直线DE的解析式为y kx m+=,联立直线DE的解析式与抛物线解析式联立,得213(1)044x k x m-++-=,∴44a b k++=,34ab m-=,∵DG⊥x轴,∴DG∥OM,∴DAG MAO∆∆∽,∴DG AGMO AO=,即1(1)(3)141a a aOM---=,∴1(3)4OM a-=,同理可得1(3)4ON b-=∴111(3)(3)444OM ON a b ⋅-⋅-==, ∴3()50ab a b -++=,即343(44)50m k --++=,∴31m k =--,∴直线DE 的解析式为31(3)1y kx k k x ----==, ∴直线DE 必经过一定点(3,1)-.【点睛】本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.20.证明见解析.【解析】试题分析:由1=2∠∠,可得,CAB EAD ∠=∠,,AC AE AB AD ==Q 则可证明ABC ADE ≅V V ,因此可得.BC DE =试题解析:1=2∠∠Q ,12,EAB EAB ∴∠+∠=∠+∠即CAB EAD ∠=∠,在ABC V 和ADE V 中,{AC AECAB EAD AB AD=∠=∠=(),ABC ADE SAS ∴≅V V .BC DE ∴=考点:三角形全等的判定.21.∠DAC=20°.【解析】【分析】根据角平分线的定义可得∠ABC=2∠ABE ,再根据直角三角形两锐角互余求出∠BAD ,然后根据∠DAC=∠BAC ﹣∠BAD 计算即可得解.【详解】∵BE 平分∠ABC ,∴∠ABC=2∠ABE=2×25°=50°.∵AD 是BC 边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC ﹣∠BAD=60°﹣40°=20°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.22.(1)抛物线解析式为y=﹣12x 2+2x+6;(2)当t=3时,△PAB 的面积有最大值;(3)点P (4,6). 【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM ,先求出直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6),则N (t ,﹣t+6),由S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM=12PN•OB 列出关于t 的函数表达式,利用二次函数的性质求解可得;(3)由PH ⊥OB 知DH ∥AO ,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE 为等腰直角三角形,则∠EDP=45°,从而得出点E 与点A 重合,求出y=6时x 的值即可得出答案.【详解】(1)∵抛物线过点B (6,0)、C (﹣2,0),∴设抛物线解析式为y=a (x ﹣6)(x+2),将点A (0,6)代入,得:﹣12a=6,解得:a=﹣12, 所以抛物线解析式为y=﹣12(x ﹣6)(x+2)=﹣12x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6),∴PN=PM﹣MN=﹣12t2+2t+6﹣(﹣t+6)=﹣12t2+2t+6+t﹣6=﹣12t2+3t,∴S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•(AG+BM)=12 PN•OB=12×(﹣12t2+3t)×6=﹣32t2+9t=﹣32(t﹣3)2+272,∴当t=3时,△PAB的面积有最大值;(3)△PDE为等腰直角三角形,则PE=PD,点P(m,-12m2+2m+6),函数的对称轴为:x=2,则点E的横坐标为:4-m,则PE=|2m-4|,即-12m2+2m+6+m-6=|2m-4|,解得:m=4或-2或-2和)故点P的坐标为:(4,6)或(,).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.23.(1)见解析;(2【解析】分析: (1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.(2)首先设CD为x,则AB=32x,OC=OB=34x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得:ACCB=CDBD,据此求出CB的值是多少,即可求出⊙O半径是多少.详解:(1)证明:如图,连接CO,,∵CD 与⊙O 相切于点C ,∴∠OCD=90°,∵AB 是圆O 的直径,∴∠ACB=90°,∴∠ACO=∠BCD ,∵∠ACO=∠CAD ,∴∠CAD=∠BCD ,在△ADC 和△CDB 中,CAD BCD ADC CDB ∠=∠⎧⎨∠=∠⎩∴△ADC ∽△CDB .(2)解:设CD 为x ,则AB=32x ,OC=OB=34x , ∵∠OCD=90°,∴22OC CD +223()4x x +=54x , ∴BD=OD ﹣OB=54x ﹣34x=12x , 由(1)知,△ADC ∽△CDB , ∴AC CB =CD BD, 即212x CB x =, 解得CB=1,∴22AC BC +5∴⊙O 5. 点睛: 此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.24.(1)证明见解析;(2)S 平行四边形ABCD 3.【解析】试题分析:(1)根据平行四边形的性质得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根据平行线的判定得出AD ∥BC ,根据平行四边形的判定推出即可;(2)证明△ABE 是等边三角形,得出AE=AB=2,由直角三角形的性质求出CE 和DE ,得出AC 的长,即可求出四边形ABCD 的面积.试题解析:(1)∵AB ∥CD ,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC ,∴∠ADC+∠BCD=180°,∴AD ∥BC ,∵AB ∥CD ,∴四边形ABCD 是平行四边形;(2)∵sin ∠ACD=2,∴∠ACD=60°, ∵四边形ABCD 是平行四边形,∴AB ∥CD ,CD=AB=2,∴∠BAC=∠ACD=60°,∵AB=BE=2,∴△ABE 是等边三角形,∴AE=AB=2,∵DE ⊥AC ,∴∠CDE=90°﹣60°=30°,∴CE=12 CD=1,∴AC=AE+CE=3,∴S 平行四边形ABCD =2S △ACD25.(1)21m m -+;(2)﹣2<x<1 【解析】【分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【详解】 (1)原式=21(2)(2)2m 2(1)1m m m m m m ++--⋅=+++; (2)不等式组整理得:12x x <⎧⎨>-⎩, 则不等式组的解集为﹣2<x<1.【点睛】此题考查计算能力,(1)考查分式的化简,正确将分子与分母分解因式及按照正确运算顺序进行计算是解题的关键;(2)是解不等式组,注意系数化为1时乘或除以的是负数时要变号.26.(1)60;(2)s =10t -6000;(3)乙出发5分钟和1分钟时与甲在途中相遇;(4)乙从景点B 步行到景点C 的速度是2米/分钟.【解析】【分析】(1)观察图像得出路程和时间,即可解决问题.(2)利用待定系数法求一次函数解析式即可;(3)分两种情况讨论即可;(4)设乙从B步行到C的速度是x米/分钟,根据当甲到达景点C时,乙与景点C的路程为360米,所用的时间为(90-60)分钟,列方程求解即可.【详解】(1)甲的速度为540090=60米/分钟.(2)当20≤t ≤1时,设s=mt+n,由题意得:200 303000 m nm n+=⎧⎨+=⎩,解得:3006000mn=⎧⎨=-⎩,所以s=10t-6000;(3)①当20≤t ≤1时,60t=10t-6000,解得:t=25,25-20=5;②当1≤t ≤60时,60t=100,解得:t=50,50-20=1.综上所述:乙出发5分钟和1分钟时与甲在途中相遇.(4)设乙从B步行到C的速度是x米/分钟,由题意得:5400-100-(90-60)x=360解得:x=2.答:乙从景点B步行到景点C的速度是2米/分钟.【点睛】本题考查了待定系数法求一次函数解析式、行程问题等知识,解题的关键是理解题意,读懂图像信息,学会构建一次函数解决实际问题,属于中考常考题型.27.-1【解析】分析:根据零次幂、绝对值以及负指数次幂的计算法则求出各式的值,然后进行求和得出答案.详解:解:0﹣|﹣3|+(﹣1)2015+(12)﹣1=1﹣3+(﹣1)+2=﹣1.点睛:本题主要考查的是实数的计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.。

2019-2020学年吉林省长春市朝阳区中考模拟试卷数学卷(有标准答案)

2019-2020学年吉林省长春市朝阳区中考模拟试卷数学卷(有标准答案)

吉林省长春市朝阳区东北师大附中中考模拟试卷数学试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.−2的绝对值等于()A. −12B. 12C. −2D. 22.研究表明,可燃冰是一种可替代石油的新型清洁能源,在我国某海域已探明的可燃冰储存量达150000000000立方米,其中数字150 000 000 000用科学记数法可表示为()A. 15×1010B. 0.15×1012C. 1.5×1011D. 1.5×10123.如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.4.不等式组{32−12x≤0x+2>0的解集在数轴上表示正确的是()A.B.C.D.5.方程4x2−2x+14=0根的情况是()A. 有两个相等的实数根B. 只有一个实数根C. 没有实数根D. 有两个不相等的实数根6.如图xx//xx,点E是CD上一点,EF平分∠xxx交AB于点F,若∠xxx=42∘,则∠xxx的度数为()A. 42∘B. 65∘C. 69∘D. 71∘7.如图,⊙x的直径xx=4,BC切⊙x于点B,OC平行于弦AD,xx=5,则AD的长为()A. 65B. 85C. √75D. 2√358.如图,A,B两点在反比例函数x=x1x 的图象上,C,D两点在反比例函数x=x2x的图象上,xx⊥x轴于点E,xx⊥x轴于点F,xx=2,xx=1,xx=3,则x1−x2的值是()A. 6B. 4C. 3D. 2二、填空题(本大题共6小题,共18.0分)9.计算:√2×√3=______.10.分解因式:x2x−x=______.11.如图,从边长为(x+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是______.12.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为______尺.13.如图,四边形ABCD中,xx=xx,xx//xx,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,xx=5,则图中阴影部分扇形面积是______.14.如图,在平面直角坐标系中,二次函数x=−x2+xx+5的图象与y轴交于点B,以点C为圆心的),则b的值为______.半圆与抛物线x=−x2+xx+5相交于点A、x.若点C的坐标为(−1,72三、计算题(本大题共2小题,共12.0分)15.先化简,再求值:(2x−3)(2x+3)−(x+1)(4x−2),其中x=7.216.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的2,那么乙也共有钱48文.甲、乙两3人原来各有多少钱?四、解答题(本大题共8小题,共66.0分)17.甲、乙两个不透明的口袋中各装有3个小球,它们除所标数字不同外其余均相同.甲口袋中小球分别标有数字1,6,7,乙口袋中小球分别标有数字1,2,4.现从甲口袋中随机摸出1个小球,记下标号;再从乙口袋中随机摸出1个小球,记下标号.用树状图(或列表)的方法,求两次摸出小球的标号之积是偶数的概率.18.第24届冬季奥林匹克运动会将于2022年02月04日~2022年02月20日在我国北京举行,全国人民掀起了雪上运动热潮.如图,一名滑雪运动员沿着倾斜角为34∘的斜坡,从A滑行至x.若这名滑雪运动员的高度下降了300米,求他沿斜坡滑行了多少米?(结果精确到0.1米)(参考数据:sin34∘=0.56,cos34∘=0.83,tan34∘=0.67)19.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图.请结合图中所给信息解答下列问题:(1)本次调查的学生共有______人,在扇形统计图中,m的值是______.(2)分别求出参加调查的学生中选择绘画和书法的人数,并将条形统计图补充完整.(3)该校共有学生2000人,估计该校约有多少人选修乐器课程?20.如图,在△xxx中,xx=xx,点D是边BC的中点,过点A、D分别作BC与AB的平行线,相交于点E,连结EC、xx.求证:四边形ADCE是矩形.21.某工厂安排甲、乙两个运输队各从仓库调运物资300吨,两队同时开始工作,甲运输队工作3天后因.甲、乙运故停止,2天后重新开始工作,由于工厂调离了部分工人,甲运输的工作效率降低到原来的12输队调运物资的数量x(吨)与甲工作时间x(天)的函数图象如图所示.(1)x=______;x=______.(2)求甲运输队重新开始工作后,甲运输队调运物资的数量x(吨)与工作时间x(天)的函数关系式;(3)直接写出乙运输队比甲运输队多运50吨物资时x的值.22.感知:如图1,在△xxx中,D、E分别是AB、AC两边的中点,延长DE至点F,使xx=xx,连结xx.易知△xxx≌△xxx.探究:如图2,AD是△xxx的中线,BE交AC于点E,交AD于点F,且xx=xx,求证:xx=xx.应用:如图3,在△xxx中,∠x=60∘,xx=4,xx=6,DE是△xxx的中位线.过点D、E 作xx//xx,分别交边BC于点F、G,过点A作xx//xx,分别与FD、GE的延长线交于点M、N,则四边形MFGN周长C的取值范围是______.23.如图1,在▱ABCD中,xx=6xx,xx=8xx,∠xxx=120∘,射线AE平分∠xxx.动点P以1xx/x的速度沿AD向终点D运动,过点P作xx⊥xx交AE于点Q,过点P作xx//xx,过点Q作xx//xx,交PM于点x.设点P的运动时间为x(x),四边形APMQ与四边形ABCD重叠部分面积为x(xx2).(1)xx=______.(用含t的代数式表示)(2)当点M落在CD上时,求t的值.(3)求S与t之间的函数关系式.(4)如图2,连结AM,交PQ于点G,连结AC、BD交于点H,直接写出t为何值时,GH与三角形ABD的一边平行或共线.24.定义:如图1,在平面直角坐标系中,点M是二次函数x1图象上一点,过点M作x⊥x轴,如果二次函数x2的图象与x1关于l成轴对称,则称x2是x1关于点M的伴随函数.如图2,在平面直角坐标系中,二次函数x1的函数表达式是x=−2x2+2,点M是二次函数x1图象上一点,且点M的横坐标为m,二次函数x2是x1关于点M的伴随函数.(1)若x=1,①求x2的函数表达式.②点x(x,x1),x(x+1,x2)在二次函数x2的图象上,若x1≥x2,a的取值范围为______.(2)过点M作xx//x轴,①如果xx=4,线段MN与x2的图象交于点P,且MP:xx=1:3,求m的值.②如图3,二次函数x2的图象在MN上方的部分记为x1,剩余的部分沿MN翻折得到x2,由x1和x2所组成的图象记为x.以x(1,0)、x(3,0)为顶点在x轴上方作正方形xxxx.直接写出正方形ABCD与G 有三个公共点时m的取值范围.答案和解析【答案】1. D2. C3. A4. A5. A6. C7. B8. D9. √610. x (x +1)(x −1) 11. x +6 12. 57.5 13.25x614. −1215. 解:(2x −3)(2x +3)−(x +1)(4x −2)=4x 2−9−4x 2−2x +2=−2x −7,当x =72时,原式=−2×72−7=−7−7=−14.16. 解:设甲原有x 文钱,乙原有y 文钱,由题意可得,{x +12x =4823x +x =48,解得:{x =24x =36,答:甲原有36文钱,乙原有24文钱.17. 解:列表得:甲 乙1 6 7 1 1 6 72 2 12 14 442428∴x (两次摸出的小球标号之积是偶数)=79.18. 解:如图在xx △xxx 中,xx =300米,∠xxx =90∘,∠xxx =34∘,则xx =xx ÷sin 34∘=300÷0.56≈535.7x . 答:他沿斜坡大约滑行了535.7米.19. 50;30%20. 证明:∵xx//xx,xx//xx∴四边形ABDE是平行四边形∴xx=xx,xx=xx∵xx=xx∴xx=xx∵点D是BC的中点∴xx=xx xx⊥xx所以xx=xx,xx//xx∴四边形ADCE是平行四边形∵∠xxx=90∘∴平行四边形ADCE是矩形21. 5;1122. 4√3+6≤x≤4√7+623. √3x24. x≥32【解析】1. 解:根据绝对值的性质,|−2|=2.故选:D.根据绝对值的性质:一个负数的绝对值是它的相反数解答即可.本题考查了绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.2. 解:150000000000=1.5×1011,故选:C.科学记数法的表示形式为x×10x的形式,其中1≤|x|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为x×10x的形式,其中1≤|x|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:A.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.4. 解:{32−12x≤0①x+2>0②∵解不等式①得:x≥3,解不等式②得:x>−2,∴不等式组的解集为x≥3,在数轴上表示为:,故选:A.先求出不等式组的解集,再在数轴上表示出解集即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.5. 解:∵△=(−2)2−4×4×14=4−4=0,∴有两个相等的实数根,故选:A.计算出判别式的值即可判断.本题考查了一元二次方程xx2+xx+x=0(x≠0)的根的判别式△=x2−4xx:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 解:∵∠xxx=42∘,∴∠xxx=180∘−∠xxx=138∘,∵xx平分∠xxx,∴∠xxx=12∠xxx=69∘,又∵xx//xx,∴∠xxx=∠xxx=69∘.故选:C.由平角求出∠xxx的度数,由角平分线得出∠xxx的度数,再由平行线的性质即可求出∠xxx的度数.本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠xxx的度数是解决问题的关键.7. 解:连接BD.∵xx是直径,∴∠xxx=90∘.∵xx//xx,∴∠x=∠xxx,∴cos∠x=cos∠xxx.∵xx切⊙x于点B,∴xx⊥xx,∴cos∠xxx=xxxx =25,∴cos∠x=cos∠xxx=25.又∵cos∠x=xxxx,xx=4,∴xx=85.故选:B.首先由切线的性质得出xx⊥xx,根据锐角三角函数的定义求出cos∠xxx的值;连接BD,由直径所对的圆周角是直角,得出∠xxx=90∘,又由平行线的性质知∠x=∠xxx,则cos∠x=cos∠xxx,在直角△xxx中,由余弦的定义求出AD的长.本题综合考查切线、平行线、圆周角的性质,锐角三角函数的定义等知识点的运用.此题是一个综合题,难度中等.8. 解:连接OA、OC、OD、OB,如图:由反比例函数的性质可知x△xxx=x△xxx=12|x1|=12x1,x△xxx=x△xxx=12|x2|=−12x2,∵x△xxx=x△xxx+x△xxx,∴12xx⋅xx=12×2xx=xx=12(x1−x2)…①,∵x△xxx=x△xxx+x△xxx,∴12xx⋅xx=12×(xx−xx)=12×(3−xx)=32−12xx=12(x1−x2)…②,由①②两式解得xx=1,则x1−x2=2.故选:D.由反比例函数的性质可知x△xxx=x△xxx=12x1,x△xxx=x△xxx=−12x2,结合x△xxx=x△xxx+x△xxx和x△xxx=x△xxx+x△xxx可求得x1−x2的值.本题考查反比例函数图象上的点的坐标特征,解题的关键是利用参数,构建方程组解决问题,属于中考常考题型.9. 解:√2×√3=√6;故答案为:√6.根据二次根式的乘法法则进行计算即可.此题考查了二次根式的乘法,掌握二次根式的运算法则:乘法法则√x⋅√x=√xx是本题的关键,是一道基础题.10. 解:x2x−x,=x(x2−1),=x(x+1)(x−1),故答案为:x(x+1)(x−1).观察原式x2x−x,找到公因式y后,提出公因式后发现x2−1符合平方差公式,利用平方差公式继续分解可得.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11. 解:拼成的长方形的面积=(x +3)2−32,=(x +3+3)(x +3−3), =x (x +6),∵拼成的长方形一边长为a , ∴另一边长是x +6. 故答案为:x +6.根据拼成的长方形的面积等于大正方形的面积减去小正方形的面积列式整理即可得解. 本题考查了平方差公式的几何背景,表示出剩余部分的面积是解题的关键.12. 解:如图,依题意有△xxx ∽△xxx ,∴xx :xx =xx :DE , 即5:xx =0.4:5, 解得xx =62.5,∴xx =xx −xx =62.5−5=57.5(尺). 故答案为57.5.根据题意可知△xxx ∽△xxx ,根据相似三角形的性质可求AD ,进一步得到井深. 本题考查了相似三角形的判定与性质,解题的关键是得到△xxx ∽△xxx .13. 解:∵四边形AECD 是平行四边形,∴xx =xx ,∵xx =xx =xx =6, ∴xx =xx =xx , ∴△xxx 是等边三角形, ∴∠x =60∘, ∴x 扇形xxx =60x ×52360=25x6. 故答案为:25x6. 证明△xxx 是等边三角形,∠x =60∘,根据扇形的面积公式计算即可.本题考查了平行四边形的性质、等边三角形的判定和性质、扇形的面积公式,熟练掌握扇形的面积公式是本题的关键,扇形面积计算公式:设圆心角是x ∘,圆的半径为R 的扇形面积为S ,则x 扇形=xxx 2360或x扇形=12xx (其中l 为扇形的弧长).14. 解:当x =0时,x =5,则x (0,5),设x (x ,x ),则{x +02=−1x +52=72,x=−2,解得:{x=2所以点x(−2,2),将点x(−2,2)代入,得:−4−2x+5=2,解得:x=−1,2.故答案为:−12先根据解析式求得点B的坐标,再由点C是AB中点,利用中点的坐标公式求得点A的坐标,代入解析式即可求出b的值.本题主要考查二次函数图象上点的坐标特征,解题的关键是掌握中点坐标的计算公式求得点A的坐标及抛物线上点的坐标符合函数解析式.15. 根据平方差公式和多项式乘多项式可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.本题考查整式的混合运算−化简求值,解答本题的关键是明确整式化简求值的计算方法.16. 根据甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱,那么乙也共有钱48文,可以列出方程组,从而可以解答本题.的23本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.17. 首先列表将所有等可能的结果全部列举出来,利用概率公式求解即可求出两次摸出小球的标号之积是偶数的概率..本题考查了列表法与树状图法求概率,解题的关键是通过列表或树形图能够将所有等可能的结果全部列举出来,难度不大.18. 如图,在xx△xxx中,根据三角函数可得xx=xx÷sin34∘,可求他沿斜坡滑行了多少米.本题考查解直角三角形、坡度坡角问题、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的定义,属于中考常考题型.19. 解:(1)本次调查的学生共有20÷40%=50(人),x=15÷50=30%;故答案为:50;30%;(2)绘画的人数50×20%=10(人),书法的人数50×10%=5(人),如图所示:(3)估计该校选修乐器课程的人数为2000×30%=600人.(1)由舞蹈的人数除以占的百分比求出调查学生总数,确定出扇形统计图中m的值;(2)求出绘画与书法的学生数,补全条形统计图即可;(3)总人数乘以样本中选修乐器课程人数所占百分比可得.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20. 首先证明四边形ABDE是平行四边形,再证明四边形ADCE是平行四边形,由∠xxx=90∘,即可推出四边形ADCE是矩形.本题考查等腰三角形的性质、平行四边形的判定和性质、矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21. 解:(1)∵甲运输队工作3天后因故停止,2天后重新开始工作∴x=3+2=5∵甲运输的工作效率降低到原来的12∴原来3天调运150吨,现在需6天调运150吨.∴x=5+6=11(2)设函数关系式为x=xx+x,∵图象过(5,150),(11,300)150=5x+x∴{300=11x+xx=25解得:{x=25∴解析式x=25x+25(3)由题意得:乙运输队调运物资的数量x(吨)与工作时间x(天)的函数关系式:x=37.5x①若乙运输队调运物资没有完成.∵乙运输队比甲运输队多运50吨物资∴37.5x−(25x+25)=50∴x=6当乙运输队运输完物资后,∵乙运输队比甲运输队多运50吨物资∴300−(25x+25)=50∴x=9∴x=6或9(1)根据题意可以求a,b的值.(2)设解析式为x=xx+x且过(5,150),(11,300),用待定系数法可求解析式.(3)由乙运输队比甲运输队多运50吨物资,可得x 乙−x 甲=50,代入可得x 的值. 本题考查一次函数的图象性质,本题关键是用待定系数法求一次函数解析式.22. 探究:证明:如图2,延长AD 至点M ,使xx =xx ,连接MC ,在△xxx 和△xxx 中,{xx =xx∠xxx =∠xxx xx =xx,∴△xxx ≌△xxx (xxx ). ∴xx =xx ,∠x =∠xxx . ∵xx =xx , ∴∠xxx =∠xxx , ∵∠xxx =∠xxx , ∴∠x =∠xxx , ∴xx =xx , ∴xx =xx ;应用:解:如图2,∵xx //xx ,xx //xx , ∴四边形MFGN 是平行四边形, ∴xx =xx ,xx =xx , ∵xx 是△xxx 的中位线, ∴xx =12xx =3,xx //xx , ∴xx =xx =12xx =3,∴四边形MFGN 周长=2(xx +xx )=2xx +6, ∴xx ⊥xx 时,MF 最短, 即:四边形MFGN 的周长最小, 过点A 作xx ⊥xx 于H , ∴xx =xx在xx △xxx 中,∠x =60∘,xx =4, ∴xx =xx sin x =4×√32=2√3,xx =2,∴xx =4,∴xx =2√7>xx∴四边形MFGN 的周长C 最小为2xx +6=2xx +6=4√3+6, 四边形MFGN 的周长C 最大为2xx +6=2xx +6=4√7+6,(如图4) 故答案为:4√3+6≤x ≤4√7+6.探究:先判断出△xxx ≌△xxx 进而得出xx =xx ,∠x =∠xxx .再判断出∠x =∠xxx 得出xx =xx 即可得出结论;应用:先判断出四边形MFGN是平行四边形,再判断出xx=xx=xx=4,进而判断出xx⊥xx时,四边形MFGN的周长最小和点G和C重合时最大,最后构造出直角三角形求出AH即可得出结论.此题是四边形综合题,主要考查了全等三角形的判定和性质,三角形的中位线,平行四边形的判定和性质,平行线间的距离,解探究关键是△xxx≌△xxx,解应用的关键是判断出xx⊥xx时,四边形MFGN 的周长最小和点G和C重合时最大.23. 解:(1)如图1中,∵∠xxx=120∘,AE平分∠xxx,∴∠xxx=60∘,∵xx⊥xx,∴∠xxx=90∘,∴tan60∘=xx,xx∴xx=√3x.故答案为√3x.(2)如图2中,∵四边形ABCD是平行四边形,∴xx//xx,∴∠x=180∘−∠xxx=60∘,∵xx//xx,xx//xx,∴∠xxx=∠xxx=60∘,四边形APMQ是平行四边形,∴△xxx是等边三角形,xx=xx=2xx=2x,∴xx =xx , ∴6−x =2x , ∴x =2.(3)①当0<x ≤2时,如图1中,重叠部分是平行四边形APMQ ,x =xx ⋅xx =√3x 2.②如图3中,当2<x ≤3时,重叠部分五边形APSTQ ,x =√3x 2−√34(3x −6)2=−5√34x 2+9√3x −9√3.③如图4中,当3<x ≤6时,重叠部分是四边形PSTA .x =x △xxx −x △xxx =√34×62−√34⋅(6−x )2=−√34x 2+3√3x .综上所述,x ={ √3x2(0<x ≤2)−5√34x 2+9√3x −9√3(2<x ≤3)−√34x 2+3√3x (3<x ≤6).(4)如图5中,当xx //xx 时,∵xx =xx , ∴点M 在线段CD 上,此时x =2x .如图6中,当GH与BD重合时,作xx⊥xx交DA的延长线于T.在xx△xxx中,∵xx=8,∠xxx=60∘,∴xx=12xx=4,xx=4√3,∵xx//xx,∴xxxx =xxxx,∴√32x4√3=6−x10,解得x=83x.如图7中,当xx//xx时,易证B、C、Q共线,可得△xxx是等边三角形,xx=xx=xx=8,∴xx=2x=8,∴x=4x,综上所述,x=2x或83x或4s时,GH与三角形ABD的一边平行或共线.(1)在xx△xxx中,解直角三角形即可;(2)只要证明△xxx是等边三角形,构建方程即可解决问题;(3)分三种情形:①当0<x≤2时,如图1中,重叠部分是平行四边形APMQ,x=xx⋅xx=√3x2.②如图3中,当2<x≤3时,重叠部分五边形APSTQ;③如图4中,当3<x≤6时,重叠部分是四边形xxxx.分别求解即可;(4)分三种情形讨论求解即可解决问题;本题考查四边形综合题、等边三角形的判定和性质、平行线分线段成比例定理、勾股定理、平行四边形的判定和性质、多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想思考问题,属于中考压轴题.24. 解:(1)①当x=1时,抛物线x2与抛物线x1关于直线x=1对称∴抛物线x2的顶点时(2,2)∴抛物线x2的解析式为x=−2(x−2)2+2=−2x2+8x−6②∵点x(x,x1),x(x+1,x2)在二次函数x2的图象上∴x2−x1=−2(x+1)2+8(x+1)−6−(−2x2+8x−6)=−4x+6当x1≥x2时−4x+6≤0∴x≥3 2故答案为:x≥32(2)①∵xx//x轴,MP:xx=1:3∴xx=1当x>0时,2x=1x=1 2当x<0时,−2x=1x=−1②分析图象可知:当x=12时,可知C1和G的对称轴关于直线x=12对称,x2的顶点恰在AD上,此时G与正方形恰由2个交点.当x=1时,直线MN与x轴重合,G与正方形恰由三个顶点.当x=2时,G过点x(3,0)且G对称轴左侧部分与正方形有两个交点当x=2或12<x≤1时,G与正方形ABCD有三个公共点.(1)根据对称性可求得x2解析式,将x(x,x1),x(x+1,x2)代入解析式用求差法得到a的范围;...(2)通过分类讨论探究m的变化对于图象G位置的变化.本题为二次函数综合题,考查了二次函数图象性质和轴对称图形性质.解答关键是研究动点到达临界点时图形的变化,从而得到临界值....。

吉林省长春市2019-2020学年中考数学五模考试卷含解析

吉林省长春市2019-2020学年中考数学五模考试卷含解析

吉林省长春市2019-2020学年中考数学五模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.某中学篮球队12名队员的年龄如下表: 年龄:(岁) 13 14 15 16 人数1542关于这12名队员的年龄,下列说法错误的是( ) A .众数是14岁B .极差是3岁C .中位数是14.5岁D .平均数是14.8岁2.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm3.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为( ) A .7.1×107B .0.71×10﹣6C .7.1×10﹣7D .71×10﹣84.已知一元二次方程x 2-8x+15=0的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( ) A .13B .11或13C .11D .125.两个一次函数1y ax b =+,2y bx a =+,它们在同一直角坐标系中的图象大致是( )A .B .C .D .6.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为( )7.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当t=3时,机器人一定位于点O;③机器人一定经过点D;④机器人一定经过点E;其中正确的有()A.①④B.①③C.①②③D.②③④8.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.9.正比例函数y=(k+1)x,若y随x增大而减小,则k的取值范围是()A.k>1 B.k<1 C.k>﹣1 D.k<﹣110.如图是一个正方体展开图,把展开图折叠成正方体后,“爱”字一面相对面上的字是()A.美B.丽C.泗D.阳11.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.11910813x yy x x y=⎧⎨+-+=()()B .10891311y x x yx y+=+⎧⎨+=⎩C .91181013x y x y y x ()()=⎧⎨+-+=⎩D .91110813x yy x x y =⎧⎨+-+=⎩()()12.下列说法中不正确的是( )A .全等三角形的周长相等B .全等三角形的面积相等C .全等三角形能重合D .全等三角形一定是等边三角形 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____. 14.若分式67x--的值为正数,则x 的取值范围_____. 15.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .16.已知y 与x 的函数满足下列条件:①它的图象经过(1,1)点;②当1x >时,y 随x 的增大而减小.写出一个符合条件的函数:__________.17.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m 、n 的式子表示AB 的长为______.18.计算(﹣3)+(﹣9)的结果为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,一次函数y=k 1x+b(k 1≠0)与反比例函数22 ( 0 )k y k x=≠的图象交于点A(-1,2),B(m ,-1).求一次函数与反比例函数的解析式;在x 轴上是否存在点P(n ,0),使△ABP 为等腰三角形,请你直接写出P 点的坐标.20.(6分)(1)计算:|﹣3|﹣16﹣2sin30°+(﹣12)﹣2(2)化简:22222()x x y x yx y x y x y +--÷++-. 21.(6分)校园手机现象已经受到社会的广泛关注.某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查.并将调查数据作出如下不完整的整理; 看法 频数 频率 赞成 5 无所谓 0.1 反对400.8(1)本次调查共调查了 人;(直接填空)请把整理的不完整图表补充完整;若该校有3000名学生,请您估计该校持“反对”态度的学生人数.22.(8分)如图,在等边ABC V 中,BC 5cm =,点D 是线段BC 上的一动点,连接AD ,过点D 作DE AD ⊥,垂足为D ,交射线AC 与点E.设BD 为xcm ,CE 为ycm .小聪根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小聪的探究过程,请补充完整:()1y/cm 5.0 3.3 2.0___ 0.40 0.30.40.30.20(说明:补全表格上相关数值保留一位小数)()2建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;()3结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为_____cm.23.(8分)如图,AB是⊙O的直径,C、D为⊙O上两点,且»»AC BD,过点O作OE⊥AC于点E⊙O=的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.(1)求证:∠F=∠B;(2)若AB=12,BG=10,求AF的长.24.(10分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图1中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=2a=,b=;如图2,当∠ABE=10°,c=4时,a=,b=;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;拓展应用(1)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=25,AB=1.求AF的长.25.(10分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.26.(12分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?27.(12分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;极差是:16﹣13=3,故选项B正确,不合题意;中位数是:14.5,故选项C正确,不合题意;平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.故选D.“点睛”此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.2.C△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.00000071的小数点向或移动7位得到7.1,所以0.00000071用科学记数法表示为7.1×10﹣7,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.B【解析】试题解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1;若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11,综上,△ABC的周长为11或1.故选B.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.5.B【解析】【分析】根据各选项中的函数图象判断出a、b的符号,然后分别确定出两直线经过的象限以及与y轴的交点位置,解:由图可知,A、B、C选项两直线一条经过第一三象限,另一条经过第二四象限,所以,a、b异号,所以,经过第一三象限的直线与y轴负半轴相交,经过第二四象限的直线与y轴正半轴相交,B选项符合,D选项,a、b都经过第二、四象限,所以,两直线都与y轴负半轴相交,不符合.故选:B.【点睛】本题考查了一次函数的图象,一次函数y=kx+b(k≠0),k>0时,一次函数图象经过第一三象限,k<0时,一次函数图象经过第二四象限,b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.6.B【解析】【分析】由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.【详解】∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=1.∵上边的数与左边的数的和正好等于右边的数,∴a=11+1=2.故选B.【点睛】本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键.7.C【解析】【分析】根据图象起始位置猜想点B或F为起点,则可以判断①正确,④错误.结合图象判断3≤t≤4图象的对称性可以判断②正确.结合图象易得③正确.【详解】解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1.故①正确;观察图象t在3-4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故②正确;所有点中,只有点D到A距离为2个单位,故③正确;【点睛】本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势.8.B【解析】【分析】根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.【详解】由图可知所给的平面图形是一个长方形,长方形绕一边所在直线旋转一周得圆柱,故选B.【点睛】本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键.9.D【解析】【分析】根据正比例函数图象与系数的关系列出关于k的不等式k+1<0,然后解不等式即可.【详解】解:∵正比例函数y=(k+1)x中,y的值随自变量x的值增大而减小,∴k+1<0,解得,k<-1;故选D.【点睛】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.10.D【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”字一面相对面上的字是“阳”;。

2019-2020学年吉林省长春市中考数学考试试题

2019-2020学年吉林省长春市中考数学考试试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.2.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1D.k≥12且k≠13.如图,能判定EB∥AC的条件是( )A.∠C=∠ABE B.∠A=∠EBD C.∠A=∠ABE D.∠C=∠ABC4.在函数y=x中,自变量x的取值范围是( )A.x≥1B.x≤1且x≠0C.x≥0且x≠1D.x≠0且x≠15.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是()A.若这5次成绩的中位数为8,则x=8B.若这5次成绩的众数是8,则x=8C.若这5次成绩的方差为8,则x=8D.若这5次成绩的平均成绩是8,则x=86.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D7.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.28.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数kyx=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )A.92B.74C.245D.129.关于x的正比例函数,y=(m+1)23mx-若y随x的增大而减小,则m的值为()A.2 B.-2 C.±2 D.-1 210.已知一个多边形的内角和是外角和的3倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形二、填空题(本题包括8个小题)11.如图,数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,若原点O是线段AC 上的任意一点,那么a+b-2c= ______ .12.若a2+3=2b,则a3﹣2ab+3a=_____.13.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.14.函数11yx=-的自变量的取值范围是.15.已知⊙O半径为1,A、B在⊙O上,且2AB=,则AB所对的圆周角为__o.16.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,则∠ADB′等于_____.17.如图,已知函数y=x+2的图象与函数y=kx(k≠0)的图象交于A、B两点,连接BO并延长交函数y=kx(k≠0)的图象于点C,连接AC,若△ABC的面积为1.则k的值为_____.18.如果抛物线y=ax2+5的顶点是它的最低点,那么a的取值范围是_____.三、解答题(本题包括8个小题)19.(6分)已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.求BC的长;求证:PB是⊙O的切线.20.(6分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是.21.(6分)如图,AB为⊙O的直径,D为⊙O上一点,以AD为斜边作△ADC,使∠C=90°,∠CAD=∠DAB 求证:DC是⊙O的切线;若AB=9,AD=6,求DC的长.22.(8分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A 30人/辆380元/辆B 20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.求y与x的函数解析式,请直接写出x的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?23.(8分)已知2是关于x的方程x2﹣2mx+3m=0的一个根,且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为_____.24.(10分)解方程:2(x-3)=3x(x-3).25.(10分)如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=kx(k≠0)的图象经过点B.求反比例函数的解析式;若点E恰好落在反比例函数y=kx上,求平行四边形OBDC的面积.26.(12分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本) 频数(人数) 频率5 a0.26 18 0.367 14 b8 8 0.16合计c 1(1)统计表中的a=________,b=________,c=________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【详解】A.不是轴对称图形,故本选项错误;B.是轴对称图形,故本选项正确;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.故选B.2.C【解析】【详解】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>12且k≠1.故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.C【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C 、∠A=∠ABE ,根据内错角相等,两直线平行,可以得出EB ∥AC ,故本选项正确;D 、∠C=∠ABC 只能判断出AB=AC ,不能判断出EB ∥AC ,故本选项错误.故选C .【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4.C【解析】【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥2且x ﹣2≠2.解得:x≥2且x≠2.故x 的取值范围是x≥2且x≠2.故选C .【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.5.D【解析】【分析】根据中位数的定义判断A ;根据众数的定义判断B ;根据方差的定义判断C ;根据平均数的定义判断D .【详解】A 、若这5次成绩的中位数为8,则x 为任意实数,故本选项错误;B 、若这5次成绩的众数是8,则x 为不是7与9的任意实数,故本选项错误;C 、如果x=8,则平均数为15(8+9+7+8+8)=8,方差为15 [3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;D 、若这5次成绩的平均成绩是8,则15(8+9+7+8+x )=8,解得x=8,故本选项正确; 故选D .【点睛】本题考查中位数、众数、平均数和方差:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差()()()()22221232...n x x x x x x x xS n -+-+-++-=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.B【解析】【分析】1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】1.732≈-,()1.7323 1.268---≈ ,()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,所以表示的点与点B 最接近,故选B.7.D【解析】【分析】根据“一元二次方程x 2+mx+n =0的两个实数根分别为x 1=2,x 2=4”,结合根与系数的关系,分别列出关于m 和n 的一元一次不等式,求出m 和n 的值,代入m+n 即可得到答案.【详解】解:根据题意得:x 1+x 2=﹣m =2+4,解得:m =﹣6,x 1•x 2=n =2×4,解得:n =8,m+n =﹣6+8=2,故选D .【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.8.C【解析】【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上, ∴4ab =k , ∴E (a , k a ), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a )=9, ∴k=245, 故选:C【点睛】考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.9.B【解析】【分析】根据正比例函数定义可得m 2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.【详解】由题意得:m 2-3=1,且m+1<0,解得:m=-2,故选:B .【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx (k≠0)的自变量指数为1,当k <0时,y 随x 的增大而减小.10.D【解析】【分析】根据多边形的外角和是360°,以及多边形的内角和定理即可求解.【详解】设多边形的边数是n ,则(n−2)⋅180=3×360,解得:n=8.故选D.【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理.二、填空题(本题包括8个小题)11.1【解析】∵点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点, ∴由中点公式得:c=2a b , ∴a+b=2c ,∴a+b-2c=1.故答案为1.12.1【解析】【分析】利用提公因式法将多项式分解为a(a 2+3)-2ab ,将a 2+3=2b 代入可求出其值.【详解】解:∵a 2+3=2b ,∴a 3-2ab+3a=a(a 2+3)-2ab=2ab-2ab=1,故答案为1.【点睛】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键. 13.40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键. 14.x≠1【解析】 该题考查分式方程的有关概念根据分式的分母不为0可得X -1≠0,即x≠1那么函数y=的自变量的取值范围是x≠115.45º或135º【解析】试题解析:如图所示,∵OC ⊥AB ,∴C 为AB 的中点,即1222AC BC AB === 在Rt △AOC 中,OA=1, 2AC = 根据勾股定理得:222OC OA AC =-=即OC=AC , ∴△AOC 为等腰直角三角形,45AOC ∴∠=,同理45BOC ∠=,90AOB AOC BOC ∴∠=∠+∠=,∵∠AOB 与∠ADB 都对AB ,1452ADB AOB ,∴∠=∠= ∵大角270AOB ∠=,135.AEB ∴∠=则弦AB 所对的圆周角为45或135.故答案为45或135.16.40°.【解析】【详解】∵将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B′处,∴∠ACD=∠BCD ,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案为40°.17.3【解析】【分析】连接OA .根据反比例函数的对称性可得OB=OC ,那么S △OAB =S △OAC =12S △ABC =2.求出直线y=x+2与y 轴交点D 的坐标.设A (a ,a+2),B (b ,b+2),则C (-b ,-b-2),根据S △OAB =2,得出a-b=2 ①.根据S △OAC =2,得出-a-b=2 ②,①与②联立,求出a 、b 的值,即可求解.【详解】如图,连接OA .由题意,可得OB=OC ,∴S△OAB=S△OAC=12S△ABC=2.设直线y=x+2与y轴交于点D,则D(0,2),设A(a,a+2),B(b,b+2),则C(-b,-b-2),∴S△OAB=12×2×(a-b)=2,∴a-b=2 ①.过A点作AM⊥x轴于点M,过C点作CN⊥x轴于点N,则S△OAM=S△OCN=12 k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴12(-b-2+a+2)(-b-a)=2,将①代入,得∴-a-b=2 ②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案为3.【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定系数法求函数的解析式等知识,综合性较强,难度适中.根据反比例函数的对称性得出OB=OC是解题的突破口.18.a>1【解析】根据二次函数的图像,由抛物线y=ax2+5的顶点是它的最低点,知a>1,故答案为a>1.三、解答题(本题包括8个小题)19.(1)BC=2;(2)见解析【解析】试题分析:(1)连接OB,根据已知条件判定△OBC的等边三角形,则BC=OC=2;(2)欲证明PB是⊙O的切线,只需证得OB⊥PB即可.(1)解:如图,连接OB.∵AB⊥OC,∠AOC=60°,∴∠OAB=30°,∵OB=OA,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC,∴△OBC的等边三角形,∴BC=OC.又OC=2,∴BC=2;(2)证明:由(1)知,△OBC的等边三角形,则∠COB=60°,BC=OC.∵OC=CP,∴BC=PC,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半径,∴PB是⊙O的切线.考点:切线的判定.20.(1)证明见解析;(2)1.【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED 是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD 是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD 的面积为:12AC•BD=12×1×2=1, 故答案为1.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.21.(1)见解析;(2)【解析】分析:(1)如下图,连接OD ,由OA=OD 可得∠DAO=∠ADO ,结合∠CAD=∠DAB ,可得∠CAD=∠ADO ,从而可得OD ∥AC ,由此可得∠C+∠CDO=180°,结合∠C=90°可得∠CDO=90°即可证得CD 是⊙O 的切线;(2)如下图,连接BD ,由AB 是⊙O 的直径可得∠ADB=90°=∠C ,结合∠CAD=∠DAB 可得△ACD ∽△ADB ,由此可得AD AB CD BD=,在Rt △ABD 中由AD=6,AB=9易得BD=,由此即可解得CD 的长了. 详解:(1)如下图,连接OD .∵OA=OD ,∴∠DAB=∠ODA ,∵∠CAD=∠DAB ,∴∠ODA=∠CAD∴AC ∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD ⊥CD ,∴CD 是⊙O 的切线.(2)如下图,连接BD ,∵AB 是⊙O 的直径,∴∠ADB=90°,∵AB=9,AD=6,∴∵∠CAD=∠BAD ,∠C=∠ADB=90°,∴△ACD∽△ADB,∴AD ABCD BD=,∴635 CD=,∴CD=185=25.点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.22.(1) 21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【解析】【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据AB两种车至少要能坐1441人即可得取x的取值范围;(2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.【详解】(1)由题意得y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x为整数;(2)由题意得100x+17360≤21940,解得x≤45.8,∴21≤x≤45且x为整数,∴共有25种租车方案,∵k=100>0,∴y随x的增大而增大,当x=21时,y有最小值,y最小=100×21+17360=19460,故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【点睛】本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题.23.11【解析】【分析】将x=2代入方程找出关于m 的一元一次方程,解一元一次方程即可得出m 的值,将m 的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论.【详解】将x=2代入方程,得:1﹣1m+3m=0,解得:m=1.当m=1时,原方程为x 2﹣8x+12=(x ﹣2)(x ﹣6)=0,解得:x 1=2,x 2=6,∵2+2=1<6,∴此等腰三角形的三边为6、6、2,∴此等腰三角形的周长C=6+6+2=11.【点睛】考点:根与系数的关系;一元二次方程的解;等腰三角形的性质24.1223,3x x ==. 【解析】【分析】先进行移项,在利用因式分解法即可求出答案.【详解】 ()()2333x x x -=-,移项得:()()23330x x x ---=,整理得:()()3230x x --=,30x -=或230x -=,解得:13x =或223x =. 【点睛】本题考查了解一元一次方程-因式分解,熟练掌握因式分解的技巧是本题解题的关键.25.(1)y=12x;(2)1; 【解析】【分析】(1)把点B的坐标代入反比例解析式求得k值,即可求得反比例函数的解析式;(2)根据点B(3,4)、C(m,0)的坐标求得边BC的中点E坐标为(32m,2),将点E的坐标代入反比例函数的解析式求得m的值,根据平行四边形的面积公式即可求解.【详解】(1)把B坐标代入反比例解析式得:k=12,则反比例函数解析式为y=;(2)∵B(3,4),C(m,0),∴边BC的中点E坐标为(,2),将点E的坐标代入反比例函数得2=,解得:m=9,则平行四边形OBCD的面积=9×4=1.【点睛】本题为反比例函数的综合应用,考查的知识点有待定系数法、平行四边形的性质、中点的求法.在(1)中注意待定系数法的应用,在(2)中用m表示出E点的坐标是解题的关键.26.(1)10,0.28,50(2)图形见解析(3)6.4(4)528【解析】分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a的值画出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;详解:(1)由题意c=180.36=50,a=50×0.2=10,b=1450=0.28,c=50;故答案为10,0.28,50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 2.2-的相反数是A .2-B .2C .12D .12- 3.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=" 1" .其中正确的有A .1个B .2个C .3个D .4个 4.一次函数y=ax+b 与反比例函数a b y x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( ) A . B . C . D .5.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,则图中相似三角形共有( )A.1对B.2对C.3对D.4对6.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数kyx(x>0)的图象经过顶点B,则k的值为A.12 B.20 C.24 D.327.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙8.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)9.下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=010.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.二、填空题(本题包括8个小题)11.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.12.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩13.已知m、n是一元二次方程x2+4x﹣1=0的两实数根,则11m n+=_____.14.Rt△ABC中,AD为斜边BC上的高,若, 则ABBC=.15.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线B D交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为______.16.如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB为45°,则电视塔AB的高度为______米(结果保留根号).17.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为_____.18.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_____cm.三、解答题(本题包括8个小题)19.(6分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为12.求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;20.(6分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.求每台A型电脑和B型电脑的销售利润;该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.21.(6分)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=33,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=33,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.22.(8分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.23.(8分)如图,点B 在线段AD 上,BC DE ,AB ED =,BC DB =.求证:A E ∠=∠.24.(10分)现种植A 、B 、C 三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A 种树苗8棵;或植B 种树苗6棵,或植C 种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A 种树苗的工人为x 名,种植B 种树苗的工人为y 名.求y 与x 之间的函数关系式;设种植的总成本为w 元,①求w 与x 之间的函数关系式; ②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C 种树苗工人的概率.25.(10分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.26.(12分)太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC 如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D 在BA 的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD 的长.(结果精确到0.1米)参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】分析:直接利用27<3,进而得出答案.详解:∵27<3,∴37+1<4,故选B . 7的取值范围是解题关键.2.B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .3.B【解析】试题分析:∵当y 1=y 2时,即2x 4x 2x -+=时,解得:x=0或x=2,∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时,y 2>y 1.∴①错误.∵当x <0时, -21y x 4x =-+直线2y 2x =的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线()221y x 4x x 24=-+=--+的最大值为4,∴M 大于4的x 值不存在.∴③正确; ∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,2x 4x 2-+=,解得12x 2x 2==. ∴使得M=2的x 值是1或2+.∴④错误.综上所述,正确的有②③2个.故选B .4.C【解析】【分析】根据一次函数的位置确定a 、b 的大小,看是否符合ab<0,计算a-b 确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a b x- 的图象过一、三象限, 所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y 轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a b x-的图象过二、四象限, 所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a b x-的图象过一、三象限, 所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小5.C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三对相似三角形.故选C.6.D【解析】【详解】如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数(x>0)的图象上,∴.故选D.7.B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.B【解析】【分析】由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.【详解】解:A、因为a=3>0,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x>1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B.【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).9.B【解析】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B.点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.10.C【解析】【分析】根据全等三角形的判定定理进行判断.【详解】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,。

吉林省长春市2019-2020学年第三次中考模拟考试数学试卷含解析

吉林省长春市2019-2020学年第三次中考模拟考试数学试卷含解析

吉林省长春市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()①∠CDE=∠DFB;②BD>CE;③BC=2CD;④△DCE与△BDF的周长相等.A.1个B.2个C.3个D.4个2.计算-5x2-3x2的结果是( )A.2x2B.3x2C.-8x2D.8x23.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.4.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.5.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉()A.6.5千克B.7.5千克C.8.5千克D.9.5千克6.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球7.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A .(﹣4,﹣2﹣3)B .(﹣4,﹣2+3)C .(﹣2,﹣2+3)D .(﹣2,﹣2﹣3)8.如图,已知函数y=﹣3x 与函数y=ax 2+bx 的交点P 的纵坐标为1,则不等式ax 2+bx+3x>0的解集是( )A .x <﹣3B .﹣3<x <0C .x <﹣3或x >0D .x >09.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为( )A .91,88B .85,88C .85,85D .85,84.510.如图,在ABC V 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA P ,DF BA P .下列四种说法: ①四边形AEDF 是平行四边形;②如果90BAC ∠=o ,那么四边形AEDF 是矩形;③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中,正确的有( ) 个A .1B .2C .3D .411.多项式ax 2﹣4ax ﹣12a 因式分解正确的是( )A .a (x ﹣6)(x+2)B .a (x ﹣3)(x+4)C .a (x 2﹣4x ﹣12)D .a (x+6)(x ﹣2)12.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( )A .154B .14C .1515D .41717二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知二次函数24y x x k =-+的图像与x 轴交点的横坐标是1x 和2x ,且128x x -=,则k =________. 14.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是y=60t ﹣232t .在飞机着陆滑行中,最后4s 滑行的距离是_____m .15.分解因式39a a -=________,221218x x -+=__________.16.如图,某海监船以20km/h 的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为_____km .17.,A B 两地相距的路程为240千米,甲、乙两车沿同一线路从A 地出发到B 地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B 地.甲、乙两车相距的路程y (千米)与甲车行驶时间x (小时)之间的关系如图所示,求乙车修好时,甲车距B 地还有____________千米.18.已知反比例函数k y x=的图像经过点(-2017,2018),当0x >时,函数值y 随自变量x 的值增大而_________.(填“增大”或“减小”)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,点O 和矩形CDEF 的边CD 都在直线l 上,以点O 为圆心,以24为半径作半圆,分别交直线l 于,A B 两点.已知: 18CD =,24CF =,矩形自右向左在直线l 上平移,当点D 到达点A 时,矩形停止运动.在平移过程中,设矩形对角线DF 与半圆»AB 的交点为P (点P 为半圆上远离点B 的交点).如图2,若FD 与半圆»AB 相切,求OD 的值;如图3,当DF 与半圆»AB 有两个交点时,求线段PD 的取值范围;若线段PD 的长为20,直接写出此时OD 的值.20.(6分)如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=14DC,连结EF并延长交BC的延长线于点G,连结BE.求证:△ABE∽△DEF.若正方形的边长为4,求BG的长.21.(6分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA于点E.(1)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;(2)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.22.(8分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.求证:EF是⊙O的切线;已知AB=4,AE=1.求BF的长.23.(8分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)24.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=mx的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.25.(10分)解方程组:113311x x yx x y⎧+=⎪+⎪⎨⎪-=⎪+⎩26.(12分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?27.(12分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB =80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】等腰直角三角形纸片ABC 中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB ,故①正确;由折叠可得,DE=AE=3,∴=,∴BD=BC ﹣DC=4﹣1,∴BD >CE ,故②正确;∵BC=4CD=4,∴CD ,故③正确;∵AC=BC=4,∠C=90°,∴,∵△DCE 的周长,由折叠可得,DF=AF ,∴△BDF 的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣),∴△DCE 与△BDF 的周长相等,故④正确;故选D .点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2.C【解析】【分析】利用合并同类项法则直接合并得出即可.【详解】解:222538.x x x --=-故选C.【点睛】此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键.3.D【解析】【详解】∵ab >0,∴a 、b 同号.当a >0,b >0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a <0,b <0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B 图象符合要求. 故选B .4.A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A 既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B 不是中心对称图形,是轴对称图形,故本选项错误;选项C 既是中心对称图形,也是轴对称图形,故本选项错误;选项D 既是中心对称图形,也是轴对称图形,故本选项错误.故选A .考点:中心对称图形;轴对称图形.5.C【解析】【分析】设每个小箱子装洗衣粉x 千克,根据题意列方程即可.【详解】设每个小箱子装洗衣粉x 千克,由题意得:4x+2=36,解得:x=8.5,即每个小箱子装洗衣粉8.5千克,故选C .【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键. 6.A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.7.D【解析】解:作AD ⊥BC ,并作出把Rt △ABC 先绕B 点顺时针旋转180°后所得△A 1BC 1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AD=AB AC BC ⋅BD=2AB BC .∵点B坐标为(1,0),∴A点的坐标为(4,3).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣3).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣3﹣2).故选D.点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.8.C【解析】【分析】首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+3x>1的解集.【详解】∵函数y=﹣3x与函数y=ax2+bx的交点P的纵坐标为1,∴1=﹣3x,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+3x>1的解集是:x<﹣3或x>1.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.9.D【解析】试题分析:根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案.众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)÷2=84.5,故选D.考点:众数,中位数点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题10.D【解析】【分析】先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF 是菱形,④正确,进而得到正确说法的个数.【详解】解:∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形,选项①正确;若∠BAC=90°,∴平行四边形AEDF为矩形,选项②正确;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四边形AEDF为菱形,选项③正确;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四边形AEDF为菱形,选项④正确,则其中正确的个数有4个.故选D.【点睛】此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.11.A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案为a (x ﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.12.A【解析】∵在Rt △ABC 中,∠C=90°,AB=4,AC=1,∴,则cosB=BC AB , 故选A二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-12【解析】【分析】令y=0,得方程24=0-+x x k ,1x 和2x 即为方程的两根,利用根与系数的关系求得12x x +和12x x ⋅,利用完全平方式并结合128x x -=即可求得k 的值.【详解】解:∵二次函数24y x x k =-+的图像与x 轴交点的横坐标是1x 和2x ,令y=0,得方程24=0-+x x k ,则1x 和2x 即为方程的两根,∴124x x +=,12x x k ⋅=, ∵128x x -=,两边平方得:212()64-=x x ,∴21212()464+-⋅=x x x x , 即16464-=k ,解得:12k =-,故答案为:12-.【点睛】本题考查了一元二次方程与二次函数的关系,函数与x 轴的交点的横坐标就是方程的根,解题的关键是利用根与系数的关系,整体代入求解.14.24【解析】【分析】先利用二次函数的性质求出飞机滑行20s 停止,此时滑行距离为600m ,然后再将t=20-4=16代入求得16s 时滑行的距离,即可求出最后4s 滑行的距离.【详解】y=60t ﹣23t 2=32-(t-20)2+600,即飞机着陆后滑行20s 时停止,滑行距离为600m , 当t=20-4=16时,y=576,600-576=24,即最后4s 滑行的距离是24m ,故答案为24.【点睛】本题考查二次函数的应用,解题的关键是理解题意,熟练应用二次函数的性质解决问题.15.(3)(3)a a a +- 22(3)x -【解析】此题考查因式分解329(9)(3)(3),a a a a a a a -=-=+-222212182(69)2(3)x x x x x -+=-+=-答案点评:利用提公因式、平方差公式、完全平方公式分解因式16.3【解析】【分析】首先证明PB =BC ,推出∠C =30°,可得PC =2PA ,求出PA 即可解决问题.【详解】解:在Rt △PAB 中,∵∠APB =30°,∴PB =2AB ,由题意BC =2AB ,∴PB =BC ,∴∠C =∠CPB ,∵∠ABP =∠C+∠CPB =60°,∴∠C =30°,∴PC =2PA ,∵PA =AB•tan60°,∴PC =2×20×3=3km ),故答案为【点睛】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB =BC ,推出∠C =30°.17.90【解析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B 地,设乙车出故障前走了t 1小时,修好后走了t 2小时,根据等量关系甲车用了122133t t ⎛⎫+++ ⎪⎝⎭小时行驶了全程,乙车行驶的路程为60t 1+50t 2=240,列方程组求出t 2,再根据甲车的速度即可知乙车修好时甲车距B 地的路程.【详解】甲车先行40分钟(402603=h ),所行路程为30千米, 因此甲车的速度为304523=(千米/时),设乙车的初始速度为V 乙,则有4452103V ⨯=+乙, 解得:60V =乙(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t 1小时,修好后走了t 2小时,则有121260502402145()4524033t t t t +=⎧⎪⎨⨯+++⨯=⎪⎩,解得:12732t t ⎧=⎪⎨⎪=⎩, 45×2=90(千米),故答案为90.【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.18.增大【解析】【分析】根据题意,利用待定系数法解出系数的符号,再根据k 值的正负确定函数值的增减性.【详解】∵反比例函数kyx=的图像经过点(-2017,2018),∴k=-2017×2018<0,∴当x>0时,y随x的增大而增大.故答案为增大.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)30OD=;(2)144185PD<…;(3)8512+或8512-【解析】【分析】(1)如图2,连接OP,则DF与半圆相切,利用△OPD≌△FCD(AAS),可得:OD=DF=30;(2)利用cosDH CDODPOD FD∠==,求出72HD5=,则144DP2HD5==;DF与半圆相切,由(1)知:PD=CD=18,即可求解;(3)设PG=GH=m,则:22OG24m,DG20m,=-=-OGtan FDCDG∠=22424m320m-==-,求出64245m5±=,利用DGODcosα=,即可求解.【详解】(1)如图,连接OP∵FD与半圆相切,∴OP FD⊥,∴90OPD︒∠=,在矩形CDEF中,90FCD∠=o,∵18,24CD CF==,根据勾股定理,得2222182430FD CD CF=++=在OPD∆和FCD∆中,9024OPD FCDODP FDCOP CF︒⎧∠=∠=⎪∠=∠⎨⎪==⎩∴OPD FCD≅∆V∴30OD DF ==(2)如图,当点B 与点D 重合时,过点O 作OH DF ⊥与点H ,则2DP HD = ∵cos DH CD ODP OD FD ∠== 且18,24CD OD ==,由(1)知:30DF = ∴182430DH =,∴725DH =, ∴14425DP HD DH === 当FD 与半圆相切时,由(1)知:18PD CD ==, ∴144185PD <… (3)设半圆与矩形对角线交于点P 、H ,过点O 作OG ⊥DF ,则PG=GH ,244tan FDC tan 183α∠===,则3cos 5α=, 设:PG=GH=m ,则:22OG 24m ,DG 20m =-=-,22OG 424m tan FDC DG 320m-∠===-, 整理得:25m 2-640m+1216=0,解得:64245m 5±=, DG 20m OD 85123cos 5α-===. 【点睛】本题考查的是圆的基本知识综合运用,涉及到直线与圆的位置关系、解直角三角形等知识,其中(3),正确画图,作等腰三角形OPH的高OG,是本题的关键.20.(1)见解析;(2)BG=BC+CG=1.【解析】【分析】(1)利用正方形的性质,可得∠A=∠D,根据已知可得AE:AB=DF:DE,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据相似三角形的预备定理得到△EDF∽△GCF,再根据相似的性质即可求得CG的长,那么BG 的长也就不难得到.【详解】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90 °.∵AE=ED,∴AE:AB=1:2.∵DF=14 DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED:CG=DF:CF.又∵DF=14DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=1.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.21.(1)30°;(2)20°;【解析】【分析】(1)利用圆切线的性质求解;(2) 连接OQ,利用圆的切线性质及角之间的关系求解。

吉林省长春市2019-2020学年中考数学三模考试卷含解析

吉林省长春市2019-2020学年中考数学三模考试卷含解析

吉林省长春市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.2a2+3a2=5a4B.(﹣12)﹣2=4C.(a+b)(﹣a﹣b)=a2﹣b2D.8ab÷4ab=2ab2.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°3.如果实数a=11,且a在数轴上对应点的位置如图所示,其中正确的是()A.B.C.D.4.化简16的结果是()A.±4 B.4 C.2 D.±25.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2)B.(2010,﹣2)C.(2012,﹣2)D.(0,2)6.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )A .24π cm 2B .48π cm 2C .60π cm 2D .80π cm 27.二次函数2y ax bx c =++()0a ≠的图象如图所示,则下列各式中错误的是( )A .abc >0B .a+b+c >0C .a+c >bD .2a+b=08.在平面直角坐标系中,将点P (4,﹣3)绕原点旋转90°得到P 1,则P 1的坐标为( )A .(﹣3,﹣4)或(3,4)B .(﹣4,﹣3)C .(﹣4,﹣3)或(4,3)D .(﹣3,﹣4)9.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心、适当长为半径画弧,分别交直线l 1、l 2于点B 、C ,连接AC 、BC .若∠ABC=67°,则∠1=( )A .23°B .46°C .67°D .78°10.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是( )A .中位数不相等,方差不相等B .平均数相等,方差不相等C .中位数不相等,平均数相等D .平均数不相等,方差相等11. “车辆随机到达一个路口,遇到红灯”这个事件是( )A .不可能事件B .不确定事件C .确定事件D .必然事件12.当函数y=(x-1)2-2的函数值y 随着x 的增大而减小时,x 的取值范围是( )A .x 0>B .x 1<C .x 1>D .x 为任意实数二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.14.哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为_____.15.一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_____.16.如图,AB∥CD,BE交CD于点D,CE⊥BE于点E,若∠B=34°,则∠C的大小为________度.17.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有_____(只填写序号).18.科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是(选填:A、B、C、D、E);(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?20.(6分)某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。

吉林省长春市2019-2020学年度九年级中考模拟练习(数学)试题 PDF版

吉林省长春市2019-2020学年度九年级中考模拟练习(数学)试题  PDF版

于点 D,E是
上一点,
20.(7分)图①、图②、图③都是 6×6的正方形网格,每个小正方形的边长均为 1,每个小正方 形的顶点叫做格点,线段 AB的端点都在格点上.在图①、图②、图③中,分别以 AB为边画
(第 6题)
7.如图,在平面直角坐标系中,点 A、B在函数
(第 7题)
(x>0)的图象上,分别过点 A、B作 x
轴的垂线交函数
(x>0,k>3)的图象于点 C、D, E是 y轴上的点,连结 AB、AD、
AE、CE.若点 A、B的横坐标分别为 2、3,△ACE与△ABD的面积之和为 2,则 k的值为
(A) .
(B)5.
(C)6.
(D)12.
(第 13题)
(第 14题)
14.如图,有一座抛物线形拱桥,在正常水位时水面 AB的宽为 20m,如果水位上升 3m 达到警 戒水位时,水面 CD的宽是 10m,建立如图所示的平面直角坐标系,O为坐标原点.如果水位 以 0.2m/h的速度匀速上涨,那么达到警戒水位后,再过 h水位达到桥拱最高点 O.
(B)
m.
(C)
m. (D)
m.
图①
图② (第 11题)
(第 12题)
12.如图,在平面直角坐标系中,直线
分别交 x轴、y轴于 A、B两点,点 P(m,1)
在△AOB的内部(不包含边界),则 m 的值可能是 (写一个即可).
13.把边长为 2的正方形纸片 ABCD分割成如图的三块,其中点 O为正方形的中心,E为 AD的中 点.用这三块纸片拼成与该正方形不全等且面积相等的四边形 MNPQ(要求这三块纸片不重叠 无缝隙),若四边形 MNPQ为矩形,则四边形 MNPQ的周长是 .
16.(6分)甲、乙两个不透明的袋子中分别装有三个标有数字的小球,小球除数字不同外,其余 均相同.甲袋中三个小球上分别标有数字 1、2、7,乙袋中三个小球上分别标有数字 4、5、6.小 明分别从甲、乙两个袋子中随机摸出一个小球,用画树状图(或列表)的方法,求小明摸出的 两个小球上的数字之和为 4的倍数的概率.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣B.C.﹣5 D.52.(3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1083.(3.00分)下列立体图形中,主视图是圆的是()A.B.C.D.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y 轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k 的值为()A.4 B.2C.2 D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:3.(填“>”、“=”或“<”)10.(3.00分)计算:a2•a3= .11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为.(写出一个即可)12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE 剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y 轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)17.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为.【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y≤9时,直接写出L的取值范围.吉林省长春市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣B.C.﹣5 D.5【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:B.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×108【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2500000000用科学记数法表示为2.5×109.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)下列立体图形中,主视图是圆的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、圆锥的主视图是三角形,故A不符合题意;B、圆柱的柱视图是矩形,故 B错误;C、圆台的主视图是梯形,故C错误;D、球的主视图是圆,故D正确;故选:D.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【解答】解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.【点评】此题考查三角形内角和问题,关键是根据三角形内角和、角平分线的定义和平行线的性质解答.6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺【分析】根据同一时刻物高与影长成正比可得出结论.【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴,解得x=45(尺).故选:B.【点评】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y 轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k 的值为()A.4 B.2C.2 D.【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.【解答】解:作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×2=4.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:>3.(填“>”、“=”或“<”)【分析】先求出3=,再比较即可.【解答】解:∵32=9<10,∴>3,故答案为:>.【点评】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.10.(3.00分)计算:a2•a3= a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为 2 .(写出一个即可)【分析】由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.【解答】解:∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥.故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37 度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.【点评】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE 剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEF D周长的最小值为20 .【分析】当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可.【解答】解:当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=2,∠B=60°.∴AE=3,BE=,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:20【点评】此题考查平移的性质,关键是根据当AE⊥BC时,四边形AEFD的周长最小进行分析.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y 轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为 3 .【分析】解方程x2+mx=0得A(﹣m,0),再利用对称的性质得到点A的坐标为(﹣1,0),所以抛物线解析式为y=x2+x,再计算自变量为1的函数值得到A′(1,2),接着利用C点的纵坐标为2求出C点的横坐标,然后计算A′C的长.【解答】解:当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),∵点A关于点B的对称点为A′,点A′的横坐标为1,∴点A的坐标为(﹣1,0),∴抛物线解析式为y=x2+x,当x=1时,y=x2+x=2,则A′(1,2),当y=2时,x2+x=2,解得x1=﹣2,x2=1,则C(﹣2,1),∴A′C的长为1﹣(﹣2)=3.故答案为3.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象上点的坐标特征.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:+====x+1,当x=﹣1时,原式=﹣1+1=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【解答】解:列表如下:A 1A2BA 1(A1,A1)(A2,A1)(B,A1)A 2(A1,A2)(A2,A2)(B,A2)B(A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为.【点评】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.【分析】利用轴对称图形性质,以及全等四边形的定义判断即可.【解答】解:如图所示:【点评】此题考查了作图﹣轴对称变换,以及全等三角形的判定,熟练掌握各自的性质是解本题的关键.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【分析】(1)设每套课桌椅的成本为x元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)【分析】(1)根据切线的性质求出∠A=90°,根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠AOD,根据弧长公式求出即可.【解答】解:(1)∵AC切⊙O于点A,∠BAC=90°,∵∠C=40°,∴∠B=50°;(2)连接OD,∵∠B=50°,∴∠AOD=2∠B=100°,∴的长为=π.【点评】本题考查了切线的性质、圆周角定理、弧长公式等知识点能熟练地运用知识点进行推理和计算是解此题的关键.20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为18 ;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.【解答】解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.【点评】本题考查条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是 1 立方米,从打开输入口到关闭输出口共用的时间为11 分钟.【分析】(1)体积变化量除以时间变化量求出注入速度;(2)根据题目数据利用待定系数法求解;(3)由(2)比例系数k=4即为两个口同时打开时水泥储存罐容量的增加速度,则输出速度为5﹣4=1,再根据总输出量为8求解即可.【解答】解:(1)每分钟向储存罐内注入的水泥量为15÷3=5分钟;(2)设y=kx+b(k≠0)把(3,15)(5.5,25)代入解得∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;只打开输出口前,水泥输出量为 5.5﹣3=2.5立方米,之后达到总量8立方米需需输出8﹣2.5=5.5立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟故答案为:1,11【点评】本题为一次函数实际应用问题,考查了一次函数的图象性质以及在实际问题中比例系数k代表的意义.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为 2 .【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为9 .【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE,即可得出结论;探究:(1)判断出PG=BC,同感知的方法判断出△PGF≌CBE,即可得出结论;(2)利用直角三角形的斜边的中线是斜边的一半,应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.【解答】解:感知:∵四边形ABCD是正方形,∴AB=BC,∠BCE=∠ABC=90°,∴∠ABE+∠CBE=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠BAF=∠CBE,在△ABF和△BCE中,,∴△ABF≌△BCE(ASA);探究:(1)如图②,过点G作GP⊥BC于P,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴四边形ABPG是矩形,∴PG=AB,∴PG=BC,同感知的方法得,∠PGF=∠CBE,在△PGF和△CBE中,,∴△PGF≌△CBE(ASA),∴BE=FG,(2)由(1)知,FG=BE,连接CM,∵∠BCE=90°,点M是BE的中点,∴BE=2CM=2,∴FG=2,故答案为:2.应用:同探究(2)得,BE=2ME=2CM=6,∴ME=3,同探究(1)得,CG=BE=6,∵BE⊥CG,∴S=CG×ME=×6×3=9,四边形CEGM故答案为9.【点评】此题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,判断出CG=BE是解本题的关键.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;(4)分三种情况,利用锐角三角函数,即可得出结论.【解答】解:(1)在Rt △ABC 中,∠A=30°,AB=4,∴AC=2,∵PD ⊥AC ,∴∠ADP=∠CDP=90°,在Rt △ADP 中,AP=2t ,∴DP=t ,AD=APcosA=2t ×=t , ∴CD=AC ﹣AD=2﹣t (0<t <2);(2)在Rt △PDQ 中,∵∠DPC=60°,∴∠PQD=30°=∠A ,∴PA=PQ ,∵PD ⊥AC ,∴AD=DQ ,∵点Q 和点C 重合,∴AD+DQ=AC ,∴2×t=2,∴t=1;(3)当0<t ≤1时,S=S △PDQ =DQ ×DP=×t ×t=t 2; 当1<t <2时,如图2,CQ=AQ ﹣AC=2AD ﹣AC=2t ﹣2=2(t ﹣1),在Rt △CEQ 中,∠CQE=30°,∴CE=CQ•tan∠CQE=2(t ﹣1)×=2(t ﹣1), ∴S=S △PDQ ﹣S △ECQ =×t ×t ﹣×2(t ﹣1)×2(t ﹣1)=﹣t 2+4t ﹣2, ∴S=;(4)当PQ 的垂直平分线过AB 的中点F 时,如图3,∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2,∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=2,∴t=;当PQ的垂直平分线过AC的中点M时,如图4,∴∠QMN=90°,AN=AC=,QM=PQ=AP=t,在Rt△NMQ中,NQ==t,∵AN+NQ=AQ,∴+t=2t,∴t=,当PQ的垂直平分线过BC的中点时,如图5,∴BF=BC=1,PE=PQ=t,∠H=30°,∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1,在Rt△PEH中,PH=2PE=2t,∴AH=AP+PH=AB+BH,∴2t+2t=5,∴t=,即:当线段PQ的垂直平分线经过△ABC一边中点时,t的值为秒或秒或秒.【点评】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y≤9时,直接写出L的取值范围.【分析】(1)求出点B坐标利用待定系数法即可解决问题;(2)利用对称轴公式,求出BE的长即可解决问题;(3)由G2与矩形ABCD恰好有两个公共点,推出抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,利用待定系数法即可解决问题;(4)分两种情形讨论求解即可;【解答】解:(1)由题意E(0,1),A(﹣1,1),B(1,1)把B(1,1)代入y=﹣x2+mx+1中,得到1=﹣+m+1,∴m=.(2)∵抛物线G1的对称轴x=﹣=m,∴AE=ED=2m,∵矩形ABCD的对称中心为坐标原点O,∴AD=BC=4m,AB=CD=2,∴L=8m+4.(3)∵当G2与矩形ABCD恰好有两个公共点,∴抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,∴m2﹣1=1,∴m=2或﹣2(舍弃),∴L=8×2+4=20.(4)①当最高点是抛物线G1的顶点N(m,m2+1)时,若m2+1=,解得m=1或﹣1(舍弃),若m2+1=9时,m=4或﹣4(舍弃),又∵m≤2,观察图象可知满足条件的m的值为1≤m≤2,②当(2,2m﹣1)是最高点时,,解得2≤m≤5,综上所述,1≤m≤5,∴12≤L≤44.【点评】本题考查二次函数综合题、矩形的性质、待定系数法、不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用数形结合的思想解决问题,属于中考压轴题.。

相关文档
最新文档