新人教版数学七年级下册 第五章相交线与平行线5.2.1《平行线课时练习》

合集下载

七年级数学下册 第五章 相交线与平行线 5.2 平行线及其判定 5.2.1 平行线练习 (新版)新人教版

七年级数学下册 第五章 相交线与平行线 5.2 平行线及其判定 5.2.1 平行线练习 (新版)新人教版

平行线1.下列叙述中,正确的是( C )(A)在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直(B)不相交的两条直线叫平行线(C)两条铁轨是平行的(D)我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角2.在同一平面内,直线m,n相交于点O,且l∥n,则直线l和m的关系是( B )(A)平行 (B)相交(C)重合 (D)以上都有可能3.若a⊥b,c⊥d,则a与c的关系是( D )(A)平行 (B)垂直(C)相交 (D)以上都有可能4.下列说法正确的是( A )(A)在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥c(B)在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥c(C)在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c(D)在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c5.如图,在正方体中,与线段AB平行的线段有EF,HG,DC .6.下列各种说法中错误的是①②③(填序号).①过一点有且只有一条直线与已知直线平行②在同一平面内,两条不相交的线段是平行线段③两条直线没有交点,则这两条直线平行④在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交.7.找出图中互相平行的线段AC∥FH,AB∥GI,ED∥JH .8.平面内有不重合的4条直线,它们的交点有0或1或3或4或5或6 个.9.一副透明的直角三角尺,按如图所示的位置摆放.如果把三角尺的每条边看成线段,请根据图形解答下列问题:(1)找出图中一对互相平行的线段,并用符号表示出来;(2)找出图中一对互相垂直的线段,并用符号表示出来;(3)找出图中的一个钝角、一个直角和一个锐角,用符号把它们表示出来,并求出它们的度数.(不包括直角尺自身所成的角)解:此题答案不唯一,只要答案正确即可.(1)如:DE∥CB,DF∥CB,FE∥CB.(2)如:ED⊥AC,FD⊥AC,FD⊥AD.(3)如:钝角:∠GFD=135°,∠CGB=∠FGE=105°.直角:∠ADE=90°.锐角:∠GCB=30°,∠AFD=45°,∠CGF=75°.10.如图所示,在∠AOB内有一点P.(1)过点P画l1∥OA;(2)过点P画l2∥OB;(3)用量角器量一量l1与l2相交所成的角与∠O的大小有怎样的关系.解:(1)(2)如图所示.(3)l1与l2相交所成的角有四个:∠1,∠2,∠3,∠4,其中∠1=∠3,∠2 =∠4;经测量知∠1=∠O,∠2+∠O=180°,所以l1和l2相交所成的角与∠O的数量关系有两种:相等和互补.11.(易错题)平面上有10条直线,其中有4条直线互相平行,那么这10条直线最多将平面分成50 个部分.12.(核心素养—数学抽象)如图,一共有n(n≥2)条互相平行的直线和两条平行线a,b相交,构成若干个“#”形,构成的“#”形的个数记为y,请填出下表.n 2 3 4 5 …ny解:n 2 3 4 5 …ny 1 3 6 10 …因为当n=2时,y=1;当n=3时,y=3=1+2;当n=4时,y=6=1+2+3;当n=5时,y=10=1+2+3+4;…所以,当n=n时,y=1+2+3+…+(n-1)=.。

人教版七年级数学 下册 第五章 5.2.1 平行线 课时练(含答案)

人教版七年级数学 下册 第五章 5.2.1 平行线 课时练(含答案)

第五章相交线与平行线5.2.1 平行线一、选择题1、下列说法正确的有〔〕①不相交的两条直线是平行线; ②在同一平面内,不相交的两条线段平行③过一点有且只有一条直线与已知直线平行; ④若a∥b,b∥c,则a与c不相交.A.1个B.2个C.3个D.4个2、在同一平面内,互不重合的三条直线的公共点的个数是 ( )A.只可能是0个,1个或3个 B.只可能是0个,1个或2个C.只可能是0个,2个或3个 D.0个,1个,2个或3个都有可能3、如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等4、同一平面内的四条直线,若满足a⊥b b⊥c c⊥d则下列的式子成立的是().A、 a∥dB、 b⊥dC、 a⊥dD、 b∥c5、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,则两次拐弯的角度可以是()A.第一次向右拐40°,第二次向左拐140°B.第一次向左拐40°,第二次向右拐40°C.第一次向左拐40°,第二次向右拐140°D.第一次向右拐40°,第二次向右拐40°二、填空题6、如图,在菱形中,点是对角线上的点,于点,若,则到的距离为.7、如图,给出下列论断①AB∥CD②AD∥BC③∠A+∠B=180°④∠B+∠C=180°其中一个作为题设,一个作为结论,写出一个真命题为___。

8、如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=______________度。

DCBA9、如图(4)所示,OP∥QR∥ST,若∠2=110°,∠3=120°,则∠1=。

10、两个角的两边平行,且一个角的一半等于另一个角的三分之一,则这两个角的度数分别是__三、解答题11、如图,已知∠1=70°,∠2=110°,请用三种方法判定AB∥DE.12、如图,已知∠1=∠2,AC平分∠DAB,试说明DC∥AB.13、如图,在∠AOB 的内部有一点P ,已知∠AOB=60°.(1 )过点P 作PC∥OA,PD∥OB;(2 )量出∠CPD 的度数,说出它与∠AOB 的关系.参考答案:一、1、B 2、D 3、A 4、A 5、B二、6、37、如果AD∥BC,那么∠A+∠B=180 º8、25º9、50°10、72° 108°三、11、解:(1)∵∠1=70°,∴∠AFC=180°-70°=110°. ∵∠2=110°,∴∠AFC=∠2,∴AB//DE.(2)∵∠1=70°,∴∠BFD=180°-70°=110°.∵∠2=110°,∴∠BFD=∠2,∴AB//DE.(3)∵∠1=70°,∴∠AFD=70°.∵∠2=110°,∴∠AFD+∠2=180°,∴AB//DE.12、解:∵AC平分∠DAB,,∴∠1=∠CAB.∵∠1=∠2,∴∠CAB=∠2,∴DC∥AB.。

七年级数学下册第五章相交线与平行线5.2平行线及其判定5.2.1平行线练习含解析新版新人教版

七年级数学下册第五章相交线与平行线5.2平行线及其判定5.2.1平行线练习含解析新版新人教版

5.2.1平行线分卷I一、选择题(共27小题,每小题分,共0分)1.已知直线a、b、c在同一平面内,则下列说法错误的是( )A.如果a∥b,b∥c,那么a∥cB.a⊥b,c⊥b,那么a∥cC.如果a与b相交,b与c相交,那么a与c一定相交D.如果a与b相交,b与c不相交,那么a与c一定相交2.己知直线AB及AB外一点P,若过点P作一直线与AB平行,那么这样的直线( )A.有且只有一条B.有两条C.不存在D.无数条3.下列画图方法,一定可以画出的是( )A.过点P画线段CD,使线段CD与已知线段AB相交B.过点P画线段CD,使线段CD与已知射线AB相交C.过射线AB外一点P画直线CD,使CD∥ABD.过直线AB外一点P画射线CD,使AB与CD相交4.下列说法中,正确的是( )A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥cD.若两条线段不相交,则它们互相平行5.下列语句:①不相交的两条直线叫平行线;②在同一平面内,两条直线的位置关系只有两种:相交和平行;③如果线段AB和线段CD不相交,那么直线AB和直线CD平行;④如果两条直线都和第三条直线平行,那么这两条直线平行;⑤过一点有且只有一条直线与已知直线平行.正确的个数是( )A. 1B. 2C. 3D. 46.过一点画已知直线的平行线( )A.有且只有一条B.不存在C.有两条D.不存在或有且只有一条7.下为说法中正确的个数是( )①射线AB与射线BA是同一条射线;②两点确定一条直线;③对顶角相等;④不相交的两条直线叫做平行线;⑤过一点有只有一条直线与这条直线平行.A. 1B. 2C. 3D. 48.下列说法中正确的是( )A.在同一平面内,两条直线的位置只有两种:相交和垂直B.有且只有一条直线垂直于已知直线C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离9.已知在同一平面内,有三条直线a,b,c,若a∥b,b∥c,则直线a与直线c之间的位置关系是( )A.相交B.平行C.垂直D.平行或相交10.下列说法:①若a与c相交,则a与b相交;②若a∥b,b∥c,那么a∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.其中错误的有( )A. 3个B. 2个C. 1个D. 0个11.下面推理正确的是( )A.∵a∥b,b∥c,∴c∥dB.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥cD.∵a∥b,c∥d,∴a∥c12.下列四种说法:(1)过直线外一点有且只有一条直线与这条直线平行;(2)平面内,过一点能且只能作一条直线与已知直线垂直;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短;(4)平行于同一条直线的两条直线平行.其中正确的有( )A. 1个B. 2个C. 3个D. 4个13.平面内有三条直线a、b、c,下列说法:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c,其中正确的是( )A.只有①B.只有②C.①②都正确D.①②都不正确14.下列说法中,正确的有( )①一条直线的平行线只有一条:②过一点可以作一条直线与已知直线平行;③过一点作直线的平行线仅有一条或不存在;④过直线外一点有且只有一条直线与已知直线平行.A. 1个B. 2个C. 3个D. 4个15.如果l1∥l2,l2∥l3,l3∥l4,那么l1与l4的关系是( ) A.平行B.相交C.重合D.不能确定16.在同一平面内,两条不重合直线的位置关系可能是( ) A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交17.同一平面内,直线l与两条平行线a,b的位置关系是( ) A.l与a,b平行或相交B.l可能与a平行,与b相交C.l与a,b一定都相交D.同旁内角互补,则两直线平行18.在长方体ABCD-EFGH中,与面ABCD平行的棱共有( )A. 1条B. 2条C. 3条D. 4条19.下列叙述中,正确的是( )A.在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直B.不相交的两条直线叫平行线C.两条直线的铁轨是平行的D.我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角20.若P,Q是直线AB外不重合的两点,则下列说法不正确的是( )A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定能与直线AB相交D.过点Q只能画出一条直线与直线AB平行21.在同一平面内有2014条直线a1,a2,…,a2014,如果a1⊥a2,a2∥a3,a3⊥a4,a∥a5,…,依此类推,那么a1与a2014的位置关系是( )4A.垂直B.平行C.垂直或平行D.重合22.下列说法中,正确的个数有( )(1)在同一平面内不相交的两条线段必平行(2)在同一平面内不相交的两条直线必平行(3)在同一平面内不平行的两条线段必相交(4)在同一平面内不平行的两条直线必相交A. 1B. 2C. 3D. 423.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则这三条直线交点的个数为( )A. 0B. 1C. 2D. 324.同一平面内的两条线段,下列说法正确的是( )A.一定平行B.一定相交C.可以既不平行又不相交D.不平行就相交25.a、b、c是同一平面内的任意三条直线,其交点有( )A. 1或2个B. 1或2或3个C. 0或1或3个D. 0或1或2或3个26.下列说法错误的是( )A.在同一平面内,不相交的两条线段必然平行B.在同一平面内,不相交的两条直线必然平行C.在同一平面内,不平行的两条线段延长后必然相交D.在同一平面内,两条直线没有公共点,那么两条直线平行27.下列生活实例中;①交通道口的斑马线;②天上的彩虹;③体操的纵队;④百米跑道线;⑤火车的平直铁轨线.其中属于平行线的有( )A. 1个B. 2个C. 3个D. 4个分卷II二、填空题(共10小题,每小题分,共0分)28.下列说法中①两点之间,直线最短;②经过直线外一点,能作一条直线与这条直线平行;③和已知直线垂直的直线有且只有一条;④在平面内过一点有且只有一条直线垂直于已知直线.正确的是__________.(只需填写序号)29.(1)如图,因为直线AB、CD相交于点P,AB∥EF,所以CD不平行于EF(________________________________________________________);(2)因为直线a∥b,b∥c,所以a∥c(________________________________).30.如图,MC∥AB,NC∥AB,则点M,C,N在同一条直线上,理由是____________________________________.31.设a、b、c为平面上三条不同直线,(1)若a∥b,b∥c,则a与c的位置关系是________;(2)若a⊥b,b⊥c,则a与c的位置关系是________.32.老师在黑板上画了一条直线AB和AB外一点P,想过点P作两条直线CD、EF,若CD∥AB,这时EF与AB的位置关系是__________.33.如图,AB∥CD,过点E画EF∥AB,则EF与CD的位置关系是____________,理由是__________________.34.在同一平面内,两条直线有两种位置关系,它们是__________.35.如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来__________________.36.在如图长方体ABCD-EFGH中与平面ADHE平行的棱是______________,与棱FB垂直的棱是______________________________.37.平面内四条直线共有三个交点,则这四条直线中最多有________ 条平行线.三、解答题(共12小题,每小题分,共0分)38.将一张长方形的硬纸片ABCD对折后打开,折痕为EF,把长方形ABEF平摊在桌面上,另一面CDFE无论怎样改变位置,总有CD∥AB存在,为什么?39.如图,已知OA∥CD,OB∥CD,那么∠AOB是平角,为什么?40.探索与发现:(1)若直线a1⊥a2,a2∥a3,则直线a1与a3的位置关系是__________,请说明理由.(2)若直线a1⊥a2,a2∥a3,a3⊥a4,则直线a1与a4的位置关系是________.(直接填结论,不需要证明)(3)现在有 2 011条直线a1,a2,a3,…,a2 011,且有a1⊥a2,a2∥a3,a3⊥a4,a∥a5…,请你探索直线a1与a2 011的位置关系.441.如图,根据要求填空.(1)过A作AE∥BC,交______于点E;(2)过B作BF∥AD,交______于点F;(3)过C作CG∥AD,交__________于点G;(4)过D作DH∥BC,交BA的__________于点H.42.平面上有6条直线,共有12个不同的交点,画出它们可能的位置关系(画三种图形).43.读下列语句,并画出图形.点P是直线AB外一点,直线CD经过点P,且与直线AB平行,直线EF也经过点P 且与直线AB垂直.44.画图题:(1)在如图所示的方格纸中,经过线段AB外一点C,不用量角器与三角尺,仅用直尺,画线段AB的垂线EF和平行线GH.(2)判断EF、GH的位置关系是______.(3)连接AC和BC,则三角形ABC的面积是______.45.作图题:(只保留作图痕迹),如图,在方格纸中,有两条线段AB、BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;(3)过点B作AB的垂线.46.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?47.直线a∥b,b∥c,直线d与a相交于点A.(1)判断a与c的位置关系,并说明理由;(2)判断c与d的位置关系,并说明理由.48.如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?49.在同一平面内,任意三条直线有哪几种不同的位置关系?你能画图说明吗?下面是小明的解题过程:解:有两种位置关系,如图:你认为小明的解答正确吗?如果不正确,请你给出正确的解答.答案解析1.【答案】C【解析】A.如果a∥b,b∥c,那么a∥c,说法正确;B.a⊥b,c⊥b,那么a∥c,说法正确;C.如果a与b相交,b与c相交,那么a与c一定相交,说法错误;D.如果a与b相交,b与c不相交,那么a与c一定相交,说法正确.故选C.2.【答案】A【解析】∵过直线外一点有且只有一条直线与已知直线平行,∴直线AB及AB外一点P,若过点P作一直线与AB平行,那么这样的直线有且只有一条.故选A.3.【答案】C【解析】A.过点P画线段CD,使线段CD与已知线段AB相交,线段不一定会与线段,故说法错误;B.过点P画线段CD,使线段CD与已知射线AB相交,线段不一定会与射线相交,故说法错误;C.过射线AB外一点P画直线CD,使CD∥AB,说法正确;D.过直线AB外一点P画射线CD,使AB与CD相交,这个点如果在射线的反向延长线上,就不能画平行线,故该选项错误;故选C.4.【答案】C【解析】A.平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;B.过直线外一点,有且只有一条直线与已知直线平行.故错误;C.在同一平面内,平行于同一直线的两条直线平行.故正确;D.根据平行线的定义知是错误的.故选C.5.【答案】A【解析】①不相交的两条直线叫平行线,必须是在同一平面内,故错误;②在同一平面内,两条直线的位置关系只有两种:相交和平行,正确③如果线段AB和线段CD不相交,那么直线AB和直线CD平行,错误;④如果两条直线都和第三条直线平行,那么这两条直线平行,必须是在同一平面内,故错误;⑤在同一平面内,过一点有且只有一条直线与已知直线平行,故错误.故选A.6.【答案】D【解析】若点在直线上,过这点不能画已知直线的平行线;若点在直线外,根据平行公理,有且只有一条直线与已知直线平行.故选D.7.【答案】B【解析】①射线AB与射线BA是同一条射线,错误;②两点确定一条直线,正确;③对顶角相等,正确;④在同一平面内,不相交的两条直线叫做平行线,故错误;⑤在同一平面内,过一点有只有一条直线与这条直线平行,故错误.故选B.8.【答案】C【解析】A.在同一平面内,两条直线的位置只有两种:相交和平行,垂直是相交的一种情况,故A错误;B.一条直线的垂线有无数条,故B错误;C.根据平行公理的推论,如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故C正确;D.点到直线的距离指的是线段的长度,而非垂线段,故D错误.故选C.9.【答案】B【解析】∵在同一平面内,直线a∥b,直线b∥c,∴直线c与直线a的位置关系是a∥c.故选B.10.【答案】A【解析】①若a与c相交,则a与b不一定相交;故错误;②若a∥b,b∥c,那么a∥c;故正确;③在同一平面内,过一点有且只有一条直线与已知直线平行;故错误;④在同一平面内,两条直线的位置关系有平行、相交、两种;故错误.故选A.11.【答案】C【解析】A.a、c都和b平行,应该推出的是a∥c,而非c∥d,故错误;B.没有两条直线都和第三条直线平行,推不出平行,故错误;C.b、c都和a平行,可推出是b∥c,故正确;D.a、c与不同的直线平行,无法推出两者也平行.故选C.12.【答案】D【解析】(1)过直线外一点有且只有一条直线与这条直线平行,正确;(2)平面内,过一点能且只能作一条直线与已知直线垂直,正确;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;(4)平行于同一条直线的两条直线平行,正确;正确的有4个,故选D.13.【答案】A【解析】①若a∥b,b∥c,则a∥c,说法正确;②若a⊥b,b⊥c,则a⊥c,说法错误,应为同一平面内,若a⊥b,b⊥c,则a∥c;故选A.14.【答案】B【解析】①一条直线的平行线有无数条,错误;②过一点可以作一条直线与已知直线平行;错误;③过一点作直线的平行线仅有一条或不存在;正确;④符合平行线的性质;正确.故选B.15.【答案】D【解析】∵l1∥l2,l2∥l3,l3∥l4,∴l1∥l4或l1与l4重合.故选D.16.【答案】C【解析】平面内的直线有平行或相交两种位置关系.故选C.17.【答案】A【解析】A.由于同一平面内两直线的位置关系只有两种:平行和相交,当l与a平行,根据平行公理的推论可知l也与b平行;当l与a相交,则必然与b相交,此选项正确;B.根据A的分析可知l不可能与a平行,而与b相交,此选项错误;C.根据A的分析,l也可能与a、b都平行,此选项错误;D.若三条直线都平行,也就不存在同旁内角了,此选项错误.故选A.18.【答案】D【解析】∵面EFGH与面ABCD平行;∴EF、FG、GH、EH四条棱与面ABCD平行.故选D.19.【答案】C【解析】A.在同一平面内,两条直线的位置关系有两种,分别是相交、平行,故A 错误;B.在同一个平面内,不相交的两条直线叫平行线,故B错误;C.两条直线的铁轨是平行的,故C正确;D.我们知道,对顶角是相等的,那么反过来,相等的角不一定是对顶角,故D错误;故选C.20.【答案】C【解析】PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选C.21.【答案】A【解析】∵a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,∴a1⊥a2,a1⊥a3,a1∥a4,a1∥a5…以四次为一个循环,⊥,⊥,∥,∥规律:下标除以4余数为2或3垂直,下标除以4余数为0或1平行,2014÷4的余数为2,∴a1⊥a2014,所以直线a1与a2014的位置关系是a1⊥a2014.故选A.22.【答案】B【解析】(1)线段不相交,延长后不一定不相交,错误;(2)同一平面内,直线只有平行或相交两种位置关系,正确;(3)线段是有长度的,不平行也可以不相交,错误;(4)同(2),正确;所以(2)(4)正确.故选B.23.【答案】C【解析】根据题意,第三条直线与这两条平行直线各有一个交点.故选C.24.【答案】C【解析】根据线段的定义得出:同一平面内的两条线段,可以既不平行又不相交,故选C.25.【答案】D【解析】由题意画出图形,如图所示:故选D.26.【答案】A【解析】A.根据平行线的定义,在同一平面内,不相交的两条线段必然平行,而线段即可不平行也可不相交,故本选项正确;B.根据平行线的定义,在同一平面内,不相交的两条直线必然平行,故本选项错误;C.根据平行线的定义,在同一平面内,不平行的两条线段延长后为射线或线段,必然相交,故本选项错误;D.根据平行线的定义,在同一平面内,两条直线没有公共点,那么两条直线平行,故本选项错误.故选A.27.【答案】D【解析】属于平行线的有①③④⑤.故选D.28.【答案】②、④【解析】①两点之间,直线距离最短,故①错误;②经过直线外一点,能作一条直线与这条直线平行,故②正确;③过直线外一点和已知直线垂直的直线有且只有一条,故③错误;④在平面内过一点有且只有一条直线垂直于已知直线,故④正确.故答案为②、④.29.【答案】经过直线外一点,有且只有一条直线与这条直线平行平行于同一直线的两条直线平行【解析】(1)因为直线AB、CD相交于点P,AB∥EF,所以CD不平于EF(经过直线外一点,有且只有一条直线与这条直线平行);故答案为经过直线外一点,有且只有一条直线与这条直线平行.(2)因为直线a∥b,b∥c,所以a∥c(平行于同一直线的两条直线平行).故答案为平行于同一直线的两条直线平行.30.【答案】经过直线外一点,有且只有一条直线与这条直线平行【解析】∵MC∥AB,NC∥AB,∴点M,C,N在同一条直线上,理由是:经过直线外一点,有且只有一条直线与这条直线平行.故答案为经过直线外一点,有且只有一条直线与这条直线平行.31.【答案】a∥c a∥c【解析】(1)根据平行公理,平行于同一直线的两直线互相平行解答;∵a∥b,b∥c,∴a∥c;(2)根据在同一平面内,垂直于同一直线的两直线互相平行解答.∵a、b、c为平面上三条不同直线,a⊥b,b⊥c,∴a∥c.32.【答案】相交【解析】EF与AB的位置关系是相交,∵直线AB和AB外一点P,∴过点P作直线平行于AB,这样的直线有且只有一条,∵CD∥AB,∴EF与AB的位置关系是相交,故答案为:相交.33.【答案】EF∥CD平行于同一直线的两直线互相平行【解析】EF与CD的位置关系是EF∥CD,理由是平行于同一直线的两直线互相平行.故答案为EF∥CD;平行于同一直线的两直线互相平行.34.【答案】相交或平行【解析】在同一平面内,两条直线有两种位置关系,即相交或平行,故答案为:相交或平行.35.【答案】CD∥MN GH∥PN【解析】AB,竖直方向的长度为3个单位,水平方向的长度为1个单位,比值为3∶1;CD,竖直方向的长度为2个单位,水平方向的长度为3个单位,比值为2∶3;EF,竖直方向的长度为3个单位,水平方向的长度为2个单位,比值为3∶2;GH,竖直方向的长度为2个单位,水平方向的长度为1个单位,比值为2∶1;MN,竖直方向的长度为2个单位,水平方向的长度为3个单位,比值为2∶3;PN,竖直方向的长度为2个单位,水平方向的长度为1个单位,比值为2∶1;结合图形线段的倾斜方向相同,比值相同的线段是CD与MN,GH与PN,∴互相平行的线段是CD∥MN,GH∥PN.故答案为CD∥MN,GH∥PN.36.【答案】BF、BC、FG、CG AB、EF、FG、BC、CD、HG、EH、AD【解析】与平面ADHE平行的棱是BF、BC、FG、CG,与棱FB垂直的棱是AB、EF、FG、BC、CD、HG、EH、AD,故答案为:BF、BC、FG、CG;AB、EF、FG、BC、CD、HG、EH、AD.37.【答案】三【解析】若四条直线相互平行,则没有交点;若四条直线中有三条直线相互平行,则此时恰好有三个交点;若四条直线中有两条直线相互平行,另两条不平行,则此时有三个交点或五个交点;若四条直线中有两条直线相互平行,另两条也平行,但它们之间相互不平行,则此时有四个交点;若四条直线中没有平行线,则此时的交点是一个或四个或六个.综上可知,平面内四条直线共有三个交点,则这四条直线中最多有三条平行线.故答案是三.38.【答案】CD∥AB;理由:∵CD∥EF,EF∥AB,∴CD∥AB.【解析】根据平行公理的推论得出答案即可.39.【答案】∵OA∥CD,OB∥CD且OA、OB交于点O,根据过直线CD外一点O有且只有一条直线与已知直线CD平行,∴OA,OB共直线,∴A、O、B共直线.∴∠AOB是平角.【解析】根据平行公理:经过直线外一点有且只有一条直线与这条直线平行;可知AO、OB在一条直线上.所以∠AOB是平角.40.【答案】(1)a1⊥a3.理由如下:如图1,∵a1⊥a2,∴∠1=90°,∵a2∥a3,∴∠2=∠1=90°,∴a1⊥a3;(2)同(1)的解法,如图2,直线a1与a4的位置关系是a1∥a4;(3)直线a1与a3的位置关系是a1⊥a3,直线a1与a4的位置关系是a1∥a4,以四次为一个循环,⊥,⊥,∥,∥以此类推,a1∥a2 009,a1⊥a2 010,所以直线a1与a2 011的位置关系是:a1⊥a2 011.【解析】(1)根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答;(2)根据(1)中结论即可判定垂直;(3)根据规律发现,与脚码是偶数的直线互相平行,与脚码是奇数的直线互相垂直,根据此规律即可判断.41.【答案】(1)DC(2)DC(3)AB(4)延长线【解析】根据要求,直接进行作图就可以解决.(1)过A作AE∥BC,交DC于点E;(2)过B作BF∥AD,交DC于点F;(3)过C作CG∥AD,交AB的延长线于点G;(4)过D作DH∥BC,交BA的延长线于点H.42.【答案】如下图.【解析】从平行线的角度考虑,先考虑只有二条直线平行,再考虑三条平行,作出草图即可看出.43.【答案】如图所示:【解析】先画直线AB和点P,过P作AB的平行线CD,过P作直线EF⊥AB,即可得出答案.44.【答案】(1)如图(2)EF与GH的位置关系是垂直;(3)设小方格的边长是1,则AB=2,CH=2,∴S△ABC=×2×2=10.【解析】(1)过点C作5×1的矩形的对角线所在的直线,可得AB的垂线和平行线;(2)易得EF与GH的位置关系是垂直;(3)根据三角形的面积公式解答.45.【答案】(1)A所在的横线就是满足条件的直线,即AE就是所求;(2)在直线AE上,到A距离是5个格长的点就是D,则CD就是所求与AB平行的直线;(3)AE上D右边的点F,过B,F作直线,就是所求.【解析】(1)A所在的横线就是满足条件的直线;(2)在直线AD上到A得等于BC的点D,则直线CD即为所求;(3)AE上D右边的个点F,过B,F的直线即为所求.46.【答案】(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.【解析】用两个三角板,根据同位角相等,两直线平行来画平行线,然后用量角器量一量l1与l2相交的角与∠O的关系为:相等或互补.47.【答案】(1)a与c的位置关系是平行,理由是:∵直线a∥b,b∥c,∴a∥c;(2)c与d的位置关系是相交,理由是:∵c∥a,直线d与a相交于点A,∴c与d的位置关系是相交.【解析】(1)根据平行公理得出即可;(2)根据c∥a和直线d与a相交推出即可.48.【答案】(1)如图,过直线a外的一点画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与过点B的平行线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【解析】根据平行公理及推论进行解答.49.【答案】不正确,如图所示,故在同一平面内,任意三条直线有四种不同的位置关系.【解析】根据同一平面内的两条直线有相交、平行两种关系画出图形即可解答.文末学习倡导书:学习不是三天打鱼,两天晒网。

人教版七年级数学下册 第五章 相交线与平行线 5.2.1 平行线 课后练习

人教版七年级数学下册 第五章 相交线与平行线 5.2.1 平行线 课后练习

人教版七年级数学下册 第五章 相交线与平行线 5.2.1 平行线 课后练习一、选择题1.下列说法:①若a 与c 相交,b 与c 相交,则a 与b 相交;①若a //b ,b //c ,那么a //c ;①经过直线外一点有且只有一条直线与已知直线平行;①两条直线的位置关系有平行与相交.其中错误的说法有( )A .3个B .2个C .1个D .0个2.下列说法一定正确的是( )A .两条不相交的直线叫做平行线B .一条直线的平行线有且只有一条C .若两条线段不相交,则它们互相平行D .若直线a b a c ,,则b c ∥3.下列说法中正确的是( )A .过一点有且只有一条直线平行于已知直线B .两条直线被第三直线所截,同位角相等C .两条直线有两种位置关系:平行、相交D .同一平面内,垂直于同一条直线的两条直线平行4.下列说法正确的是( )A .有公共顶点且相等的两个角是对顶角B .已知线段AB =BC ,则点B 是线段AC 的中点C .经过一点有且只有一条直线与已知直线平行D .在同一平面内,经过一点有且只有一条直线与已知直线垂直5.下列说法错误的是( )A .如果两条直线被第三条直线所截,那么内错角相等B .在同一平面内过一点有且仅有一条直线与已知直线垂直C .经过直线外一点有且只有一条直线与已知直线平行D .连接直线外一点与直线上各点的所有线段中,垂线段最短6.下列画图方法,一定可以画出的是( )A .过点P 画线段CD ,使线段CD 与已知线段AB 相交 B .过点P 画线段CD ,使线段CD 与已知射线AB 相交C .过射线AB 外一点P 画直线CD ,使CD ∥AB D .过直线AB 外一点P 画射线CD ,使AB 与CD 相交7.已知直线a 、b 、c 在同一平面内,则下列说法错误的是( )A.如果a∥b,b∥c,那么a∥cB.a⊥b,c⊥b,那么a∥cC.如果a与b相交,b与c相交,那么a与c一定相交D.如果a与b相交,b与c不相交,那么a与c一定相交8.在同一平面内有三条直线,如果要使其中两条且只有两条直线平行,那么它们( )A.没有交点B.只有一个交点C.有两个交点D.有三个交点9.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.在同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短10.下列说法中,正确的是()A.从直线外一点到这条直线的垂线叫点到直线的距离B.在同一平面内,过一点有且只有一条直线与已知直线平行C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.不相交的两直线一定互相平行二、填空题11.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)三条直线两两相交,有三个交点;(5)若a⊥b,b⊥c,则a⊥c.其中正确的有________个12.在同一平面内,若直线a①c,b①c,则a_____b.13.在间一平面内,有2019条互不重合的直线,l1,l2,l3,…,l2019,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5,以此类推,则l1和l2019的位置关系是_____.14.已知直线y=kx+b和直线y=-3x平行,且过点(0,-3),则此直线与x轴的交点坐标为________.15.四条直线a、b、c、d互不重合,如果a∥b、b∥c、c∥d,那么直线a、d的位置关系为__________.三、解答题16.如图,直线CD与直线AB相交于C,根据下列语句画图、解答.(1)过点P作PQ①CD,交AB于点Q;(2)过点P作PR①CD,垂足为R;(3)若①DCB=120°,猜想①PQC是多少度?并说明理由17.如图,点M在∠AOB的边OB上.①1)过点M画线段MC⊥AO,垂足是点C①①2)过点C画直线EF∥OB①①3①∠AOB的余角是___①的高AD、中线CF.过A作直线BC的平行线NM.18.已知:如图,求作ABC19.利用直尺画图(先用铅笔画图,然后再用墨水笔将符合条件的图形画出).(1)利用图1中的网格,过P点画直线AB的平行线和垂线;(2)平移图(2)网格中的三条线段AB、CD、EF,使平移后三条线段首尾顺次相接组成一个三角形;(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于.20.我们知道在同一平面内,两条平行直线的交点有0个,两条相交直线的交点有1个,平面内三条平行直线的交点有0个,经过同一点的三条直线的交点有1个……(1)平面上有三条互不重合的直线,请画图探究它们的交点个数;(2)若平面内的五条直线恰有4个交点,请画出符合条件的所有图形;(3)在平面内画出10条直线,使它们的交点个数恰好是32.21.地面上有10条公路(假设公路是直线)①无任何三条公路交于同一岔口①现有31名交警刚好满足每个岔口有且只有一位交警执勤①请你画出公路的示意图.22.如下图,按要求作图:(1)过点P作直线CD平行于AB①(2)过点P作PE⊥AB,垂足为O.23.如图,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?(1)请帮小明在图2的画板内画出你的测量方案图(简要说明画法过程);(2)说出该画法依据的定理.【参考答案】1.B 2.D 3.D 4.D 5.A 6.C 7.C 8.C 10.C11.112.∥13.l1⊥l2019.14.(−1,0).15.a∥d16.解:如图所示:(1)画出如图直线PQ(2)画出如图直线PR(3)①PQC=60°理由是:因为PQ①CD所以①DCB+①PQC=180°又因为①DCB=120°所以①PQC=180°-120°=60°17.①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①1①①①①①①①①MC①①①①①①①2①①①①①①①①EF①①①①①①①3①∠AOB①①①①∠OMC①∠MCF18.从A点向BC的反向延长线作垂线.垂足为D;作AB的垂直平分线找到中点F,连接CF①CF就是所求的中线;过A作MN∥BC.试题解析:如图所示:19.(1)、根据平行线的画法和垂线段的画法画出平行线和垂线;(2)、通过平移将三条线段合并成一个三角形,需要注意的就是线段的长度关系;(3)、利用正方形的面积减去三个直角三角形的面积求出三角形的面积.试题解析:S=3×3-2×3÷2-1×3÷2-1×2÷2=9-3-1.5-1=3.520.(1)如图所示.(2)如图所示.(3)如图所示(其他答案合理也可).21.解:把公路想象成10条直线,岔口想象成交点,由交警的人数及题意可知10条直线刚好有31个交点,而平面上的10条直线,若两两相交,最多可出现45个交点.若按题目的要求只要31个交点,则要减少14个交点,通常可采用如下两种方法:①多条直线共点:①出现平行线.但方法①不符合本题:故考虑方法①,在某一方向上若有5条直线互相平行,则可减少10个交点:若有6条直线互相平行,则可减少15个交点,故在这个方向上最多可取5条平行线,这时还有4个点要减去,转一个方向取3条平行线,即可减少3个交点,于是还剩2条直线,还有1个点要减去,只要让其在第三个方向上互相平行即可.右图所示的三组平行线即为所求的示意图.22.如图,CD和点O为所作.点睛:本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23.(1)如图,在直线a,b上各取一点A,B,连结AB,测得∠1,∠2的度数,则180°﹣∠1﹣∠2即为直线a,b所成角的度数.(2)依据:三角形内角和为180°;。

新人教数学七下:第5章相交线平行线配套课时练习答案

新人教数学七下:第5章相交线平行线配套课时练习答案

参考答案与提示第五章相交线与平行线第1课时相交线1 (1) 34° 146 ° 90° (2)互为余角,互为对顶角,互为邻补角,互为余角2. 110 °3. 110 ° 70°4. 70°, 40°5. 140 °第2课时垂线(1)1 . (1) DB , AC;(2) AD、AC , AD、DB , DB、CD , CD、AD ; (3) DB、AC , B ; (4) 一4. 略5 •/ 2= 60 ° Z COF= 120 ° Z 4= 60 ° / 5 = 90 °6•分两种情况,/ BOD= 50 或130 °第3课时垂线(2)1 . C 2. AB 3•>, 3, 2,垂线段4•略5•略6•略第4课时同位角、内错角、同旁内角1. B2. D 3 .对顶,同位,内错,同位,同旁内角4・(1 )同位角,AB、CE , AC ; (2)内错角,AB、CE,AC ; ( 3)同旁内角,AB、AC,BC;( 4)同位角,AB、AC,BD ; ( 5)同旁内角,AB、CE,BC 5. Z ABD 与Z CDB,Z ADB 与Z CBD 6. Z EBH、Z FCH、Z GDF、Z GEF 第5课时平行线1. B 2 .相交或平行3 .平行,平行于同一条直线的两条直线互相平行4.平行公理5. 11丄12 6.Z ADE =Z ABC,Z AED =Z ACB 11.略7. 0、1、2、3第6课时平行线的判定(1)1 . A 2.同位角相等,两直线平行;AB II CD,内错角相等,两直线平行3.( 1) AF //CE,内错角相等,两直线平行;(2)Z 3,同位角相等,两直线平行4.Z 1= Z 2,Z 2= Z 3,AB // CD,内错角相等,两直线平行5.( 1)因为AB丄EF,CD丄EF,所以Z ABE =Z CDE=90°.所以AB // CD (同位角相等,两直线平行). (2)因为Z ABE =Z MBE + Z仁90 °,Z CDE =Z NDE+ Z 2=90°,Z 1 = Z 2,所以Z MBE =Z NDE .所以BM // DN (同位角相等,两直线平行)6.略第7课时平行线的判定(2)1 . C 2.( 1) AD、BC,内错角相等,两直线平行;(2) AB、CD,内错角相等,两直线平行;(3) AD、BC,同旁内角互补,两直线平行;(4) AB、CD,同旁内角互补,两直线平行3.对顶角相等,等量代换,Z 2+ Z 3=180° ,AB // CD,同旁内角互补,两直线平行4.略5. Z FAE= Z B 或Z DAB = Z B 或Z EAC = Z C 或Z DAC+ Z C=180°或Z EAB + Z B=180°第8课时平行线的性质1 . C2 . C 3. C 4 4. 34°5. 85°6. 40 7. 50,40 8.略第9课时命题、定理1 . C 2. B 3 .题设,结论 4 .两个角是直角,它们都相等5. 如果两个角相等,那么它们的补角相等6.两个角都是锐角,它们的和大于钝角,假7.题设,结论9. 150° 10 (1)如果一个角是锐角,那么这个角的补角大于它的余角;(2)如果有两条直线是平行线一组同位角的平分线,那么它们平行;(3)如果一个角是平角的一半,那么这个角是直角;(4)在同一平面内,如果两条直线不平行,那么它们一定相交11 .略第10课时平移1 . D 2. C 3. B 4. 50,60,60 5. BB1,CC1,DD1 6.略7.略第11课时相交线平行线复习1 . C 2. B 3. C 4. C 5 . C 6 . B 7 . C 8 . A 9 . 10 10.I 11.I 12 . DC、EC,AB,同位角13 . 56 14 .如果两个角相等,那么它们的余角相等15 . ( 2)( 6) 16 . 3cm,平行,平行17 . Z BGD,内错角相等,两直线平行,Z F,内错角相等,两直线平行,平行于同一直线的两条直线平行,Z F,两直线平行,同旁内角互补18 .略19 .略20 .平行21 . Z D =45 ° Z C = 45 ° Z B = 135 ° 22 . 125 °23 .略。

七年级数学下册第五章相交线与平行线5.1相交线5.1.2垂线课时练习(pdf,含解析)(新版)新人教版

七年级数学下册第五章相交线与平行线5.1相交线5.1.2垂线课时练习(pdf,含解析)(新版)新人教版

初中数学·人教版·七年级下册——第五章相交线与平行线5.1.2垂线测试时间:30分钟一、选择题1.如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC=55°,则∠AOD的度数为()A.115°B.125°C.135°D.145°2.如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列说法不正确的是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离3.如图,要把小河里的水引到田地A处,则作AB⊥l,垂足为点B,沿AB挖水沟,水沟最短,理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线4.点P为直线MN外一点,点A、B、C为直线MN上三点,PA=5厘米,PB=4厘米,PC=2厘米,则P 到直线MN的距离()A.等于4厘米B.等于2厘米C.小于2厘米D.不大于2厘米5.直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOC=70°,则∠CON的度数为()A.65°B.55°C.45°D.35°二、填空题6.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠COE=.7.如图,直线AB,CD相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE与直线AB的位置关系是.8.如图,直线AB与CD相交于点O,OE⊥CD,垂足为O,∠AOE=55°,则∠DOB的度数是.9.如图,点O为直线AB上一点,∠AOC=55°,过点O作射线OD,使得OD⊥OC,则∠BOD的度数是.三、解答题10.如图,O为直线AB上一点,OC⊥OD.已知∠AOC的度数比∠BOD的度数的2倍多6°.(1)求∠BOD的度数;(2)若OE平分∠BOD,OF平分∠BOC,求∠EOF的度数.11.如图,直线AB,CD相交于点O,OE⊥AB,OF⊥CD.(1)若OC恰好是∠AOE的平分线,则OA是∠COF的平分线吗?请说明理由;(2)若∠EOF=5∠BOD,求∠COE的度数.12.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=50°,求∠BOE的度数;(2)若OF平分∠COB,那么OE⊥OF吗?一、选择题1.答案D∵EO⊥AB,∴∠BOE=90°.又∵∠COE=55°,∴∠COB=∠COE+∠BOE=145°.∵∠AOD=∠COB(对顶角相等),∴∠AOD=145°.故选D.2.答案C A.点到直线的距离即点到这一直线的垂线段的长度,故此选项中说法正确;B.根据垂线段最短可知此选项中说法正确;C.线段AP的长是点A到直线PC的距离,故此选项中说法错误;D.点到直线的距离即点到这一直线的垂线段的长度,故此选项中说法正确.故选C.3.答案C由题意可知,理由是垂线段最短.故选C.4.答案D∵PA=5厘米,PB=4厘米,PC=2厘米,∴P到直线MN的距离不大于2厘米.故选D.5.答案B∵ON⊥OM,∴∠MON=90°,∵OM平分∠AOC,∠AOC=70°,∴∠MOC=12∠AOC=35°,∴∠CON=90°-35°=55°,故选B.二、填空题6.答案42°解析∵∠AOD=132°,∴∠COB=132°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=132°-90°=42°.7.答案垂直解析∵∠BOC=130°,∴∠AOD=∠BOC=130°,∴∠AOE=∠AOD-∠EOD=130°-40°=90°.∴OE⊥AB,即射线OE与直线AB的位置关系是垂直.8.答案35°解析∵OE⊥CD,∴∠COE=90°,又∵∠AOE=55°,∴∠AOC=90°-55°=35°,∵直线AB与CD相交于点O,∴∠DOB=∠AOC=35°.9.答案35°或145°解析如图所示,OD的位置有两种情况,①∵OD⊥OC,∴∠COD=90°,∵∠AOC=55°,∴∠BOD=35°.②∵OD'⊥OC,∴∠BOD'=145°.∴∠BOD的度数是35°或145°.三、解答题10.解析(1)设∠BOD=x°,则∠AOC=2x°+6°,∵OC⊥OD,∴∠COD=90°.∵∠AOC+∠COD+∠BOD=180°,∴2x+6+90+x=180,解得x=28,即∠BOD=28°.(2)∵OE平分∠BOD,∴∠BOE=12∠BOD=14°,∵OF平分∠BOC,∴∠BOF=12∠BOC=12×(90°+28°)=59°,∴∠EOF=∠BOF-∠BOE=59°-14°=45°.11.解析(1)OA是∠COF的平分线.理由如下:∵OE⊥AB,∴∠AOE=90°,∵OC恰好是∠AOE的平分线,∴∠AOC=12∠AOE=45°,∵OF⊥CD,∴∠COF=90°,∴∠AOF=∠COF-∠AOC=90°-45°=45°,∴OA是∠COF的平分线.(2)设∠AOC=x,则∠BOD=x,∵∠AOE=90°,∴∠COE=∠AOE-∠AOC=90°-x,∴∠EOF=∠COE+∠COF=90°-x+90°=180°-x,∵∠EOF=5∠BOD,∴180°-x=5x,解得x=30°,∴∠COE=90°-30°=60°.12.解析(1)因为OE平分∠BOD,所以∠BOE=12∠BOD,因为∠BOD=∠AOC=50°,所以∠BOE=12∠BOD=25°.(2)OE⊥OF.因为OE平分∠BOD,所以∠BOE=12∠BOD,因为OF平分∠COB,所以∠BOF=12∠BOC,所以∠EOF=∠BOE+∠BOF=12(∠BOD+∠BOC)=90°,所以OE⊥OF.。

人教版初一数学7年级下册 第5章(相交线与平行线)平行线 同步课时练习题(含答案)

第五章相交线与平行线5.2 平行线及其判定 5.2.1 平行线1. .在同一平面内,不重合的两条直线可能的位置关系是( )A.平行B.相交C.垂直D.相交或平行2. 过一点画已知直线的平行线,则( )A.有且只有一条 B.不存在或只有一条 C.不存在 D.可能有两条3. 下列说法正确的是( )A.同一平面内没有公共点的两条线段平行B.两条不相交的直线是平行线C.同一平面内没有公共点的两条直线平行D.同一平面内没有公共点的两条射线平行4. 下列说法错误的是( )A.过一点有且只有一条直线与已知直线平行B.平行于同一条直线的两条直线平行C.若a∥b,b∥c,c∥d,则a∥dD.同一平面内,若一条直线与两平行线中的一条相交,那么它也和另一条相交5. 下列说法正确的是( )A.a,b,c是直线,且a∥b,b∥c,则a∥cB.a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.a,b,c是直线,且a∥b,b⊥c,则a∥cD.a,b,c是直线,且a∥b,b∥c,则a⊥c6. 若直线a∥b,b∥c,则a∥c的依据是( )A.平行线的基本事实 B.等量代换C.等式的性质 D.平行于同一条直线的两条直线平行7. 如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定8. 如图,过点A画直线l的平行线,能画()A.两条以上B.2条C.1条D.0条9. 观察如图所示的正方体,用符号表示下列两棱的位置关系:(⊥;∥)AA1________AB; BB1________DD1;A1C1_________AC; AD1_______BC1;CC1________A1C1; B1C1_________C1D1.10. 老师在黑板上画了一条直线AB和AB外一点P,想过点P作两条直线CD,EF,若CD∥AB,这时EF与AB的位置关系是 .11. 如图,在正方体中,与线段AB平行的线段有 .12. 在同一平面内,直线a与b满足下列条件,写出其对应的位置关系:(相交;重合;平行)(1)a与b没有公共点,则a与b__________;(2)a与b有且只有一个公共点,则a与b__________;(3)a与b有两个公共点,则a与b___________.13. 下列生活实例:①交通路口的斑马线;②天上的彩虹;③百米跑道线;④一段平直的火车铁轨线.其中属于平行线的有_______________.(填序号)14. 如图所示,PC∥AB,QC∥AB,则点P,C,Q在一条直线上.理由是___________.15. 如图,完成下列各题.(1)用直尺在网格中作图:①画出直线AB的一条平行线,②经过点C画直线垂直于CD;(2)用符号表示(1)中的平行、垂直关系.16. 如图,直线a∥b,b∥c,d与a相交于点M.(1)试判断直线a,c的位置关系,并说明理由;(2)判断c与d的位置关系,并说明理由.17. 如图,直线AB,CD是一条河的两岸,并且AB∥CD,点E为直线AB,CD外一点,若要过点E作河岸CD的平行线,则只需过点E作河岸AB的平行线即可,其理由是什么?这样的直线能作多少条?为什么?18. 如图,将一张长方形硬纸片对折,MN是折痕,把面ABNM平放在桌面上,另一个面CDMN任意改变位置,试探索AB与CD的位置关系,并说明理由.19. 如图所示,在∠AOB内有一点P.(1)过点P画l1∥OA;(2)过点P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?20. 在同一平面内,三条直线有多少个交点?甲:在同一平面内,三条直线有0个交点,因为a∥b∥c,如图①.乙:在同一平面内,三条直线只有1个交点,因为a,b,c交于同一点,如图②.以上说法谁对谁错?为什么?21. 图所示,在书写艺术字时,常常运用画“平行线段”这种基本作图方法,此图是在书写字母“M”.(1)请从正面、上面、右侧三个不同方向上各找出一组平行线段,并用字母表示出来;(2)EF与A'B'有何位置关系?答案:1—8 DBCAA DCC9. ⊥∥∥∥⊥⊥10. 相交11. EF,HG,DC12. (1) 平行(2) 相交(3) 重合13. ①③④14. 经过直线外一点,有且只有一条直线与这条直线平行15. 解:(1)可在网格中画出AB的一条平行线MN,过点O画直线CD的垂线PQ.画图略.(2)AB∥MN,CD⊥PQ.16. 解:(1)a∥c.理由:如果两条直线都与第三条直线平行,那么这两条直线平行.(2)d与c相交.理由:过直线外一点,有且只有一条直线平行于已知直线.17. 答::其理由是:如果两条直线都与第三条直线平行,那么这两条直线也互相平行;这样的直线只能作1条,因为经过直线外一点,有且只有一条直线与这条直线平行.18. 答:因为MN为长方形纸片对折折痕,所以MN∥AB,MN∥CD,所以AB∥CD,理由:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.19. (1) (2) 如图所示:(3)l1与l2相交的角有两个:∠1,∠2.∠1=∠O,∠2+∠O=180°,所以l1和l2相交的角与∠O相等或互补.20. 解:都不对,因为除了甲、乙两种说法外,在同一平面内,三条直线的位置关系还有两种情况,即有2个交点或3个交点,如图:所以在同一平面内,三条直线有0个或1个或2个或3个交点.21. 解:(1)正面:AB∥EF;上面:A'B'∥AB;右侧:DD'∥HR.(答案不唯一)(2)EF∥A'B'.。

人教版 数学七年级下册课时练 第五章 相交线与平行线 5.2.1 平行线

人教版数学七年级下册第五章相交线与平行线5.2平行线及其判定5.2.1平行线1.(2019·广西贵港覃塘区期末)在同一平面内,不重合的两条直线的位置关系可能是( A) A.相交或平行 B.相交或垂直C.平行或垂直 D.不能确定2.下列说法中正确的是( D)A.如果同一平面内的两条线段不相交,那么这两条线段所在直线互相平行B.不相交的两条直线一定是平行线C.同一平面内两条射线不相交,则这两条射线互相平行D.同一平面内有两条直线不相交,这两条直线一定是平行线3.根据下列要求画图.(1)如图1所示,过点A画MN∥BC;(2)如图2所示,过点C画CE∥DA,与AB交于点E,过点C画CF∥DB,与AB的延长线交于点F.解:(1)(2)如图所示.4.下列说法中,正确的有( C)①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③平行于同一条直线的两条直线平行;④经过直线外一点,有且只有一条直线与这条直线平行.A.①② B.②④ C.③④ D.①③5.如图,EF∥AB,FC∥AB,则可知点E,C,F在一条直线上.理由是__经过直线外一点,有且只有一条直线与这条直线平行__.6.如图,P为BC上一点.(1)过点P画AB的平行线,交AC于点T;(2)过点C画MN∥AB;(3)直线PT,MN有什么位置关系?试说明理由.解:(1)如图,直线PT是所画的直线.(2)如图,直线MN是所画的直线.(3)PT∥MN.理由:因为PT∥AB,MN∥AB,所以PT∥MN(平行公理的推论).7.a,b,c是平面上任意三条直线,交点可以有( B)A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不对8.小明与小刚在讨论数学问题时,有如下对话:小明:在同一平面内,过一点A有且只有一条直线与已知直线m平行.小刚:在同一平面内,过一点A有且只有一条直线与已知直线m垂直.你认为小明与小刚谁说的正确( B)A.小明正确B.小刚正确C.小明与小刚都正确D.都不正确9.如图所示,在长方体中,与棱AB平行的棱有__3__条,它们分别是__EF,HG,DC__;与棱CG平行的棱有__3__条,它们分别是__BF,DH,AE__.10.如图所示,取一张长方形硬纸板ABCD,将硬纸板对折,使CD与AB重合,EF为折痕,已知AB,CD均平行于EF.把长方形ABFE平放在桌面上,另一个面CDEF无论怎么改变位置(即绕EF任意转动),总有结论CD∥AB,理由是__如果两条直线都与第三条直线平行,那么这两条直线也互相平行__.11.如图,两条直线l1与l2可以把一个平面分成3部分(如图1),也可以把一个平面分成4部分(如图2),若平面内有三条直线,则可以把平面分成__4或6或7__部分.(本题只考虑在同一平面内的情况)。

人教版初一数学7年级下册 第5章(相交线与平行线)平行线 课课练(含答案)

第五章平行线课课练1. 在同一平面内,两条永不的直线互相平行,直线a平行于b,记作.2. 在同一平面内,不重合的两条直线的位置关系是或.3. 经过直线外一点,有且一条直线与这条直线平行.4. 如果两条直线都与第三条直线平行,那么这两条直线也,也就是:若b//a/c//a.则.5. 下列生活实例中,属于平行线的有( )①交通路口的斑马线②黑板的上下边③百米直跑道的两边A.3个B.2个C.1个D.0个6. 下列四边形中,AB不平行于CD的是()7. 在同一平面内的两条不重合的直线的位置关系.( )A.有两种:垂直或相交B.有三种:平行,垂直或相交.C.有两种:平行或相交D.有两种:平行或垂直8. (易错题)如图所示,能相交的是,平行的是.9. 如图,完成下列各题:(1)用直尺在网格中完成:①画出直线AB的一条平行线,②经过C点画直线垂直于CD;(2)用符号表示上面①、②中的平行、垂直关系.10. 已知直线AB和一点P,过点P画与AB平行的直线可画()A.1条B.0条C.1条或0条D.无数条.11. 三条直线l1,l2,l3,若l1//l3,l2//l2,则与l1与l2的位置关系是()A.l1⊥l2B.l1//l2C.l1⊥l2或l1//l2D.无法确定12. 若直线a//,b//c,则a//c的依据是( )A.平行线的基本事实B.等量代换C.等式的性质D.平行于同一条直线的两条直线平行13. 如图,直线AB.CD是一条河的两岸,并且AB//CD,点E为直线AB,CD 外一点,现想过点E作河岸CD的平行线,只需过点E作河岸AB的平行线即可,其理由是什么?这样的直线能作多少条?为什么?14. 如图,在长方体中,与线段AB平行的线段有.15. (易错题)下列语句:(1)不相交的两条直线是平行线;(2)在同一平面内,不重合的两条直线的位置关系有两种,即相交或平行;(3)在同一平面内,若两条线段没有交点,则这两条线段互相平行;(4)若直线a//b,b//c,则a//c.其中正确的个数是( )A.4个B.3个C.2个D.1个16. 如图所示,将一张长方形纸对折两次,则产生的折痕与折痕间的位置关系是( )A.平行B.垂直C.平行或垂直D.无法确定17. 如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来: .18. 如图所示,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF为折痕.把长方形ABFE平放在桌面上,另一个面CDEF无论怎么改变位置总有CD//AB存在,你知道为什么吗?19. (原创题)在同一平面内,有三条直线a,b.c,它们之间有哪几种可能的位置关系?画图说明.20. 如图,在方格纸中,有两条线段AB.BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;(3)过点B作AB的垂线BE,与(1)中的平行线交于点E;(4)用符号表示所作图形中的平行和垂直关系.21. ①画∠AOB=60°,在∠AOB内任取一点P,过P作直线CD// AO,又过点P作直线EF//OB;②测量∠CPE,∠EPD,∠DPF,∠CPF的度数.①这些角的边与∠AOB的边有何关系?②这些角的度数与∠AOB的度数之间存在什么关系?把你的发现用一句话概括出来.答案:1. 相交,a//b2. 平行,相交3. 只有4. 相互平行,b//c5. A6. D7. C8. ○3○59.解: (1)如图所示。

人教版七年级数学下《5.2.1平行线》课时练习

七年级下册5.2.1平行线同步练习一、选择题:1.在同一平面内,两条不重合直线的位置关系可能是( )A.平行或相交B.垂直或相交C.垂直或平行D.平行、垂直或相交答案:A知识点:平面中直线的位置关系解析:解答:同一平面内两直线的位置关系有两种:平行和相交,题目提示“可能”,因此选A. 分析:考查“位置关系”时,注意“同一平面内”这个关键条件,垂直是相交的特殊情况,不能选C.2.下列说法正确的是( )A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行答案:D知识点:平行公理及推论解析:解答:平行公理:经过直线外一点有且只有一条直线与已知直线平行。

分析:注意存在性与唯一性。

3.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )A.0 个B.1个C.2个D.3个答案:C知识点:平面中直线的位置关系解析:解答:同一平面内两直线的位置关系有两种:平行和相交,只有两条直线平行,第三条直线必与这两条直线相交,因此有两个交点。

分析:由已知“若其中有两条且只有两条直线平行”可知不会三条直线两两平行。

4.下列说法正确的有( )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个B.2个C.3个D.4个答案:B知识点:平面中直线的位置关系解析:解答:正确的有②④分析:两直线的位置关系,注意是否在同一平面内,若没有这个条件,还可能有异面直线,因此①是错误的,线段没有延伸性,因此③错误。

5.过一点画已知直线的平行线,则( )A.有且只有一条B.有两条C.不存在D.不存在或只有一条答案:D知识点:平行公理及推论解析:解答:这一点与直线的位置关系不明确,因此可能在直线上或在直线外,选D分析:平行公理的条件要记牢:过直线外一点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版数学七年级下册第五章相交线与平行线5.2.1《平行线课时练习》
姓名:________ 班级:________ 成绩:________
一、单选题 (共15题;共30分)
1. (2分) (2019七下·普陀期中) 下列说法正确是()
A . 如果两个角相等,那么这两个角是对顶角;
B . 经过一点有且只有一条直线与已知直线平行;
C . 如果两条直线被第三条直线所截,那么同位角相等;
D . 联结直线外一点与直线上各点的所有线段中,垂线段最短.
2. (2分) (2019七下·海安期中) 下列说法,其中错误的有()
①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同位角相等;④垂线段最短:⑤同一平面内,两条直线的位置关系有:相交,平行和垂直⑥过直线外一点,有且只有一条直线与这条直线平行
A . 1个
B . 2个
C . 3个
D . 4个
3. (2分)下列说法中,正确的是()
A . 相等的角是对顶角
B . 两条直线被第三条直线所截,内错角相等
C . 同旁内角相等,两直线平行
D . 平移、轴对称变换、旋转都不改变图形的形状和大小
4. (2分) (2017七下·敦煌期中) 下列说法:①平面内过一点有且只有一条直线和已知直线垂直;②垂线段最短;③平行于同一条直线的两条直线也互相平行;④同位角相等.其中正确的个数有()
A . 1个
B . 2个
C . 3个
D . 4个
5. (2分) (2016七下·重庆期中) 下列说法正确的个数是()
①同位角相等;
②过一点有且只有一条直线与已知直线垂直;
③过一点有且只有一条直线与已知直线平行;
④三条直线两两相交,总有三个交点;
⑤若a∥b,b∥c,则a∥c.
A . 1个
B . 2个
C . 3个
D . 4个
6. (2分)如图,已知∠1=∠2=∠3=55°,则∠4的度数是()
A . 55°
B . 95°
C . 115°
D . 125°
7. (2分) (2019七下·随县月考) 下列说法中正确的是()
A . 过一点有且只有一条直线平行于已知直线
B . 两条直线被第三直线所截,同位角相等
C . 两条直线有两种位置关系:平行、相交
D . 同一平面内,垂直于同一条直线的两条直线平行
8. (2分)在同一平面内,两条直线的位置关系是()
A . 平行
B . 相交
C . 垂直
D . 平行或相交
9. (2分)两条直线被第三条直线所截,若有一对内错角相等,则这对内错角的角平分线()
A . 互相垂直
B . 相交但不垂直
C . 互相平行
D . 位置关系无法确定
10. (2分)下列四种说法中正确的是()
A . 连结两点间的线段叫两点间的距离
B . 射线AB与射线BA是同一条射线
C . 相等的角是对顶角
D . 若直线a∥b,b∥c,则a∥c
11. (2分)下列结论正确的个数是()
(1)过一点有且只有一条直线与已知直线垂直;(2)过一点有且只有一条直线与已知直线平行;(3)
在同一平面内,不相交的两条射线是平行线;
(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
A . 1个
B . 2个
C . 3个
D . 4个
12. (2分)在同一平面内有1998条直线a1 , a2 ,…,a1998 ,如果a1⊥a2 ,a2∥a3 ,a3⊥a4 ,a4∥a5 ,…那么a1与a1998的位置关系是()
A . 重合
B . 平行或重合
C . 垂直
D . 相交但不垂直
13. (2分) (2018七下·浦东期中) 下列说法正确的个数有()
⑴过一点有且只有一条直线与已知直线平行⑵一条直线有且只有一条垂线⑶不相交的两条直线叫做平行线⑷直线外一点到这条直线的垂线段叫做这点到这条直线的距离
A . 0个
B . 1个
C . 2个
D . 3个
14. (2分) (2017七上·江都期末) 下列说法:
①两点之间的所有连线中,线段最短;
②相等的角是对顶角;
③过直线外一点有且仅有一条直线与己知直线平行;
④两点之间的距离是两点间的线段.
其中正确的个数是()
A . 1个
B . 2个
C . 3个
D . 4个
15. (2分) (2015七下·龙口期中) 下列说法中错误的个数是()
(1)过一点有且只有一条直线与已知直线平行.
(2)在同一平面内,过一点有且只有一条直线与已知直线垂直.
(3)在同一平面内,不重合的两条直线的位置关系只有相交,平行两种.(4)不相交的两条直线叫做平行线.
(5)有公共顶点且有一条公共边的两个角互为邻补角.
A . 1个
B . 2个
C . 3个
D . 4个
二、解答题 (共3题;共25分)
16. (5分)如图,∠ABC+∠BCD+∠EDC=360°.求证:AB∥ED.
三、综合题 (共2题;共20分)
19. (10分)如图所示,梯形ABCD中,AD∥BC,P是AB的中点,过P点作AD的平行线交DC于Q点.
(1) PQ与BC平行吗?为什么?
(2)测DQ与CQ的长,DQ与CQ是否相等?
20. (10分) (2019七下·大连月考) 阅读下面材料:
小明遇到这样一个问题:
(1)如图1,AC∥BD,点E为直线AC上方一点,连接CE、DE,猜想∠C、∠D、∠E的数量关系,并证明.
(2)用学过的知识或参考小明的方法,解决下面的问题:
如图3,AB∥CD,P是平面内一点,连接AP、CP,使AP∥BD,∠APC=100°,BM、CM分别平分∠ABD,∠DCP交于点M,求∠M的度数.
四、填空题 (共5题;共10分)
21. (1分)在同一平面内有三条直线,如果其中有两条且只有两条相互平行,那么它们有________ 个交点.
22. (2分)直线a同侧有A,B,C三点,若过A,B的直线m和过B,C的直线n都与a平行,则A,B,C 三点________,原因是________.
23. (2分)下列说法中:
(1)两条直线不相交就平行.
(2)调查一个村子所有家庭的年收入应该用全面抽查.
(3)同位角相等.
(4)若a<0,则关于x的不等式ax<﹣1的解集为x>1.
(5)二元一次方程2x+y=8的正整数解有3个.
正确的序号是________ .
24. (1分)下列说法正确的有(填序号):________ .
①同位角相等;
②一条直线有无数条平行线;
③在同一平面内,两条不相交的线段是平行线;
④在同一平面内,如果a∥b,b∥c,则a∥c;
⑤过一点有且只有一条直线与已知直线平行.
25. (4分) (2018七下·深圳期中) 如图,已知,那么 ________.
参考答案一、单选题 (共15题;共30分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
二、解答题 (共3题;共25分)
16-1、
三、综合题 (共2题;共20分)
19-1、
19-2、
20-1、
20-2、
四、填空题 (共5题;共10分) 21-1、
22-1、
23-1、
24-1、
25-1、
第11 页共11 页。

相关文档
最新文档