概率讲义

合集下载

《概率》 讲义

《概率》 讲义

《概率》讲义一、什么是概率在我们的日常生活中,经常会听到“可能”“也许”“大概”这样的词汇,这些词所表达的不确定性,在数学中就可以用概率来描述。

概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。

比如抛一枚硬币,正面朝上和反面朝上的可能性各占一半,我们就说抛硬币正面朝上的概率是 05 。

概率的取值范围在 0 到 1 之间。

如果一个事件完全不可能发生,那么它的概率就是0 ;如果一个事件肯定会发生,那么它的概率就是1 。

而大部分事件发生的概率则介于 0 和 1 之间。

二、概率的计算方法计算概率有多种方法,其中最基本的就是古典概型和几何概型。

古典概型适用于试验结果有限且等可能的情况。

例如,一个盒子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。

因为总共有 8 个球,取出每个球的可能性相等,而红球有 5 个,所以取出红球的概率就是 5÷8 = 0625 。

几何概型则适用于试验结果是无限的情况。

比如在一个单位圆中随机取一点,求这个点落在圆的某个扇形区域内的概率,这时就需要通过计算扇形区域的面积与整个圆的面积之比来得到概率。

除了这两种基本的概型,还有一些更复杂的概率计算方法,比如条件概率和全概率公式。

条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

例如,已知今天下雨,明天也下雨的概率就是一个条件概率。

全概率公式则是将一个复杂的事件分解为多个简单的互斥事件,然后通过这些简单事件的概率来计算复杂事件的概率。

三、概率在生活中的应用概率在我们的生活中有着广泛的应用,从简单的游戏到复杂的决策都离不开它。

在彩票中,虽然中奖的概率极低,但仍然吸引着很多人购买,这是因为人们总是抱着一丝侥幸心理,希望自己成为那个幸运儿。

但从概率的角度来看,购买彩票中大奖更多的是一种娱乐,而不是可靠的致富方式。

在保险行业,保险公司通过对各种风险发生的概率进行计算和评估,来确定保险的费率和赔偿金额。

高中数学必修2《概率》知识点讲义

高中数学必修2《概率》知识点讲义

第三章 概率一.随机事件的概率1、基本概念:⎧⎧⎪⎨⎨⎩⎪⎩不可能事件确定事件事件必然事件随机事件(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)事件:确定事件和随机事件统称为事件,一般用大写字母A ,B ,C ……表示。

2、概率与频数、频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)= A n n为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A) 稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值A n n ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率。

二.概率的基本性质1、各种事件的关系:(1)并(和)事件(2)交(积)事件(3)互斥事件(4)对立事件2、概率的基本性质:(1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;(2)P(E)=1(E 为必然事件);(3)P(F)=0(F 为必然事件);(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);(5)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);三.古典概型(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。

概率论讲义_带作业

概率论讲义_带作业

例 已知某类产品的次品率为0. 2 ,现从一大批这类产品中随机抽查2 0 件. 问恰好 有 件次品的概率是多少?
3) 泊松分布
概率论的基本概念 样本空间
样本点
事件
事件的概率
练习 1. 抛一枚骰子,观察向上一面的点数;事件表示“出现偶数点”
2. 对目标进行射击,击中后便停止射击,观察射击的次数;事件表示“射击次数不超 过5 次”
事件之间的关系与运算
事件语言
集合语言
样本空间
事件
的对立事件
事件 或者
分布律:如果记离散型随机变量 所有可能的取值为
值的概率,即事件
的概率为
, 取各个可能
上式称为离散型随机变量 的分布律. 分布律也可以直观的表示成下列表格:
根据概率的性质,分布律中的 应该满足下列条件: 1. 2. 例 某系统有两台机器独立运转. 设第一台与第二台机器发生故障的概率分别是 0. 1 ,0. 2. 以 表示系统中发生故障的机器数,求 的分布律.
随机变量的例子
掷一枚色子,用 记点数;
掷三枚色子,用 记点数之和;
掷一枚硬币,记
为“出现正面”,
为“出现反面”;
变量的取值是随机的,依赖于随机试验的结果
用随机变量来表示事件
设 为一个实数集合,则用
表示一个事件 ,即
例如,某射手射击某个目标,击中计1 分,未中计0 分,则计分 表示一个随机
变量,且“击中”这个事件可以表示为
第二章 随机变量及其分布
Hale Waihona Puke 第六讲 随机变量 离散随机变量
概率论的另一个重要概念是随机变量. 随机变量的引入, 使概率论的研究由个别的 随机事件扩大为随机变量所表征的随机现象的研究.

《概率》 讲义

《概率》 讲义

《概率》讲义一、什么是概率在我们的日常生活中,经常会听到“可能”“也许”“大概”这样的词汇,而这些词所表达的不确定性,在数学中可以用“概率”来进行量化和研究。

概率,简单来说,就是用来衡量某个事件发生可能性大小的一个数值。

这个数值在 0 到 1 之间。

如果一个事件发生的概率是 0,那就意味着这个事件几乎不可能发生;如果概率是 1,那就表示这个事件肯定会发生;而如果概率在 0 和 1 之间,比如 05,那就说明这个事件有一半的可能性会发生。

举个例子,抛一枚均匀的硬币,正面朝上和反面朝上的概率都是 05。

因为硬币只有正反两面,而且在理想情况下,硬币正反面出现的机会是均等的。

再比如,从一个装有 5 个红球和 5 个白球的袋子中随机摸出一个球是红球的概率,就是 05。

二、概率的计算方法1、古典概型古典概型是一种最简单的概率模型。

在古典概型中,如果一个试验有 n 个等可能的结果,事件 A 包含其中的 m 个结果,那么事件 A 发生的概率 P(A) = m / n 。

例如,一个盒子里有 3 个红球和 2 个白球,从中随机取出一个球是红球的概率,总共有 5 个球,其中红球有 3 个,所以取出红球的概率就是 3/5 。

2、几何概型几何概型是另一种常见的概率模型。

当试验的结果是无限个,且每个结果出现的可能性相等时,我们常常使用几何概型来计算概率。

比如说,在一个时间段内等待公交车,假设公交车在这段时间内任何时刻到达的可能性相等,那么我们计算在某一特定时间段内等到公交车的概率时,就可以使用几何概型。

3、条件概率条件概率是指在某个条件下,某个事件发生的概率。

假设事件 A 和事件 B,在事件 B 已经发生的条件下,事件 A 发生的概率,记作 P(A|B) 。

例如,已知一个家庭有两个孩子,其中一个是女孩,那么另一个孩子也是女孩的概率就是一个条件概率。

三、概率在实际生活中的应用1、保险行业保险公司在制定保险政策和计算保费时,会大量使用概率知识。

概率论通识讲义

概率论通识讲义

概率论通识讲义概率论是现代科学的重要分支之一,它研究的是随机事件的规律性和概率分布,是科学研究、决策分析、风险管理等领域不可或缺的工具。

本文旨在为读者提供概率论的基础知识,包括概率的定义、性质、概率分布、随机变量等内容。

一、概率的定义和性质概率是描述随机事件发生可能性的数值,通常用0到1之间的实数表示。

概率的定义有三种形式:古典概型、几何概型和统计概型。

其中,古典概型适用于事件的样本空间有限的情况,几何概型适用于事件的样本空间为几何形状的情况,统计概型适用于事件的样本空间无限的情况。

概率具有以下几个性质:1. 非负性:对于任何事件A,其概率P(A)必须大于等于0。

2. 规范性:对于样本空间Ω中的所有事件A,它们的概率之和等于1,即P(Ω)=1。

3. 可列可加性:对于任意的可列个事件A1、A2、…,它们的并集的概率等于它们概率之和,即P(A1∪A2∪…) = P(A1) + P(A2) + …。

4. 互斥事件的加法规则:对于互斥事件A和B,它们的并集的概率等于它们概率之和,即P(A∪B) = P(A) + P(B)。

二、概率分布概率分布是用来描述随机变量的概率分布规律的函数。

随机变量是指取值不确定的变量,可以是离散的或连续的。

离散型随机变量取有限或可数个值,其概率分布函数称为概率质量函数。

连续型随机变量可以取任意实数值,其概率分布函数称为概率密度函数。

离散型随机变量的概率质量函数可以用下列公式表示:P(X=x) = f(x),其中x为随机变量的取值,f(x)为概率质量函数。

连续型随机变量的概率密度函数可以用下列公式表示:P(a≤X≤b) = ∫ab f(x)dx,其中a和b为随机变量的取值范围,f(x)为概率密度函数。

三、随机变量随机变量是指取值不确定的变量,可以是离散的或连续的。

随机变量的期望、方差和协方差是概率论中重要的概念。

其中,期望是随机变量的平均值,方差是随机变量偏离其期望的平方的平均值,协方差是两个随机变量之间的相关性度量。

(完整版)《概率论与数理统计》讲义

(完整版)《概率论与数理统计》讲义

第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。

例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。

例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。

例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

高三总复习讲义概率

高三数学总复习讲义--概率第一讲:随机事件的概率随机事件:在一定条件下可能发生也可能不发生的事件。

必然事件:在一定条件必然要发生的事件。

不可能事件:在一定条件下不可能发生的事件。

事件A的概率:一般地,在大量重复进行同一试验时,事件A发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。

由定义可知,必然事件的概率是1,不可能事件的概率是0。

等可能事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成。

如果试验中可能出现的结果有n个(即此试验由n个基本事件组成,而且所有结果出现的可能性相等,那么每个基本事件的概率都是,如果某个事件A包含的结果有m个,那么事件A的概率。

在一次试验中,等可能出现的n个结果组成一个集合I,这n个结果就是集合I的n个元素,从集合的角度看,事件A的概率是子集A的元素个数与集合I的元素个数的比值:(古典概型)这样就建立了事件与集合的联系,从排列组合的角度看,m,n实际上就是事件的排列数或组合数。

题型一:与排列组合综合例1.某班委会由4名男生和3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是____________________;练习1.将7人(含甲、乙两人)分成三组,一组3人,另两组各2人,不同的分组数为________________;甲、乙分在同一组的概率P=________________。

题型二:与两个计数原理综合例2.先将一个棱长为3的正方体木块的六个面分别涂上六种颜色,再将正方体均匀切割成棱长为1的小正方体,从切好的小正方体中任选一个,所得正方体的六个面均没有涂色的概率是________________;练习2.由数字0、1、2、3、4、5组成没有重复数字的五位数,所得数是大于20000的偶数的概率是________________;题型三:有、无放回抽样问题例3.从含有两件正品和一件次品的3件产品中每次任取一件,连续取两次,求取出的两件产品中恰有1件次品的概率。

《概率的概念》 讲义

《概率的概念》讲义在我们的日常生活中,很多事情的结果是不确定的。

比如明天是否会下雨,买彩票是否能中奖,考试是否能取得好成绩等等。

而概率,就是用来衡量这些不确定事件发生可能性大小的工具。

那到底什么是概率呢?简单来说,概率就是对随机事件发生可能性大小的一个数值度量。

如果一个事件发生的可能性越大,那么它的概率就越大;反之,如果一个事件发生的可能性越小,它的概率就越小。

为了更好地理解概率,我们先来看一个简单的例子。

假设一个盒子里有 5 个红球和 3 个白球,我们从中随机取出一个球,那么取出红球的概率是多少呢?要计算这个概率,我们首先需要知道总的可能性有多少种。

在这个例子中,从 8 个球中取出任意一个球,总共有 8 种可能性。

而取出红球的可能性有 5 种。

所以取出红球的概率就是 5÷8 = 5/8。

概率的取值范围在 0 到 1 之间。

如果一个事件的概率为 0,那就意味着这个事件几乎不可能发生;如果概率为 1,就表示这个事件肯定会发生;而当概率在0 到1 之间时,说明这个事件有一定的可能性发生。

比如,太阳从西边升起这个事件的概率就是 0,因为这在我们的认知中是不可能发生的;而抛硬币正面朝上的概率是 05,因为抛硬币只有正面和反面两种可能,且出现正面和反面的可能性是相等的。

在实际生活中,概率有着广泛的应用。

比如在保险行业,保险公司会根据各种风险事件发生的概率来计算保险费用。

如果某种疾病发生的概率较高,那么针对这种疾病的保险费用就会相对较高。

在天气预报中,气象学家会根据各种气象数据和模型来预测明天降雨的概率。

如果降雨的概率较大,人们就会提前做好相应的准备,比如携带雨具。

在统计学中,概率也是非常重要的。

通过对大量数据的分析和计算概率,可以帮助我们得出一些有用的结论和决策。

再来说说概率的计算方法。

除了像前面提到的通过计算事件可能出现的结果数来计算概率外,还有一些常见的概率计算规则。

比如加法规则,如果事件 A 和事件 B 是互斥的(也就是说两个事件不能同时发生),那么事件 A 或者事件 B 发生的概率就等于事件 A发生的概率加上事件 B 发生的概率。

高中数学必修2《概率》知识点讲义

高中数学必修2《概率》知识点讲义Chapter 3 Probabilityn 1 Probability of Random Events1.Basic Concepts:Impossible eventCertain eventEvent (includes certain and impossible events)Random eventProbability (P(A)) of an event A2.Probability。

Frequency。

and Frequency :Frequency (nA) of an event A in n trials under the same nsFrequency。

(fn(A)) of an event A in n trials under the same nsProbability (P(A)) of an event A as the stable frequency。

as the number of trials increasesXXXn 2 Basic Properties of Probability1.XXX:n (sum) eventn (product) eventXXXXXX2.Basic Properties of Probability:Probability of certain event is 1.probability of impossible event is 0.and 0 ≤ P(A) ≤ 1XXX 1XXX 0XXX: P(A∪B)= P(A)+ P(B)XXX: P(A)+P(B)=1 if A and B are complementaryn 3 Classical Probability1.XXX: XXX2.XXX:XXX the total number of possible esXXX AUse formula P(A)= number of es in A/ total number of es3.XXX:XXXXXXXXXNote: The original text had formatting errors and some unclear sentences。

《概率论讲义》课件


线性回归
介绍线性回归模型的基本原理和应用案例。
多元非线性回归
探讨多元非线性回归分析的方法和实际应用。
蒙特卡罗方法
1
简介和基本概念
介绍蒙特卡罗方法的基本思想和使用领域。
2
模拟方法
说明蒙特卡罗方法的模拟过程和实际应用。
3
抽样方法
讨论蒙特卡罗方法中的抽样技术和抽样步骤。
应用案例
金融风险管理
探讨概率论在金融风险管理中的应用和重要性。
2
弱大数定律
探讨具体的弱大数定律和其适用性。
3

中心极限定理
详细解释中心极限定理及其在概率论中的重要性。
统计推断
1 点估计
介绍点估计的概念和方法,以及其在概率论中的应用。
2 区间估计
说明区间估计的原理和步骤,并讨论其实际应用。
3 假设检验
讲解假设检验的基本思想和步骤,以及其在统计学中的作用。
回归分析
《概率论讲义》PPT课件
概率论讲义PPT课件大纲
简介
介绍概率论的基本概念和应 用领域,初步了解概率论的 历史和发展。
随机变量
定义随机变量,离散型和连 续型随机变量及其概率分布。
概率分布
二项分布,泊松分布和正态 分布。
大数定律与中心极限定理
1
定义大数定律和中心极限定理
深入了解大数定律和中心极限定理的概念和应用。
人口统计学
展示概率论如何应用于人口统计学数据的分析和预测。
物理学和天文学
介绍概率论在物理学和天文学研究中的关键作用。
结论
总结所学内容,展望概率论的未来发展和应用前景。
参考文献
推荐阅读经典著作和相关文献
提供经典著作和相关文献,供学习和研究参考。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概 率
1.一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本,已知B 层中甲、乙都被抽到的概率为
128,则总体中的个数为 2.三张卡片上分别写上字母E 、E 、B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为
3.电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为
4.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是
5.在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、 F(3,3)中任取三个,这三点能构成三角形的概率是
6.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其 余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概 率是
7.一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回...
地每次取一个球, 共取2次,则取得两个球的编号和不小于...15的概率为
8.一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注数字外完 全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是
9.连掷两次骰子得到的点数分别为m 和n ,记向量()m n ,a =与向量(11)=-,b 的夹角为 θ,则0θπ⎛⎤∈ ⎥2⎝⎦
,的概率是
10.甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择 两个顶点连成直线,则所得的两条直线相互垂直的概率是
11.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率 是
12.盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的 概率是_ __.
13.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的 点数是3”为事件B,则事件A ,B 中至少有一件发生的概率是
14.从数字这五个数字中任取两个组成两位数,这个两位数是奇数的概率是
15.在区间上随机取一个数x ,则的概率为 16.在区间[-1,1]上随机取一个数x ,cos 2x
π的值介于0到2
1之间的概率为 17.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长 度小于1的概率为
18.在平面直角坐标系xoy中,设D是横坐标与纵坐标的绝对值均不大于2 的点
构成的区域, E是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率.
19.ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的
点到O的距离大于1的概率为
20.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得
身高情况的统计图如下:
()估计该校男生的人数;
()估计该校学生身高在170~185cm之间的概率;
()从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm 之间的概率。

21.为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组
成研究小组、有关数据见下表(单位:人)
(I)求x,y ;
(II)若从高校B、C抽取的人中选2人作专题发言,求这二人都来自高校C的概率。

22.为了了解一个小水库中养殖的鱼有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,做出频率分布表(如图所示)
(Ⅰ);估计数据落在(1.15,1.30)中的概率为多少;
(Ⅲ)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数。

23.一汽车厂生产A,B,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆.
(1) 求z 的值.
(2) 用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,
从中任取2辆,求至少有1辆舒适型轿车的概率;
(3) 用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6,
9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
24. 一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取 一个球,该球的编号为n ,求2n m <+的概率.
25.在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安
排在一起. 若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……,6)求:
(Ⅰ)甲、乙两单位的演出序号均为偶数的概率;
(Ⅱ)甲、乙两单位的演出序号不相邻的概率.
26.为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A ,B,C 三个区中抽取7个工厂进行调查,已知A,B ,C 区中分别有18,27,18个工厂
(Ⅰ)求从A,B,C 区中分别抽取的工厂个数;
(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A 区的概率。

27.袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸 取一个球
(I )试问:一共有多少种不同的结果?请列出所有可能的结果;
(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。

28.设有关于x 的一元二次方程2220x ax b ++=.
(Ⅰ)若a 是从0123,,,四个数中任取的一个数,b 是从012,,三个数中任取的一个数,求上述方程有实根的概率.
(Ⅱ)若a 是从区间[03],任取的一个数,b 是从区间[02],任取的一个数,求上述方程有实根的概率.。

相关文档
最新文档