人教版初中数学 相交线与平行线 知识点
相交线与平行线笔记整理

相交线与平行线笔记整理
相交线与平行线是几何学中的重要概念,下面是有关相交线和平行线的笔记整理:
一、相交线:
1. 定义:在平面上,如果两条直线有一个公共的交点,则称这两条直线为相交线。
2. 特性:
- 两条相交线的交点只有一个。
- 两条相交线的两个交线角互为补角。
- 如果两条相交线的交线角互为补角,则这两条直线相交。
二、平行线:
1. 定义:在平面上,如果两条直线没有交点,且方向相同或者重合,则称这两条直线为平行线。
2. 特性:
- 平行线不相交,也没有公共的交点。
- 平行线的交线角为零度。
- 平行线的交线角是对应角,即对应于同一边的内角互为补角。
三、判定平行线的方法:
1. 对称判定法:如果两条直线作为一条直线的平分线,且分出的同侧角相等,则这两条直线平行。
2. 次对称法:如果两条直线与另外一条直线作为一对同位角,且同位角相等,则这两条直线平行。
3. 逆定理法:如果两条直线垂直于同一条直线,则这两条直线
平行。
4. 夹角法:如果两条直线与另外一条直线的夹角相等,则这两条直线平行。
5. 给定角的补角法:如果两条直线与另外一条直线的同侧内角互为补角,则这两条直线平行。
四、平行线性质:
1. 平行线的任意一对内错线互为消角。
2. 平行线的任意一对内错线互为内错角。
3. 平行线与切线的夹角等于对应弧所对的圆心角。
4. 平行线所夹平行线上的交线角相等。
以上是有关相交线与平行线的笔记整理,希望对你有所帮助。
七下数学人教版课本知识点总结非常完整

七下数学课本知识点总结非常完整人教版七年级数学下册知识点第五章 相交线与平行线一、1、在同一平面内,不重合的两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫 平行线 。
如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是 邻补角。
邻补角的性质: 邻补角互补 。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。
对顶角的性质:对顶角相等。
如图1所示,∠1与∠3互为对顶角。
∠1=∠3;∠2与∠4互为对顶角,∠2=∠45、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直, 其中一条叫做另一条的垂线。
如图2所示,当 ∠1 = 90°时, a ⊥ b 。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
性质3:如图2所示,当 a ⊥ b 时,∠1 = ∠2 = ∠3 = ∠4 = 90°。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样的两个角叫 同位角 。
同位角呈“F ” ②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。
内错角呈“Z ”③在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。
同旁内角呈“U ” 7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
相交线与平行线的知识点

相交线与平行线的知识点一、相交线。
1. 邻补角。
- 定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。
- 性质:邻补角互补,即它们的和为180°。
例如,∠AOC和∠BOC是邻补角,那么∠AOC+∠BOC = 180°。
2. 对顶角。
- 定义:有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
- 性质:对顶角相等。
如∠AOC和∠BOD是对顶角,则∠AOC = ∠BOD。
3. 垂直。
- 定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
- 性质:- 在同一平面内,过一点有且只有一条直线与已知直线垂直。
- 连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
- 点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
二、平行线。
1. 平行线的定义。
- 在同一平面内,不相交的两条直线叫做平行线。
用符号“∥”表示平行关系,如直线a平行于直线b,记作a∥b。
2. 平行公理及推论。
- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
- 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即如果a∥b,b∥c,那么a∥c。
3. 平行线的判定。
- 同位角相等,两直线平行。
例如,直线a、b被直线c所截,如果∠1 = ∠2(∠1和∠2是同位角),那么a∥b。
- 内错角相等,两直线平行。
如直线a、b被直线c所截,若∠2 = ∠3(∠2是内错角,∠3是同位角),则a∥b。
- 同旁内角互补,两直线平行。
当直线a、b被直线c所截,若∠2+∠4 = 180°(∠2和∠4是同旁内角),那么a∥b。
4. 平行线的性质。
- 两直线平行,同位角相等。
若a∥b,则∠1 = ∠2(∠1和∠2是同位角)。
人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。
本文将对其中的重点知识点进行总结。
5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。
其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。
2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。
垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。
3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。
画法可采用“一靠二移三画”的方法。
4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。
记忆时应结合图形进行理解。
本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。
在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。
垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。
它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。
点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。
线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。
平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。
判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。
平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。
同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。
(完整版)相交线与平行线复习知识点总结

第五章 相交线与平行线复习 5.1.1相交线(详见课本第2页)1、相交线的概念:在同一平面内,如果两条直线只有一个 点,那么这两条直线叫做相交线,公共点称为两条直线的交点. 如图1所示,直线AB 与直线CD 相交于点O.2、对顶角的概念:若一个角的两条边分别是另一个角的两条边的 延长线, 那么这两个角叫做对顶角. 如图2所示,∠1与∠3、∠2与∠4都是对顶角. 3、对顶角的性质:对顶角 .4、邻补角的概念:如果把一个角的一边 延长,这条反向延长线与这个角的另一边构成一个角,此时就说这两个角互为邻补角. 如图3所示,∠1与∠2互为邻补角,由平角定义可知∠1+∠2=180°.5.1.2垂线(详见课本第3-5页)1、垂线的概念:当两条直线相交所成的四个角中,有一个角是 角时,就说这两条直线互相 ,其中一条直线叫做另一条直线的 ,它们的交点叫做 .2、垂线的性质 (1)(垂直公理)性质1:在同一平面内,经过直线外或直线上一点,有且只有 条直线与已知直线垂直,即过一点有且只有 条直线与已知直线 . (2)(垂直推理)性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短. 即垂线段最 . 3、点到直线的距离:直线外一点到这条直线的 线段的长度,叫做点到直线的 . 如图5所示,l 的垂线段PO 的长度叫做点P 到 直线l 的距离. 4、 垂线的画法(工具:三角板或量角器)画法指点:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上, ⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.5.1.3同位角、内错角、同旁内角(详见课本第6-7页) 1、三线八角两条直线被第 条直线所截形成 个角,它们构成了同位角、内错角与同旁内角. 如图5,直线b a ,被直线l 所截①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方,叫做 角(位置相同)同位角是“F ”型 ②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内),叫做 角(位置在内且交错)内 错角是“Z ”型③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做 角. 同旁内角是“U ”型 2、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把 图形补全. 如上图6 5.2.1平行线(详见课本第11-12页)1、 平行线的概念:在同一平面内,不 的两条直线叫做平行线.2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴ ;⑵ .(通常把 的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:AB CD 14321A BC DO 图2 OD C BA 图1 图5图6 21OC B A图3图4 623 4 5 78 9BA D EC13、平行线的表示方法平行用“ ”表示,如图7所示,直线AB 与直线CD 平行,记作AB ∥CD ,读作AB 平行于CD .4、平行线的画法:5、平行线的基本性质 (1)平行公理:经过直线 一点,有且只有 条直线与已知直线 .(2)平行推理:如果两条直线都和第 条直线平行,那么这两条直线也 .如上图8所示 5.2.2平行线的判定(详见课本第12-14页)1、平行线的判定方法:(1)判定1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角 ,两直线 .(2)判定2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角 ,两直线 .(3)判定3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角 ,两直线 .(4)平行线的概念:同一平面内,如果两条直线没有交点(不 ),那么两直线平行.(5)两条直线都和第三条直线平行,那么这两条直线 .(平行于同一条直线的两条直线也 ) (6)在同一平面内,如果两条直线同时垂直于同一条直线, 那么这两条直线 .(垂直于同一条直线的两条直线 )5.3.1平行线的性质(详见课本第18-19页) 1、平行线的性质:(1)两条平行线被第三条直线所截,同位角相等. 简记:两直线 ,同位角 . (2)两条平行线被第三条直线所截,内错角相等. 简记:两直线 ,内错角 .(3)两条平行线被第三条直线所截,同旁内角互补. 简记:两直线 ,同旁内角 . 2、两条平行线的距离如图10,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F , 则称线段EF 的长度为两平行线AB 与CD 间的距离. 3.平行线的性质与判定是互逆的关系: ○1两直线平行 同位角相等;○2两直线平行 内错角相等; ○3两直线平行 同旁内角互补.5.3.2命题、定理(详见课本第20页) 1、命题的概念: 一件事情的语句,叫做命题.2、命题的组成:每个命题都是 、 两部分组成. (1)题设是 事项; (2)结论是由已知事项 的事项.3、命题的表述句式:命题常写成“ ……, ……”的形式. 具有这种形式的命题中,用“如果”开始的部分是 ,用“那么”开始的部分是 . 5.4平移(详见课本第28-29页)1、平移变换的概念:把一个图形 沿某一 方向移动,会得到一个新图形的平移变换.2、平移的特征:①大小: ; ②形状: ; ③位置: ; ④对应点的连线: 且 . (1的形状与大小都没有发生变化. (2)经过平移后,对应点所连的线段平行(或在同一直线上)且相等.AD EBC 1 2图7 D C BA a b c 图8A EG B C F H D图10 性质判定性质性质判定判定A D BE CF 图12A B C DEF1 2 34自我检测1.如果两个角是互为邻补角,那么一个角是锐角,另一个角是钝角.( )2.同一平面内,一条直线不可能与两条相交直线都平行.( )3.两条直线被第三条直线所截,内错角的对顶角一定相等.( )4.互为邻补角的两个角的平分线互相垂直.( )5.两条直线都与同一条直线相交,这两条直线必相交.( )6.如右下图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.7.设a 、b 、c 为同一平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________; b) 若,ab bc ⊥⊥,则a 与c 的位置关系是_________; c)若//a b ,b c ⊥,则a 与c 的位置关系是________.8.如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.9.如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.10.如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE 过点C 作CF ∥AB ,则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2 即∠B +∠E =∠BCE .11.⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.12.阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ . 证明:∵AB ∥CD ,∴∠MEB =∠MFD ( ) 又∵∠1=∠2, ( )∴∠MEB -∠1=∠MFD -∠2, ( ) 即 ∠MEP =_______∴EP ∥_____.( )13.已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小; ⑵∠P AG 的大小.14.如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.15.已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.。
人教版初中数学相交线与平行线全章知识点

人教版初中数学相交线与平行线全章知识点相交线与平行线是初中数学中的基础知识之一,本章主要介绍了相关概念、性质和应用。
一、基本概念1. 平行线:在同一平面内,不相交且在无限远处也不相交的两条直线称为平行线。
2. 相交线:在同一平面内,有公共点的两条直线称为相交线。
3. 夹角:由两条相交的直线和它们所夹的两个角所组成的角称为夹角。
夹角可以用符号“∠”表示。
4. 同位角:当一条直线与另外两条直线相交时,同侧对应的角互为同位角,它们的度数相等。
5. 对顶角:由两条相交的直线所形成的两组相对角称为对顶角,它们的度数相等。
二、性质与定理1. 平行线的性质:平行线具有如下性质:(1)平行线不相交,无交点。
(2)平行线所成的同位角互相相等。
(3)平行线与一条截面所成的内角和为180°。
2. 相交线的性质:相交线具有如下性质:(1)相交线所成的对顶角互相相等。
(2)相交线所成的内角和为360°。
三、应用1. 判断两条直线的关系:根据两条直线的位置关系可以判断它们是否平行或者相交。
2. 求解线段长度:通过利用相似三角形的性质,可以计算出在平行线所形成的三角形中,线段长度之间的比例关系。
3. 构造平行线:通过辅助线的方法,可以在给定的平面内构造出一条与已知线段平行的直线。
4. 解题方法:利用夹角、同位角、对顶角等概念与性质,结合所给条件,运用相关的定理和公式进行计算和推理。
相交线与平行线是初中数学中的基本概念和知识点,对于理解和掌握平面几何学有着重要的作用。
通过熟练掌握相关的概念和性质,可以更好地应用到实际问题和解决生活中的问题中去。
人教七年级数学平行线与相交线总复习知识点归纳和例题精讲

平行线与相交线期末考试总复习考点1:余角、补角、对顶角一、考点讲解:1.余角:如果两个角的和是,那么称这两个角互为余角.2.补角:如果两个角的和是,那么称这两个角互为补角.3.对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4.互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余.反过来,若∠1,∠2互余.则∠1+∠2=90○.②同角或等角的余角相等,如果∠l十∠2=90○,∠1+∠3= 90○,则∠2= ∠3.5.互为补角的有关性质:①若∠A +∠B=180○则∠A、∠B互补,反过来,若∠A、∠B互补,则∠A+∠B=180○.②同角或等角的补角相等.如果∠A+∠C=18 0○,∠A+∠B=18 0°,则∠B=∠C.6.对顶角的性质:对顶角相等.二、经典考题剖析:【考题1-1】如图l-2-1,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15○30’,则下列结论中不正确的是()A.∠2 =45○B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75○30′解:D 点拨:此题考查了互为余角,互为补角和对顶角之间的综合运用知识.三、针对性训练:1._______的余角相等,_______的补角相等.2.∠1和∠2互余,∠2和∠3互补,∠1=63○,∠3=__3.下列说法中正确的是()A.两个互补的角中必有一个是钝角B.一个角的补角一定比这个角大C.互补的两个角中至少有一个角大于或等于直角D.相等的角一定互余4.轮船航行到C处测得小岛A的方向为北偏东32○,那么从A 处观测到C处的方向为()A.南偏西32○B.东偏南32○C.南偏西58○D.东偏南58○5.若∠l=2∠2,且∠1+∠2=90○则∠1=___,∠2=___.6.一个角的余角比它的补角的九分之二多1°,求这个角的度数.7.∠1和∠2互余,∠2和∠3互补,∠3=153○,∠l=8.如图l-2-2,AB⊥CD,AC⊥BC,图中与∠CAB互余的角有()A.0个B.l个C.2个D.3个9.如果一个角的补角是150○,那么这个角的余角是______10.已知∠A和∠B互余,∠A与∠C互补,∠B与∠C的和等于周角的13,求∠A+∠B+∠C的度数.11.如图如图1-2-3,已知∠AOC与∠B都是直角,∠BOC=59○.(1)求∠AOD的度数;(2)求∠AOB和∠DOC的度数;(3)∠A OB与∠DOC有何大小关系;(4)若不知道∠BOC的具体度数,其他条件不变,这种关系仍然成立吗?考点2:同位角、内错角、同旁内角的认识及平行线的性质一、考点讲解:1.同一平面内两条直线的位置关系是:相交或平行.2.“三线八角”的识别:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.3.平行线的性质:(1)两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.(2)过直线外一点有且只有一条直线和已知直线平行.(3)两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.二、经典考题剖析:【考题2-1】如图1―2―4,直线a ∥b,则∠A CB=________解:78○点拨:过点C作CD平行于a,因为a∥b,所以CD∥b.则∠A C D=2 8○,∠DCB=5 0○.所以∠ACB=78○.【考题2-2】(2004、开福,6分)如图1―2―5,AB∥CD,直线EF分别交A B、CD于点E、F,EG平分∠B EF,交CD于点G,∠1=5 0○求∠2的度数.解:65○点拨:由AB∥CD,得∠BEF=180○-∠1=130○,∠BEG=∠2.又因为EG平分∠BEF,所以∠2=∠BEG=12∠BEF=65°(根据平行线的性质)三、针对性训练:1.如图1-2-6,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.l个B.2个C.3个D.4个2.下列说法中正确的个数是()(1)在同一平面内不相交的两条直线必平行;(2)在同一平面内不平行的两条直线必相交;(3)两条直线被第三条直线所截,所得的同位角相等;(4)两条平行线被第三条直线所截,一对内错角的平分线互相平行。
人教版七年级下册数学知识点汇总

一、相交线与平行线1. 相交线•邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角互补。
•对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。
对顶角相等。
•垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
垂线的性质包括:过一点有且只有一条直线与已知直线垂直;连接直线外一点与直线上各点的所有线段中,垂线段最短。
2. 平行线•定义:在同一平面内,永不相交的两条直线叫做平行线。
•平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论是,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
•平行线的性质:o两直线平行,同位角相等。
o两直线平行,内错角相等。
o两直线平行,同旁内角互补。
•平行线的判定:o同位角相等,两直线平行。
o内错角相等,两直线平行。
o同旁内角互补,两直线平行。
3. 平移•定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
平移不改变物体的形状和大小。
•对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
连接各组对应点的线段平行且相等。
二、平面直角坐标系•有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。
•平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
•坐标:对于平面内任一点P,过P分别向x轴、y轴作垂线,垂足分别在x 轴、y轴上,对应的数a、b分别叫点P的横坐标和纵坐标。
三、三角形•三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
•高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
•中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点
1.相交线
同一平面中,两条直线的位置有两种情况:
相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角:∠1,∠2,∠3,∠4;
邻补角:其中∠1和∠2有一条公共边,且他们的另一边互为反向延长线。
像∠1和∠2这样的角我们称他们互为邻补角;
对顶角:∠1和∠3有一个公共的顶点O,并且∠1
的两边分别是∠3两边的反向延长线,具有这种位
置关系的两个角,互为对顶角;
∠1和∠2互补,∠2和∠3互补,因为同角的补
角相等,所以∠1=∠3。
所以,对顶角相等
例题:
1.如图,3∠1=2∠3,求∠1,∠2,∠3,∠4
的度数。
2.如图,直线AB、CD、EF相交于O,且AB CD
2_______,
⊥,∠=︒
127,则∠=
FOB__________。
∠=
C
E
A 2 O B
1
F
D
垂直:垂直是相交的一种特殊情况两条直线相互垂直,其
中一条叫做另一条的垂线,它们的交点叫做垂足。
如图所示,
图中AB⊥CD,垂足为O。
垂直的两条直线共形成四个直角,
每个直角都是90︒。
例题:
如图,AB⊥CD,垂足为O,EF经过点O,∠1=26︒,求∠EOD,∠2,∠3的度数。
(思考:∠EOD可否用途中所示的∠4表示?)
垂线相关的基本性质:
(1)经过一点有且只有一条直线垂直于已知直线;
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短;
(3)从直线外一点到直线的垂线段的长度,叫做点到直线的距离。
例题:假设你在游泳池中的P点游泳,AC是泳池的岸,如果此时你的腿抽筋了,你会选择那条路线游向岸边?为什么?
*线段的垂直平分线:垂直且平分一条线段的直线,叫做这条线段的垂直平分线。
如何作下图线段的垂直平分线?
2.平行线:在同一个平面内永不相交的两条直线叫做平行线。
平行线公理:经过直线外一点,有且只有一条直线和已知直线平行。
如上图,直线a与直线b平行,记作a//b
3.同一个平面中的三条直线关系:
三条直线在一个平面中的位置关系有4中情况:有一
个交点,有两个交点,有三个交点,没有交点。
(1)有一个交点:三条直线相交于同一个点,如
图所示,以交点为顶点形成各个角,可以用角的相关
知识解决;
例题:
如图,直线AB,CD,EF相交于O点,∠DOB是它的余角的两倍,∠AOE=2∠DOF,且有OG⊥OA,求∠EOG的度数。
(2)有两个交点:(这种情况必然是两条直线平行,被第三条直线所截。
)如
图所示,直线AB,CD平行,被第三条直线EF所截。
这三条直线形成了两个顶点,围绕两个顶点的8个角之间有三种特殊关系:
*同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF 的同旁(即位置相同),这样的一对角叫做同位角;
*内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF 的两旁(即位置交错),这样的一对角叫做内错角;
*同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF 的同旁,这样的一对角叫做同旁内角;
指出上图中的同位角,内错角,同旁内角。
两条直线平行,被第三条直线所截,其同位角,内错角,同旁内角有如下关系:两直线平行,被第三条直线所截,同位角相等;
两直线平行,被第三条直线所截,内错角相等
两直线平行,被第三条直线所截,同旁内角互补。
如上图,指出相等的各角和互补的角。
例题:
1.如图,已知∠1+∠2=180︒,∠3=180︒,求∠4
的度数。
2.如图所示,AB//CD ,∠A =135︒,∠E =80︒。
求∠CDE 的度数。
平行线判定定理:
两条直线平行,被第三条直线所截,形成的角有如上所说的性质;那么反过来,如果两条直线被第三条直线所截,形成的同位角相等,内错角相等,同旁内角互补,是否能证明这两条直线平行呢?答案是可以的。
两条直线被第三条直线所截,以下几种情况可以判定这两条直线平行: 平行线判定定理1:同位角相等,两直线平行
如图所示,只要满足∠1=∠2(或者∠3=∠4;∠5
=∠7;∠6=∠8),就可以说AB//CD
平行线判定定理2:内错角相等,两直线平行
如图所示,只要满足∠6=∠2(或者∠5=∠4),就
可以说AB//CD
平行线判定定理3:同旁内角互补,两直线平行
如图所示,只要满足∠5+∠2=180︒(或者∠6+∠4
=180︒),就可以说AB//CD
平行线判定定理4:两条直线同时垂直于第三条直线,两条直线平行
这是两直线与第三条直线相交时的一种特殊情况,由上图中∠1=∠2=90︒就可以得到。
例题:
1.已知:AB//CD ,BD 平分∠ABC ,DB 平分∠ADC ,求证:DA//BC
A
B 1
2D
C
34
2.已知:AF 、BD 、CE 都为直线,B 在直线AC 上,E 在直线DF 上,且∠=∠12,∠=∠C D ,求证:∠=∠A F 。
D E F
1
3
2
4
A B C
(3)有三个交点
当三条直线两两相交时,共形成三个交点,12个角,这是三条直线相交的一般情况。
如下图所示:
你能指出其中的同位角,内错角和同旁内角吗?
三个交点可以看成一个三角形的三个顶点,三个交点直线的线段可以看成是三角形的三条边。
(4)没有交点:
这种情况下,三条直线都平行,如下图所示:
即a//b//c。
这也是同一平面内三条直线位置关系的一种特殊情况。
例题:
如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与CD 有怎样的位置关系,为什么?。