2012年辽宁省本溪市中考数学试卷_5

合集下载

辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题 3 分,共 30 分)1、一次数学考题考生约 12 万名,从中抽取 5000 名考生的数学成绩进行解析,在这个问题中样本指的是( )A5000 B5000 名考生的数学成绩 C12 万考生的数学成绩 D5000 名考生2、用配方法解一元二次方程 x 2-4x-1=0,配方后得到的方程是( )A(x―2) 2 =1 B(x―2) 2 =4 C(x―2) 2 =5 D(x―2) 2 =33、已知⊙O l与⊙O2的半径分别为 3cm和 4cm,圆心距为 8cm,则两圆的位置关系是( )A内含 B内切 C相交 D外离4、用下列同一种正多边形不能作平面镶嵌的是( )A正三角形 B正四边形 C正六边形 D正七边形6、如图,在⊙O 中,∠B=37º,则劣弧 AB 的度数为( )A106º B126º C74º D53º7、函数中自变量 x 的取值范围是( )8、如图,AB 是⊙O 的直径,C、D 是 AB 的三等分点,如果⊙O的半径为l,P 是线段 AB 上的任意—点,则图中阴影部分的面积为( )9、式子有意义,则点 P(a,b)在( )A第一象限 B第二象限 C第三象限 D第四象限10、如图,PA 切⊙O于点A,割线 PBC 经过圆心O,OB=PB=1,OA绕点O逆时针方向转60º到 OD,则 PD 的长为( )二、填空题(每小题 3 分共 24 分)11、如果―4 是关于 x 的一元二次方程 2x2+7x―k=0 的一个根,则 k 的值为______。

12、已知⊙O 的弦 AB 的长为 6cm,圆心 O 到 AB 的距离为 3cm,则⊙O 的半径为___cm。

13、用换元法解方程那么原方程可变形为_________。

14、已知正六边形的半径为 20cm,则它的外接圆与内切圆组成的圆环的面积是______cm 2。

2012年辽宁省本溪市中考数学试卷

2012年辽宁省本溪市中考数学试卷

2012年辽宁省本溪市中考数学试卷一、单选题(每题3分,共30分)1、3-的相反数是( )A 、3B 、 3-C 、31 D 、31- 2、下列计算正确的是( )A 、532a a a =+B 、 532a )(a =C 、a a 632a =∙D 、2623a 4b)(2a b =3、如图所示的几何体的俯视图是( )4、下列各网格中的图形是用其图形中的一部分平移得到的是( )5、已知一元二次方程0158x -x 2=+的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( )A 、13B 、11或13C 、11D 、126、有三张正面分别标有数字 2-,3, 4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从 中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )A 、94B 、121C 、31D 、61 7、如图 在直角△ABC 中,∠BAC=90°A B=8,AC=6,DE 是AB 垂足为D ,交边BC 于点E ,连接AE ,则△ACE 的周长为(A 、16B 、15C 、14D 、138、随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( )A 、x 5.2815x 8=+B 、155.28x 8+=xC 、x 5.2841x 8=+D 、415.28x 8+=x9、在菱形ABCD 中,对角线AC 、BD 相交于点O ,AB=5,AC=6作AC 的平行线交BC 的延长线于点E ,则△BDE 的面积为(A 、22B 、24C 、48D 、444数y=xk (k ≠0)的图象上,AB ∥x 轴,分别过点A 、B 向x垂线,垂足分别为C 、D ,若OC=31OD ,则k 的值为(A 、10B 、12C 、14D 、16二、填空题(每题3分,共24分)11、已知1纳米=-910米,某种微粒的直径为158纳米,用科学记术法表示该微粒的直径为 __________________米。

【初中数学】辽宁省各市2012年中考数学试题分类解析汇编(含实数等共12个专题) 人教版

【初中数学】辽宁省各市2012年中考数学试题分类解析汇编(含实数等共12个专题) 人教版

辽宁各市2012年中考数学试题分类解析汇编专题1:实数一、选择题1. (2012辽宁鞍山3分) 6的相反数是【 】A .-6B .16C .±6D 【答案】A 。

【考点】相反数。

【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。

因此6的相反数是-6。

故选A 。

2. (2012辽宁鞍山3分)据分析,到2015年左右,我国纯电驱动的新能源汽车销量预计达到250000辆,250000用科学记数法表示为【 】A .2.5×106B .2.5×104C .2.5×10﹣4D .2.5×105【答案】D 。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。

在确定n 的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。

250000一共6位,从而250000=2.5×105。

故选D 。

3. (2012辽宁本溪3分)-3的相反数是【 】 A 、3 B 、 -3 C 、13D 、13-【答案】A 。

【考点】相反数。

【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。

因此-3的相反数是3。

故选A 。

4. (2012辽宁朝阳3分)有理数15-的绝对值为【 】 A.15 B. -5 C. 15- D.5 【答案】A 。

【考点】绝对值。

【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的义,在数轴上,点15-到原点的距离是错误!未找到引用源。

,所以15-的绝对值是错误!未找到引用源。

故选A 。

5. (2012辽宁朝阳3分)为鼓励大学生创业,我市为在开发区创业的每位大学生提供无息贷款125000元,这个数据用科学计数法表示为(保留两位有效数字)【 】A. 51.2510⨯B. 51.210⨯C. 51.310⨯D. 61.310⨯ 【答案】C 。

辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案一、选择题(共10小题,每小题2分,满分20分)1.(2分)方程x2﹣2x=0的根是()A.x=0 B.x=2 C.x=0或x=2 D.x=0或x=﹣22.(2分)已知sina=,且a是锐角,则a=()A.75° B.60° C.45° D.30°3.(2分)下列方程中,有实数根的是()4.(2分)已知变量y和x成反比例,当x=3时,y=﹣6,那么当y=3时,x的值是()A.6 B.﹣6 C.9 D.﹣95.(2分)在半径为6cm的圆中,长为2πcm的弧所对的圆周角的度数是()A.30° B.45° C.60° D.90°6.(2分)在同一直角坐标系中,正比例函数y=﹣3x与反比例函数的图象的交点个数()A.3 B.2 C.1 D.07.(2分)如图,⊙O的直径为12cm,弦AB垂直平分半径OC,那么弦AB的长为()8.(2分)样本8,8,9,10,12,12,12,13的中位数和众数分别是()A.11,3 B.10,12 C.12,12 D.11,129.(2分)已知两圆的半径分别是2、3,圆心距是d,若两圆有公共点,则下列结论正确的是()A.d=1 B.d=5 C.1≤d≤5 D.1<d<510.(2分)李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程y千米与行进时间t的函数图象的示意图,同学们画出的示意图如下,你认为正确的是()二、填空题(共10小题,每小题2分,满分20分)11.(2分)函数的自变量x的取值范围是_____________.12.(2分)已知x≤1,化简=_____________.13.(2分)设x1,x2是方程2x2﹣4x﹣3=0的两个根,则=_____________.14.(2分)方程的解是___________.15.(2分)已知a<0,那么点P(﹣a2﹣2,2﹣a)关于x轴的对称点P′在第___________象限.16.(2分)已知:如图,⊙O的弦AB平分弦CD,AB=10,CD=8.且PA<PB,则PB﹣PA =__________.17.(2分)半径分别为3cm和4cm的圆,一条内公切线长为7cm,则这条内公切线与连心线所夹的锐角的度数是__________度.18.(2分)小华用一张直径为20cm的圆形纸片,剪出一个面积最大的正六边形,这个正六边形的面积是__________cm2.19.(2分)为了考察一个养鸡场里鸡的生长情况,从中抽取5只,称得它们的重量如下(单位:千克):3.0,3.4,3.1,3.3,3.2,在这个问题中,样本方差是__________.20.(2分)矩形ABCD中,AB=3,AD=2,则以该矩形的一边为轴旋转一周而所得到的圆柱的表面积为__________.三、解答题(共10小题,满分80分)21.(5分)已知,求a3b+ab3的值.22.(5分)已知:如图,P是⊙O外一点,PA切⊙O于A,AB是⊙O的直径,PB交⊙O于C,若PA=2cm,PC=1cm,怎样求出图中阴影部分的面积S?写出你的探求过程.23.(6分)解方程:24.(8分)为增强学生的身体素质,某校坚持长年的全员体育锻炼,井定期进行体能测试.下面是将某班学生的立定跳远成绩(精确到0.01米)进行整理后,分成三组,画出的频率分布直方图的一部分.已知从左到右4个小组的频率分别是0.05,0.15,0.30,0.35,第5小组的频数是9.(1)请将频率分布直方图补充完整;(2)该班参加这次测试的学生有多少人?(3)若成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?(4)这次测试中,你能肯定该班学生成绩的众数和中位数各落在哪一个组内吗?(只需写出能或不能,不必说明理由)25.(8分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费.该市某户今年3,4月份的用水量和水费如下表所示:设某户该月用水量为x(立方米),应交水费y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?26.(8分)为了农田灌溉的需要,某乡利用一土堤修筑条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的上堆在两旁,使土堤高度比原来增加0.6米.(如图所示)求:(1)渠面宽EF;(2)修200米长的渠道需挖的土方数.27.(8分)某县位于沙漠边缘地带,治理沙漠、绿化家乡是全县人民的共同愿望,到1998年底,全县沙漠的绿化率已达30%,此后政府计划在近几年内,每年将当年年初未被绿化的沙漠面积的m%进行绿化,到底,全县沙漠的绿化率已达43.3%,求m值.(注:沙漠绿化率=)28.(10分)已知如图,抛物线y=ax2+bx+c过点A(﹣1,0),且经过直线y=x﹣3与坐标轴的两个交点B、C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.29.(10分)已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合).连接BD,过C作BD的平行线交⊙O1于点E,连接BE.(1)求证:BE是⊙O2的切线;(2)如图(2),若两圆圆心在公共弦AB的同侧,其它条件不变,判断BE和⊙O2的位置关系;(不要求证明)(3)若点C为劣弧AB的中点,其它条件不变,连接AB、AE,AB与CE交于点F,如图(3),写出图中所有的相似三角形.(不另外连线,不要求证明)30.(12分)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x 轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.(1)求证:PC⊥OA;(2)若△APO为等边三角形,求直线AB的解析式;(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,解析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.。

辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题2 分,共20 分)1.下列二次根式中与是同类二次根式的是()2.若∠ A 是锐角,有sin A =cos A ,则∠ A 的度数是()A.30°B.45°C.60°D.90°3.函数中,自变量x 的取值范围是()A.x ≥-1 B.x >-1 且x ≠2C.x ≠2 D.x ≥-1 且x ≠24.在Rt△ ABC 中,C =90°,∠ A =30°,b=,则此三角形外接圆半径为()5.半径分别为1 cm 和5 cm 的两个圆相交,则圆心距d 的取值范围是()A.d <6 B.4<d <6 C.4≤ d <6 D.1<d <56.面积为2 的△ ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是()7.已知关于x 的方程x2-2 x +k =0 有实数根,则k 的取值范围是()A.k <1 B.k ≤1 C.k ≤-1 D.k ≥18.如图,PA 切⊙ O 于点A ,PBC 是⊙ O 的割线且过圆心,PA =4,PB =2,则⊙ O 的半径等于()A.3 B.4 C.6 D.89.两个物体A 、B 所受压强分别为P A(帕)与P B(帕)(P A、P B为常数),它们所受压力F (牛)与受力面积S(米2)的函数关系图象分别是射线l A、l B,如图所示,则()A.P A<P B B.P A=P B C.P A>P B D.P A≤ P B10.若x1,x 2是方程2x2-4x+1=0 的两个根,则的值为()A.6 B.4 C.3 D.二、填空题(每小题 2 分,共20 分)11.看图,描出点A 关于原点的对称点A′ ,并标出坐标.12.解方程时,设y=,则原方程化成整式方程是__________.13.计算=__________.14.如图,在Rt△ABC中,∠ C=90°,以AC 所在直线为轴旋转一周所得到的几何体是__________.15.一组数据6,2,4,2,3,5,2,3 的众数是__________.16.已知圆的半径为6.5 cm ,圆心到直线l 的距离为4 cm,那么这条直线l 和这个圆的公共点的个数有_____个.17.要用圆形铁片截出边长为4 cm的正方形铁片,则选用的圆形铁片的直径最小要_____cm.18.圆内两条弦AB和CD 相交于P 点,AB 把CD分成两部分的线段长分别为2和6,那么AP =__________ .19.△ ABC 是半径为2 cm的圆内接三角形,若BC =,则∠A 的度数为_______.20.如图,已知OA、OB 是⊙ O的半径,且OA =5,∠ AOB =15°,AC ⊥ OB 于C ,则图中阴影部分的面积(结果保留π )S =__________.三、(第21 小题6 分,第22、23 小题各10 分,共26 分)21.对于题目“化简并求值:甲.乙两人的解答不同.甲的解答是:乙的解答是:谁的解答是错误的?为什么?22.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.23.初中生的视力状况受到全社会的广泛关注,某市有关部门对全市3 万名初中生视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中提供的信息回答下列问题:(1)本次调查共抽测了解多少名学生;(2)在这个问题中的样本指什么;(3)如果视力在4.9∽5.1(含4.9、 5.1)均属正常,那么全市有多少初中生的视力正常?四、(8 分)24.如图,在小山的东侧A 处有一热气球,以每分钟28 米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达C 处,这时气球上的人发现,在A 处的正西方向有一处着火点B ,5 分钟后,在D 处测得着火点B 的俯角是15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参照数据:sin15°=,cos15°=,)五、(10 分)25.已知:如图,AB 是⊙ O 的半径,C 是⊙ O 上一点,连结AC ,过点C 作直线CD ⊥ AB 于D(AD<DB ),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙ O 于点 F ,连结AF 与直线CD 交于点G .(1)求证:AC2=AG · AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.六、(10 分)26.随着我国人口增加速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y (人)与年份x (年)的函数关系试;(2)利用所求函数关系式,预测试地区从哪一年起入学儿童的人数不超过1000 人?七、(12 分)27.某书店老板去批发市场购买某种图书,第一次购用100 元,按该书定价2.8 元现售,并快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5 元,用去了150 元,所购数量比第一次多10 本.当这批书售出4/5时,出现滞销,便以定价的5 折售完剩余的图书,试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?八、(14 分)28.已知:如图,⊙ P 与x 轴相切于坐标原点O ,点A (0,2)是⊙ P 与x 轴的交点,点B (,0)在x 轴上,连结BP 交⊙ P 于点C ,连结AC 并延长交际x 轴于点D .(1)求线段BC 的长;(2)求直线AC 的函数解析式;(3)当点B 在x 轴上移动时,是否存在点B,使△BOP 相似于△AOD?若存在,求出符合条件的点的坐标;若不存在,说明理由.参照答案及评分标准一、选择题(每题2 分,共20 分)二、填空题(每题2 分,共20 分)11.A ′ (3,-2)(图略)12.2 y2-5y+2=013.114.圆锥15.216.217.18.3 或419.60°或120°20.注:两个答案的,答出一个给1 分.三、(26 分)21.(6 分)解:乙的解答是错误的.23.(10 分)解:(1)本次调查共抽测了240 名学生(2)样本是指240 名学生的视力(3)全市有7500 名初中生的视力正常四、(8 分)24.解:由解可知AD=(30+5)×28=980 过D 作DH ⊥ BA 于H在Rt△ DAH 中,DH =AD · sin 60°=五、(10 分)25.(1)证明:六、(10 分)(1)解法一:设y =kx+b由于直线y =kx + b 过(2000,2520),(2001,2330)两点∴ y =-190x +382520又因为y =190 x+382520 过点(2002,2140),所以y =-190 x +382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.解法二:设y =ax2+bx +c由于y =ax2+bx +c 过(2000,2520),(2001,2330),(2002,2140)三点,解得a =0,b=-190,c =382520,∴y=-190 x +382520因为y =-190 x +382520 过(2000,2520),(2001,2330),(2002,2140)三点,所以y =-190 x+382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.(2)设x年时,入学人数为1000 人,由题意得:-190 x +382520=1000 人,解得x =2008答:从2008 年起入学儿童的人数不超过1000 人.七、(12 分)27.。

辽宁省本溪市中考数学试卷(含答案)

辽宁省本溪市中考数学试卷(含答案)

22本溪市初中毕业生学业考试数学试卷(考试时间120分钟 试卷满分150分)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格内.每小题3分,共24分) A .-8 B.8 C.±8 D.-812.在平面直角坐标系中点A (-2,3)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限 3. 不等式2x-4≥0的解集在数轴上表示为A. B. C. D.4.一个正方体的平面展开图如图所示,将它折成正方体后“保”字的对面是 A. 碳 B.低 C.环 D.色(第4题图)5.八边形的内角和是A.360°B. 720°C.1080°D. 1440°6. 一个不透明的布袋中装着只有颜色不同的红、黄、白色三种小球,其中红色小球有8个,黄、白色小球的数目相同.为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,然后放回袋中,再次搅匀……多次试验发现摸到红球的频率是61,则估计黄色小球的数目是A.2个B.20个C.40个D.48个7.如图所示,已知圆锥的母线长6cm ,底面圆的半径为3cm ,则此圆锥侧面展开图的圆心角是 A.30° B.60° C.90° D.180°8.如图所示,若菱形OABC 的顶点O 为坐标原点,点C 在x 轴上,直线y=x 经过点A ,菱形面积是2,则经过点B 的反比例函数表达式为个图形中共有 个三角形三、解答题(17题6分、18题8分,共14分) 17.8 +3³(-31)-2-(2010-π)0-4sin45°18.化简求值:当a=2,求代数式169622-++a a a ÷823-+a a -42+a a 的值.四、解答题(每题10分,共20分)19. 如图所示,在边长为1的小正方形组成的网格中,△ABC 的顶点均在格点上,请按要求完成下列各题:(1)将△ABC 沿着BC 边所在的直线翻折180°,得到△A 1BC ,再将△A 1BC 绕着点B 逆时针旋转90°,得到△A 2BC 1.请依次画出△A 1BC 、△A 2BC 1.(2)求△A 1BC 旋转到△A 2BC 1过程中所扫过的面积(计算结果用π表示)(第20题图)20. 甲、乙二人玩抽牌游戏,甲手中的牌是2、2、3、4,乙手中的牌是3、4、5、5,两人分别从对方牌中任意抽取一张(彼此看不到对方的牌面),然后将牌上的数字相加,若和为奇数则甲赢,否则乙赢.(1)请用“列表法”或“树状图法”求出甲赢的概率.(2)这个游戏公平吗?若公平,请说明理由;若不公平,请在甲、乙手中各选择一张牌进行交换使游戏公平,写出一种方案即可(不必说明理由).五、解答题(每题10分,共20分)21. 为了解某地区20万读者对工具书、小说、诗歌、漫画四类图书的喜爱情况,根据老年人、成年人、青少年各年龄段的实际人口比例3:5:2,随机抽取一定数量的读者进行调查(每人只选一类图书),统计结果如下(所绘统计图不完整):(1)本次调查了名读者,其中青少年有名.(2)补全两幅统计图.(3)请估计该地区成年人中喜爱小说的读者大约有多少人?C22. 已知:如图所示,在△ABC 中,∠A=45°,以AB 为直径的⊙O 交AC 于点D ,且AD=DC ,CO 的延长线交⊙O 于点E ,过点E 作弦EF ⊥AB ,垂足为G. (1)求证:BC 是⊙O 的切线.(2)若AB=2,求EF 的长.(第22题图)六、解答题(23题10分,24题12分,共22分)23. 如图所示,一轮船向正东方向航行,在A 处测得灯塔P 在北偏东60°方向,航行40海里后到达B 处,此时测得灯塔P 在北偏东15°方向. (1)求灯塔P 到轮船的航线(直线AB )的距离PD 是多少?(2)当轮船在B 处继续向东航行时,一艘快艇从灯塔P 处 前往D 处,已知快艇的速度是轮船速度的2倍,但轮船比 快艇早15分钟到达D 处,求轮船的速度.(3≈1.73,结果精确到0.1海里/时) (第23题图)A24. 自6月1日起我省开始实施家电以旧换新政策,政府对以旧换新的家电给予补贴,具体要点如下表:100台.这批货的进价和售价如下表:y元,商场所获利润为w元(利润=售价-进价)。

辽宁省本溪市中考数学试卷

辽宁省本溪市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) 5的倒数是A .B . -5C .D . 52. (2分) (2019九上·东莞期末) 下面数学符号,既是轴对称图形,又是中心对称图形的是()A .B .C .D .3. (2分)(2017·深圳模拟) 据统计2017年5月深圳文博会期间,总参观人数达到了6 660 000人次,将6 660 000用科学记数法表示应为A . 666×104B . 6.66×105C . 6.66×106D . 6.66×1074. (2分)(2019·宝鸡模拟) 如图是由5个小立方块搭建而成的几何体,它的俯视图是()A .B .C .D .5. (2分)(2016·济宁) 下列计算正确的是()A . x2•x3=x5B . x6+x6=x12C . (x2)3=x5D . x﹣1=x6. (2分)我国发现的首例甲型H1N1流感确诊病例曾在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需要了解这位病人7天体温的()A . 中位数B . 平均数C . 方差D . 众数7. (2分) (2017八下·和平期末) 直线y=2x+6与x轴的交点坐标为()A . (﹣3,0)B . (3,0)C . (0,6)D . (0,﹣3)8. (2分) (2017八下·盐湖期末) 若不等式组的解集是x<2,则a的取值范围是()A . a<2B . a≤2C . a≥2D . 无法确定9. (2分)(2012·鞍山) 如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E 是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是()A .B .C .D .10. (2分)一列火车自2013年全国铁路第10次大提速后,速度提高了26千米/小时,现在该列火车从甲站到乙站所用的时间比原来减少了1个小时。

辽宁省本溪市第八中学中考数学试卷(含解析)

辽宁省本溪市第八中学中考数学试卷一.选择题(共10小题,满分30分,每小题3分)1.在﹣7,5,0,﹣3这四个数中,最大的数是()A.﹣7 B.5 C.0 D.﹣32.在下列四个银行标志中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个3.下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a14÷a2=a74.三个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.一组数据23、20、20、21、26,这组数据的中位数和众数分别是()A.21,20 B.22,20 C.21,26 D.22,266.下列成语所描述的事件是确定性事件的是()A.守株待兔B.水中捞月C.百发百中D.雨后彩虹7.若一次函数y=kx+b(k≠0)的图象经过第一、三、四象限,则k,b满足()A.k>0,b<0 B.k>0,b>0 C.k<0,b>0 D.k<0,b<08.元宵节又称灯节,我国各地都有挂灯笼的习俗.灯笼又分为宫灯,纱灯、吊灯等.若购买1个宫灯和1个纱灯共需75元,小田用690元购买了6个同样的宫灯和10个纱灯.若设每个宫灯x元,每个纱灯为y元,由题可列二元一次方程组得()A.B.C.D.9.如图所示,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y 轴上的一点,连接AC、BC.若△ABC的面积为5,则k的值为()A.5 B.﹣5 C.10 D.﹣1010.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a二.填空题(共8小题,满分24分,每小题3分)11.将00000用科学记数法表示为.12.把多项式9x﹣x3分解因式的结果为.13.把一张对边互相平行的纸条(AC′∥BD′)折成如图所示,EF是折痕,若折痕EF与一边的夹角∠EFB=32°,则∠AEG=.14.某班共有6名学生,其中4名是男生,2名是女生,任意抽一名学生去参加一项活动,其中是女生的概率为.15.已知x=﹣1是一元二次方程ax2﹣bx+6=0的一个根,则a+b的值为16.不等式组的解集是.17.如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB或边BC 上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.18.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M,若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是.三.解答题(共2小题,满分22分)19.(10分)先化简,再求代数式的值,其中a=3﹣1,b=(﹣2)0 20.(12分)我市某中学艺术节期间,向全校学生征集书画作品,九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如图两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现在要在其中抽两人去参见学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程)四.解答题(共2小题,满分24分,每小题12分)21.(12分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.22.(12分)如图为某景区五个景点A,B,C,D,E的平面示意图,B,A在C的正东方向,D在C 的正北方向,D,E在B的北偏西30°方向上,E在A的西北方向上,C,D相距1000m,E 在BD的中点处.(1)求景点B,E之间的距离;(2)求景点B,A之间的距离.(结果保留根号)五.解答题(共1小题,满分12分,每小题12分)23.(12分)根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx+c的图象如图所示.(1)求出y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?六.解答题(共1小题,满分12分,每小题12分)24.(12分)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.七.解答题(共1小题,满分12分,每小题12分)25.(12分)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,∠ADB=30°.(1)试探究线段BD与线段MF的数量关系和位置关系,并说明理由;(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数;(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.八.解答题(共1小题,满分14分,每小题14分)26.(14分)如图,抛物线y=ax2+bx﹣2a与x轴交于点A和点B(1,0),与y轴将于点C(0,﹣).(1)求抛物线的解析式;(2)若点D(2,n)是抛物线上的一点,在y轴左侧的抛物线上存在点T,使△TAD的面积等于△TBD的面积,求出所有满足条件的点T的坐标;(3)直线y=kx﹣k+2,与抛物线交于两点P、Q,其中在点P在第一象限,点Q在第二象限,PA 交y轴于点M,QA交y轴于点N,连接BM、BN,试判断△BMN的形状并证明你的结论.辽宁省本溪市第八中学中考数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣7<﹣3<0<5,即在﹣7,5,0,﹣3这四个数中,最大的数是:5.故选:B.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.【分析】根据轴对称和中心对称图形的概念求解.【解答】解:根据中心对称图形的概念,观察可知,第一个既是轴对称图形,也是中心对称图形;第二个是轴对称图形,不是中心对称图形;第三个不是轴对称图形,也不是中心对称图形;第四个是轴对称图形,也是中心对称图形.所以既是轴对称图形又是中心对称图形的有2个.故选:B.【点评】此题主要考查了中心对称与轴对称的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.【分析】根据幂的运算法则与单项式乘单项式的运算法则逐一计算即可判断.【解答】解:A.a3与a4不能合并,此选项错误;B.2a3•a4=2a7,此选项正确;C.(2a4)3=8a12,此选项错误;D.a14÷a2=a12,此选项错误;故选:B.【点评】本题主要考查单项式乘单项式,解题的关键是掌握单项式乘单项式与幂的运算法则.4.【分析】根据俯视图的定义和空间想象,得出图形即可.【解答】解:俯视图从左到右分别是,1,个正方形,如图所示:.故选:C.【点评】此题考查了简单组合体的俯视图,关键是对几何体的三种视图的空间想象能力.5.【分析】根据众数和中位数的定义分别找出出现次数最多的数和从小到大排列最中间的数即可.【解答】解:把这组数据从小到大排列为:20,20,21,23,26,最中间的数是21,则这组数据的中位数是21,20出现了2次,出现的次数最多,则众数是20;故选:A.【点评】此题考查了众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.【分析】根据确定事件就是一定发生或一定不发生的事件,即发生的概率是1或0的事件依次判定即可得出答案.【解答】解:A、守株待兔,是随机事件,不合题意;B、水中捞月,是不可能事件,符合题意;C、百发百中,是随机事件,不合题意;D、雨后彩虹,是随机事件,不合题意;故选:B.【点评】本题主要考查了不可能事件、随机事件的概念,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,难度适中.7.【分析】根据一次函数的图象图象经过第一、三、四象限解答即可,【解答】解:因为k>0时,直线必经过一、三象限,b<0时,直线与y轴负半轴相交,可得:图象经过第一、三、四象限时,k>0,b<0;故选:A.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系;k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.8.【分析】设每个宫灯x元,每个纱灯y元,根据“购买1个宫灯和1个纱灯共需75元,购买6个宫灯和10个纱灯共需690元”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设每个宫灯x元,每个纱灯y元,依题意,得:.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=5,再根据反比例函数的比例系数k的几何意义得到|k|=5,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=5,而S△OAB=|k|,∴|k|=5,∵k<0,∴k=﹣10.故选:D.【点评】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.【分析】本题根据动点之间相对位置,讨论形成图形的变化趋势即可,适于采用筛选法.【解答】解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.【点评】本题考查双动点条件下的图形面积问题,分析时要关注动点在经过临界点时,相关图形的变化规律.二.填空题(共8小题,满分24分,每小题3分)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:00000用科学记数法表示为:2.018×108,故答案为:2.018×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】原式提取﹣x,再利用平方差公式分解即可.【解答】解:原式=﹣x(x2﹣9)=﹣x(x+3)(x﹣3),故答案为:﹣x(x+3)(x﹣3)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.【分析】先根据图形折叠的性质求出∠C′EF=∠CEF,再根据平行线的性质得出∠CEF的度数,由补角的定义即可得出结论.【解答】解:∵∠CEF由∠C′EF折叠而成,∴∠CEF=∠C′EF,∵AC′∥BD′,∠EFB=32°,∴∠C′EF=∠EFB=32°,∴∠AEG=180°﹣32°﹣32°=116°.故答案为:116°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.14.【分析】直接根据概率公式计算可得.【解答】解:∵共有6名学生,其中女生有2人,∴任意抽一名学生去参加一项活动,其中是女生的概率为=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.15.【分析】直接把x=﹣1代入方程ax2﹣bx+6=0中即可得到a+b的值.【解答】解:把x=﹣1代入方程ax2﹣bx+6=0得a+b+6=0,所以a+b=﹣6.故答案为﹣6.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:解不等式x﹣1>1,得:x>2,解不等式3+2x≥4x﹣3,得:x≤3,所以不等式组的解集为2<x≤3,故答案为:2<x≤3.【点评】本题考查了不等式组的解法,求不等式组中每个不等式的解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.【分析】分两种情形分别讨论即可解决问题;【解答】解:∵四边形OABC是矩形,B(8,7),∴OA=BC=8,OC=AB=7,∵D(5,0),∴OD=5,∵点P是边AB或边BC上的一点,∴当点P在AB边时,OD=DP=5,∵AD=3,∴PA==4,∴P(8,4).当点P在边BC上时,只有PO=PD,此时P(,7).综上所述,满足条件的点P坐标为(8,4)或(,7).故答案为(8,4)或(,7).【点评】本题考查矩形的性质、坐标与图形性质、等腰三角形的判定等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.18.【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴,解得,∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴解得0<k<2.故答案为:0<k<2.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.三.解答题(共2小题,满分22分)19.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由负整数指数幂和零指数幂得出a、b的值,继而代入计算可得.【解答】解:原式====,a=,b=(﹣2)0=1,把a=,b=1代入得:原式==﹣1.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.20.【分析】(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.【解答】解:(1)王老师采取的调查方式是抽样调查,所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.故答案为:抽样调查.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四.解答题(共2小题,满分24分,每小题12分)21.【分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD =CE=BC,根据勾股定理得到DE==6,于是得到结论.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE==6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=26.【点评】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.22.【分析】(1)根据已知条件得到∠C=90°,∠CBD=60°,∠CAE=45°,解直角三角形即可得到结论;(2)过E作EF⊥AB与F,在Rt△AEF中,求得EF,在Rt△BEF中,求得BF,于是得到结论.【解答】解:(1)由题意得,∠C=90°,∠CBD=60°,∠CAE=45°,∵CD=1000,∴BC==1000,∴BD=2BC=2000,∵E在BD的中点处,∴BE=BD=1000(米);(2)过E作EF⊥AB与F,在Rt△AEF中,EF=AF=BE•sin60°=1000×=500,在Rt△BEF中,BF=BE•cos60°=500,∴AB=AF﹣BF=500(﹣1)(米).【点评】此题考查直角三角形的问题,将已知条件和所求结论转化到同一个直角三角形中求解是解直角三角形的常规思路.五.解答题(共1小题,满分12分,每小题12分)23.【分析】(1)利用待定系数法即可解决问题;(2)销售利润之和W=甲种水果的利润+乙种水果的利润,利用配方法求得二次函数的最值即可.【解答】解:(1)∵函数y2=ax2+bx+c的图象经过(0,0),(1,2),(4,5),∴,解得,∴y2=﹣x2+x.(2)w=(8﹣t)﹣t2+t=﹣(t﹣4)2+6,∴t=4时,w的值最大,最大值为6,∴两种水果各进4吨时获得的销售利润之和最大,最大利润是6千元.【点评】考查二次函数的应用;得到甲乙两种商品的利润是解决本题的突破点;得到总利润的关系式是解决本题的关键.六.解答题(共1小题,满分12分,每小题12分)24.【分析】(1)连接OE、OD,如图,根据切线的性质得∠OAC=90°,再证明△AOE≌△DOE得到∠ODE=∠OAE=90°,然后根据切线的判定定理得到DE为⊙O的切线;(2)先计算出∠AOD=2∠B=100°,利用四边形的面积减去扇形的面积计算图中阴影部分的面积.【解答】解:(1)直线DE与⊙O相切.理由如下:连接OE、OD,如图,∵AC是⊙O的切线,∴AB⊥AC,∴∠OAC=90°,∵点E是AC的中点,O点为AB的中点,∴OE∥BC,∴∠1=∠B,∠2=∠3,∵OB=OD,∴∠B=∠3,∴∠1=∠2,在△AOE和△DOE中,∴△AOE≌△DOE,∴∠ODE=∠OAE=90°,∴OD⊥DE,∴DE为⊙O的切线;(2)∵点E是AC的中点,∴AE=AC=2.4,∵∠AOD=2∠B=2×50°=100°,∴图中阴影部分的面积=2•×2×2.4﹣=4.8﹣π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和扇形的面积公式.七.解答题(共1小题,满分12分,每小题12分)25.【分析】(1)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF (如图1),得BD=MF,△BAD≌△MAF,推出BD=MF,∠ADB=∠AFM=30°,进而可得∠DNM的大小.(2)分两种情形讨论①当AK=FK时,②当AF=FK时,根据旋转的性质得出结论.(3)求平移的距离是A2A的长度.在矩形PNA2A中,A2A=PN,只要求出PN的长度就行.用△DPN ∽△DAB得出对应线段成比例,即可得到A2A的大小.【解答】解:(1)结论:BD=MF,BD⊥MF.理由:如图1,延长FM交BD于点N,由题意得:△BAD≌△MAF.∴BD=MF,∠ADB=∠AFM.又∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°,∴∠DNM=90°,∴BD⊥MF.(2)如图2,①当AK=FK时,∠KAF=∠F=30°,则∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,即β=60°;②当AF=FK时,∠FAK=(180°﹣∠F)=75°,∴∠BAB1=90°﹣∠FAK=15°,即β=15°;综上所述,β的度数为60°或15°;(3)如图3,由题意得矩形PNA2A.设A2A=x,则PN=x,在Rt△A2M2F2中,∵F2M2=FM=16,∠F=∠ADB=30°,∴A2M2=8,A2F2=8,∴AF2=8﹣x.∵∠PAF2=90°,∠PF2A=30°,∴AP=AF2•tan30°=8﹣x,∴PD=AD﹣AP=8﹣8+x.∵NP∥AB,∴∠DNP=∠B.∵∠D=∠D,∴△DPN∽△DAB,∴=,∴=,解得x=12﹣4,即A2A=12﹣4,∴平移的距离是(12﹣4)cm.【点评】本题属于四边形综合题,主要考查了旋转的性质,相似三角形的判定与性质,勾股定理的运用,等腰三角形的性质的运用运用.在利用相似三角形的性质时注意使用相等线段的代换以及注意分类思想的运用.八.解答题(共1小题,满分14分,每小题14分)26.【分析】(1)用待定系数法即能求出抛物线的解析式.(2)△TAD与△TBD有公共底边TD,面积相等即点A、点B到直线TD距离相等.根据T的位置关系分类讨论:在点A左侧时,根据“平行线间距离处处相等”可得AB∥TD,易得点T的纵坐标,代入解析式即求出横坐标;在点A右侧时,分别过A、B作TD的垂线段,构造全等三角形,证得TD与x轴交点为AB中点,求出TD解析式,再与抛物线解析式联立方程组求出T.(3)联立直线y=kx﹣k+2与抛物线解析式,整理得关于x的一元二次方程,根据韦达定理得到P、Q横坐标和和与积的式子(用k表示).设M(0,m)、N(0,n),求出直线AP、AQ的解析式(分别用m、n表示).分别联立直线AP、AQ与抛物线方程,求得P、Q的横坐标(分别用m、n表示),即得到关于m、n、k关系的式子,整理得mn=﹣1,即OM•ON=1,易证△BOM∽△NOB,进而求出∠MBN=90°【解答】解:(1)∵抛物线y=ax2+bx﹣2a经过点B(1,0)、C(0,)∴解得:∴抛物线的解析式为:y=x2+x﹣(2)当x=2时,n=×22+×2﹣=∴D(2,)①当点T在点A左侧时,如图1,∵S△TAD=S△TBD,且△TAD与△TBD有公共底边为TD∴AB∥TD,即TD∥x轴∴y T=y D=x2+x﹣=解得:x1=﹣3,x2=2(即点D横坐标,舍去)∴T(﹣3,)②当点T在点A右侧时,如图2,设DT与x轴交点为P,过A作AE⊥DT于E,过B作BF⊥DT于F∵S△TAD=S△TBD,且△TAD与△TBD有公共底边为TD∴AE=BF在△AEP与△BFP中,∴△AEP≌△BFP(AAS)∴AP=BP即P为AB中点由x2+x﹣=0 解得:x1=﹣2,x2=1∴A(﹣2,0)∴P(,0)设直线DP:y=kx+c解得:∴直线DT:y=解得:(即点D,舍去)∴T(,)综上所述,满足条件的点T的坐标为(﹣3,)与(,)(3)△BMN是直角三角形,证明如下:设x1为点P横坐标,x2为点Q的横坐标整理得:x2+(1﹣8k)x+8k﹣18=0∴x1+x2=8k﹣1,x1x2=8k﹣18设M(0,m),N(0,n)则OM=m,ON=﹣n∴直线AM解析式:y=,直线AN解析式:y=解得:∴P(1+4m,3m+)同理可得:Q(1+4n,3n+)∴整理得:mn=﹣1∴m•|n|=1 即OM•ON=1又OB=1,即OM•ON=OB2∴∴△BOM∽△NOB∴∠OBM=∠ONB∴∠MBN=∠OBM+∠OBN=∠ONB+∠OBN=90°∴△BMN是直角三角形【点评】本题考查了待定系数法求函数解析式,三角形面积,全等三角形的判定和性质,一元二次方程根与系数的关系,相似三角形的判定和性质.考查了分类讨论、数形结合思想,综合计算能力.第(2)题要结合图形找出T的特殊位置;第(3)题先判断∠MBN=90°,大胆设用多个未知量,利用联立直线和抛物线方程求交点坐标,再通过计算整理发型其中的规律.。

辽宁省各市2012年中考数学分类解析 专题3 方程(组)和不等式(组)

辽宁各市2012年中考数学试题分类解析汇编专题3:方程(组)和不等式(组)一、选择题1. (2012辽宁本溪3分)已知一元二次方程x2-8x+15=0 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC的周长为【】A、13B、11或13C、11D、12【答案】B。

【考点】因式分解法解一元二次方程,等腰三角形的性质,三角形三边关系。

【分析】∵x2-8x+15=0 ,∴(x-3)(x-5)=0。

∴x-3=0或x-5=0,即x1=3,x2=5。

∵一元二次方程x2-8x+15=0 的两个解恰好分别是等腰△ABC的底边长和腰长,∴当底边长和腰长分别为3和5时,3+3>5,∴△ABC的周长为:3+3+5=11;∴当底边长和腰长分别为5和3时,3+5>5,∴△ABC的周长为:3+5+5=13。

∴△ABC的周长为:11或13。

故选B。

2. (2012辽宁本溪3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为【】A、88+15=x 2.5xB、88=+15x 2.5xC、818+=x4 2.5xD、881=+x 2.5x4【答案】D。

【考点】由实际问题抽象出分式方程(行程问题)。

【分析】根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程:881=+x 2.5x4。

故选D。

3. (2012辽宁丹东3分)不等式组x30x40+>⎧⎨-<⎩的解集是【】A.-3<x<4B.3<x≤4C.-3<x≤4D.x<4 【答案】A。

【考点】解一元一次不等式组。

【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。

本溪中考数学试卷

本溪中考数学试卷一、 选择题(下列各题的备选答案中,只有一个是正确的,将正确答案的序号填在题后括号内,每小题3分,共24分)1.从今年6月1日起,在我国各大超市、市场实行塑料购物袋有偿使用制度,这一措施有利于控制白色污染。

已知一个塑料袋丢弃在地上的面积为500cm 2,如果100万名游客每人丢弃一个塑料袋,那么会污染的最大面积用科学计数法表示是( )A.5×104m 2B. 5×106m 2C. 5×103m 2D. 5×10-2m 22.已知一次函数y=(a-2)x+b 的图像如图所示,那么a 的取值范围是( )A.a<2B.a>2C.a<0D.a>0(第2题) (第5题)3. 某展厅内要用相同的正方体木块搭成一个三视图如下的展台,则此展台至少需这样的正方体 ( )A.4块B.5块C.6块D.7块 4.为执行“两免一补”政策,丹东地区2007年投入教育经费2500万元,预计2009年投入3600万元,则这两年投入教育经费的平均增长率为 ( )A.10%B.20%C.30%D.15% 5.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC=5,CD=3,AB=42,则⊙O 的直径等于 ( ) A.252 B.32 C.52 D.76. 如图,这是中央电视台“曲苑杂坛”中的一副图案,它是一扇形图形,其中AOB 为120,OC 长为8cm ,CA 长为12cm ,则阴影部分的面积为( )A.2112πcm B .2144πcm C.2152πcm D.264πcmACOB(第6题)7.已知在坐标平面上的机器人接受指令“【a ,A 】”(a ≥0,00<A <1800)后行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线前行a 。

若机器人的位置是在原点,面对方向是y 轴的负半轴,则它完成一次指令【2,300】后所在位置的坐标是( )A.(-1,-3)B.(-1,3)C.(-3,-1)D.(3,-1) 8.如图①,矩形ABCD ,AB=12cm ,AD=16cm ,现将其按下列步骤折叠: (1)将△BAD 对折,使AB 落在AD 上,得到折痕AF ,如图② (2)将△AFB 沿BF 折叠,AF 与DC 交点G ,如图③ 则所得梯形BDGF 的周长等于( )A.12+22B.24+22C.24+42D.12+42① ② ③(第8题)二、 填空题(每小题3分,共24分)9.分解因式:a 3-4a 2+4a= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年辽宁省本溪市中考数学试卷
一、单选题(每题3分,共30分) 1、3-的相反数是( )
A 、3
B 、 3-
C 、3
1
D 、3
1-
2、下列计算正确的是( )
A 、5
32a a a =+ B 、 532a )(a = C 、a a 632a =∙
D 、2623a 4b)(2a b =
3、如图所示的几何体的俯视图是( )
4、下列各网格中的图形是用其图形中的一部分平移得到的是( )
5、已知一元二次方程0158x -x 2
=+的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( )
A 、13
B 、11或13
C 、11
D 、12
6、有三张正面分别标有数字 2-,3, 4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从
中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )
A 、
94 B 、121 C 、31 D 、6
1 7、如图 在直角△ABC 中,∠BAC=90°A B=8,AC=6,DE 是AB 垂足为D ,交边BC 于点E ,连接AE ,则△ACE 的周长为(
A 、16
B 、15
C 、14
D 、13
8、随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A 、
x 5.2815x 8=+ B 、155.28x 8+=x C 、x 5.2841x 8=+ D 、4
1
5.28x 8+=
x
9、在菱形ABCD 中,对角线AC 、BD 相交于点O ,AB=5,AC=6
A 、22
B 、24
C 、48
D 、44 10、如图,已知点A 在反比例函数y=
x
4
的图象上,点B 在反比例函 数y=
x
k
(k ≠0)的图象上,AB ∥x 轴,分别过点A 、B 向x
垂线,垂足分别为C 、D ,若OC=3
1
OD ,则k 的值为(
A 、10
B 、12
C 、14
D 、16 二、填空题(每题3分,共
24分)
11、已知1纳米=-9
10米,某种微粒的直径为158纳米,用科学记术法表示该微粒的直径为 __________________
米。

12、分解因式=+a 6ax -9ax 2
__________。

13、在一组数据1-,1 ,2 ,2 ,3 ,
1-,4中,众数是__________14、如图,用半径为4cm ,弧长为6πcm 则所得圆锥的高为 __________cm 。

15、在一个不透明的袋中,装有6个红球和若干个绿球,若再往此袋中放入5个白球(袋中所有球除颜色外完
全相同)摇匀后摸出一球,摸到红球的概率恰好为
5
2
16、如图,在□ABCD 中,∠ABC 的平分线BE 交AD 边于点E 交对角线AC 于点F ,若53BC AB =,则=AC
AF
_______。

17、如图,矩形ABCD 中,点P 、Q 分别是边AD 和BC 的中点,沿过C 点的直线折叠矩形ABCD 使点B 落在线段PQ 上的点F 处,折痕交AB 边于点E ,交线段PQ 于点G ,若BC 长为则线段FG 的长为__________。

18、如图,下图是一组由菱形和矩形组成的有规律的图案,第1个图中菱形的面积为S (S 为常数),第2个图中阴影部分是由连接菱形各边中点得到的矩形和再连接矩形各边中点得到的菱形产生的,依此类推……,则第n 个图中阴影部分的面积可以用含n 的代数式表示为__________。

(n ≥2,且n 是正整数)
三、解答题(第19题10分,第20题12分 ,共22分)
19、先化简,再求值:2
-x 4
-444-422x x x x x x ÷++++,其中
2-21-60sin 2)(︒=x .
20、如图,△ABC 是学生小金家附近的一块三角形绿化区的示意图,为增强体质,他每天早晨都沿着绿化区周边小路AB 、BC 、CA 跑步(小路的宽度不计).观测得点B 在点A 的南偏东30°方向上,点C 在点A 的南偏东60°的方向上,点B 在点C 的北偏西75°方向上,AC 间距离为400米.问小金沿三角形绿化区的周边小路跑一圈共跑了多少米?
(参考数据:
1.73231.4142≈≈,)
四、解答题(第21题12分,第22题12分 ,共24分)
21、某中学为了更好地活跃校园文化生活,拟对本校自办的“辉煌”校报进行改版。

先从全校学生中随机抽取一部分学生进行了一次问卷调查,题目为“你最喜爱校报的哪一个板块”(每人只限选一项)。

问卷收集整理后绘制了下面上不完整的频数分布表和扇形统计图。

(1)填空:频数分布表中a=_______,b=________;
(2)“自然探索”板块在扇形统计图中所占的圆心角的度数为________;
(3)在参加此次问卷调查的学生中,最喜爱哪一个板块的人数最多?有多少人喜欢?
(4)若全校有1500人,估计喜欢“校园新闻”板块的有多少人?
22、某商店购进甲、乙两种型号的滑板车,共花费13000元,所购进甲型车的数量不少于乙型车数量的二倍,但不超过乙型车数量的三倍。

现已知甲型车每辆进价200元,乙型车每辆进价400元,设商店购进乙型车x辆。

(1)商店有哪几种购车方案?
(2)若商店将购进的甲、乙两种型号的滑板车全部售出,并且销售甲型车每辆获得利润70元,销售乙型车每辆获得利润50元,写出此商店销售这两种滑板车所获得的总利润y(元)与购进乙型车的辆数x(辆)之间的函数关系式?并求出商店购进乙型车多少辆时所获得的利润最大?
五、解答题(满分12分)
23、如图,在△ABC中,点D是AC边上一点,AD=10,DC=8。

以AD为直径的⊙O与边BC切于点E,且AB=BE。

(1)求证:AB是⊙O的切线;
(2)过D点作DF∥BC交⊙O与点F ,求线段DF的长。

六、解答题((满分12分))
24、某工厂生产某品牌的护眼灯,并将护眼灯按质量分成15个等级(等级越高,灯的质量越好。

如:二级产品好于一级产
品)。

若出售这批护眼灯,一级产品每台可获利润21元,每提高一个等级每台可多获利润1元,工厂每天只能生产同一个等级的护眼灯,每个等级每天生产的台数如下表所示:

(1)已知护眼灯每天的生产量y(台)是等级x(级)的一次函数,请直接写出y与x之间的函数关系式:_______;(2)若工厂将当日所生产的护眼灯全部售出,工厂应生产哪一等级的护眼灯,才能获得最大利润?最大利润是多少?
七、解答题(满分12分)
25、已知,在△ABC中,AB=AC。

过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角θ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN。

(1)当∠BAC=∠MBN=90°时,
①如图a,当θ=45°时,∠ANC的度数为_______;
②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;
(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明。

八、解答题(满分14分)
26、如图,已知抛物线y=ax²+bx+3经过点B(-1,0)、C(3,0),交y轴于点A,将线段OB绕点O顺时针旋转90°,点B的对应点为点M,过点A的直线与x轴交于点D(4,0).直角梯形EFGH的上底EF与线段CD重合,∠FEH=90°,EF∥HG,EF=EH=1。

直角梯形EFGH从点D开始,沿射线DA方向匀速运动,运动的速度为1个长度单位/秒,在运动过程中腰FG与直线AD始终重合,设运动时间为t秒。

(1)求此抛物线的解析式;
(2)当t为何值时,以M、O、H、E为顶点的四边形是特殊的平行四边形;
(3)作点A关于抛物线对称轴的对称点A’,直线HG与对称轴交于点K,当t为何值时,以A、A’、G、K为顶点的四边形为平行四边形。

请直接写出符合条件的
答案。

相关文档
最新文档