临界生选修4第二章训练

合集下载

新北师大版高中数学高中数学选修4-4第二章《参数方程》检测卷(含答案解析)(4)

新北师大版高中数学高中数学选修4-4第二章《参数方程》检测卷(含答案解析)(4)

一、选择题1.点(, )A x y 是曲线2cos 13sin x y θθ=+⎧⎨=+⎩,(θ为参数)上的任意一点,则2 -x y 的最大值为( ) AB5C .3D3+2.若直线l :y kx =与曲线C :2cos sin x y θθ=+⎧⎨=⎩(θ为参数)有唯一的公共点,则实数k等于() AB.CD.±3.4sin 4πθ⎛⎫=+ ⎪⎝⎭与直线122{12x y =-=(t 为参数)的位置关系是( ) A .相切 B .相离C .相交且过圆心D .相交但不过圆心4.在方程sin {cos 2x y θθ==(θ为参数)所表示的曲线上的点是 ( )A .(2,7)B .12(,)33C .(1,0)D .11(,)225.曲线C 的参数方程为2x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l的参数方程为12x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),若直线l 与曲线C 交于A ,B 两点,则AB 等于( ) ABCD6.参数方程2cos sin x y θθ=⎧⎨=⎩(θ为参数)和极坐标方程6cos ρθ=-所表示的图形分别是( ) A .圆和直线B .直线和直线C .椭圆和直线D .椭圆和圆7.已知点(),P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,且[),2θππ∈)上,则点P 到直线21x ty t =+⎧⎨=--⎩(t 为参数)的距离的取值范围是( )A.⎡⎢⎣⎦ B .0tan 60x = C.D .:::2x r r q q q e αα==8.在平面直角坐标系中以原点为极点,以x 轴正方向为极轴建立的极坐标系中,直线:20l y kx ++=与曲线2:cos C ρθ=相交,则k 的取值范围是( )A .k ∈RB .34k ≥-C .34k <-D .k ∈R 但0k ≠9.把曲线12cos 2sin x C y θθ=⎧⎨=⎩:(θ为参数)上各点的横坐标压缩为原来的14,纵坐标压缩为2C 为 A .221241x y +=B .224413y x +=C .2213y x +=D .22344x y +=10.直线320{20x tsin y tcos =+=- (t 为参数)的倾斜角是( )A .20B .70C .110D .16011.若动点(,)x y 在曲线2221(0)4x yb b+=>上变化,则22x y +的最大值为( )A .24(04)42(4)b b b b ⎧+<⎪⎨⎪>⎩B .24(02)42(4)b b b b ⎧+<<⎪⎨⎪⎩C .244b +D .2b12.已知点A 是曲线2213x y +=上任意一点,则点A到直线sin()6πρθ+=的距离的最大值是( )A.2BCD.二、填空题13.点(),M x y 为此曲线()2234x y ++=上任意一点,则x y +的最大值是______.14.已知直线l的参数方程为12x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),圆C 的参数方程为cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),则圆心C 到直线l 的距离为___________. 15.坐标系与参数方程选做题)直线截曲线(为参数)的弦长为___________ 16.设点(),x y 是曲线C 2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,且02θπ≤<)上的任意一点,则yx的最大值为________. 17.已知在极坐标系中,曲线C 的极坐标方程是2sin 4cos 0ρθθ+=,以极点为原点,极轴为x 轴的正半轴建立直角坐标系,直线l 的参数方程是1123x t t y ⎧=-+⎪⎪⎨⎪=⎪⎩(为参数),M (03l 与曲线C 的公共点为P ,Q ,则11PM QM+=_______ 18.直线:30l x y ++=被圆14cos :24sin x C y θθ=-+⎧⎨=+⎩(θ为参数)截得的弦长为______.19.曲线4cos 2sin x y θθ=⎧⎨=⎩上的点到直线220x y +=的最大距离为__________.20.圆1212x y θθ⎧=-+⎪⎨=⎪⎩(θ为参数)被直线0y =截得的弦长为__________.三、解答题21.已知直线l 过定点()1,1P ,且倾斜角为4π,以坐标原点为极点,x 轴的正半轴为极轴的坐标系中,曲线C 的极坐标方程为22cos 3ρρθ=+. (1)求曲线C 的直角坐标方程与直线l 的参数方程:(2)若直线l 与曲线C 相交于不同的两点A 、B ,求AB 及PA PB ⋅的值.22.在平面直角坐标系xOy 中,已知直线l 的参数方程为1123x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C 的参数方程为cos 2sin x y θθ=⎧⎨=⎩(θ为参数)(1)将直线l 的参数方程化为极坐标方程;(2)设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.23.在直角坐标系xOy 中,直线l 经过点()3,0P,倾斜角为6π,曲线C的参数方程为2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,以x 轴的正半轴为极轴建立极坐标系.(1)写出直线l 的极坐标方程和曲线C 的直角坐标方程; (2)设直线l 与曲线C 相交于A ,B 两点,求PA PB +的值.24.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 2sin x y αα=⎧⎨=⎩(α为参数),将曲线C 按伸缩变换公式12x x y y =⎧''⎪⎨=⎪⎩,变换得到曲线E(1)求E 的普通方程;(2)直线l 过点()0,2M -,倾斜角为4π,若直线l 与曲线E 交于,A B 两点,N 为AB 的中点,求OMN 的面积.25.在平面直角坐标系xOy 中,直线1l :cos ,sin x t y t αα=⎧⎨=⎩(t 为参数,π02α<<),曲线1C :2cos 4+2sin x y ββ=⎧⎨=⎩,(β为参数),1l 与1C 相切于点A ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求1C 的极坐标方程及点A 的极坐标; (2)已知直线2l :()6R πθρ=∈与圆2C:2cos 20ρθ-+=交于B ,C 两点,记AOB ∆的面积为1S ,2COC ∆的面积为2S ,求1221S S S S +的值. 26.在直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数,0απ≤<).在以O 为极点,x 轴正半轴为极轴的极坐标中,曲线C :4cos ρθ=.(1)当4πα=时,求C 与l 的交点的极坐标; (2)直线l 与曲线C 交于A ,B 两点,线段AB 中点为(1,1)M ,求||AB 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】利用曲线的参数方程得32co sin -32s x y θθ=+-化简求解即可 【详解】由题()32cos 3sin 23-s x y θθθϕ=+-=++ 故当()cos 1θϕ+=时,2 -x y3+ 故选D 【点睛】本题考查参数方程求最值,考查辅助角公式,是基础题2.D解析:D 【分析】根据题意,将曲线C 的参数方程消去θ,得到曲线C 的普通方程22(2)1x y -+=,可知曲线C 为圆,又知圆C 与直线相切,利用圆心到直线的距离等于半径,求得k 。

人教版高中化学选修四第二章化学反应速率和化学平衡图像题专练

人教版高中化学选修四第二章化学反应速率和化学平衡图像题专练

化学反应速率和化学平衡图像题专练题组一速率一时间图像1.(2018南京高二质检)在密闭容器中进行反应:2SO2(g)+02(g) 2SO3(g)(正反应放热),如图是某次实验的化学反应速率随时间变化的图像,推断在t i时刻突然改变的条件可能是()A.催化剂失效B.减小生成物的浓度C.降低体系温度D.增大容器的体积答案C解析从图像可以看出:改变条件后,反应速率与原平衡速率出现断点且低于原平衡反应速率,说明改变的条件可能是降低温度或减压。

从改变条件后的v'正与v'逆的大小关系,可得出化学平衡正向移动。

降低温度,该平衡正向移动,必有v'正〉v'逆,故选C。

2.向一容积不变的密闭容器中充入H2和I2,发生反应H2(g)+l2(g) 2HI(g) AH<0,当达平衡后,t0时若保持混合气体总物质的量不变而改变某一反应条件,使平衡移动(如图所示),下列说法正确的是( )A.容器内气体颜色变深,平均相对分子质量不变B.平衡不移动,混合气体密度增大C.H2转化率增大,HI平衡浓度减小D.t o时改变的条件为减小体积或升高体系温度答案A解析条件改变后,正、逆反应速率均增大,但是逆反应速率大于正反应速率,平衡逆向移动,改变的条件应为升高温度,A项正确。

题组二时间一浓度(物质的量)图像3.(2018山东省实验中学月考)已知X(g)和Y(g)可以相互转化:2X(g) Y(g) AH<0。

现将一定量X(g)和Y(g)的混合气体通入一体积为 1 L的恒温密闭容器中,反应物及生成物的浓度随时间变化的关系如图所示。

则下列说法不正确的是( )A.若混合气体的压强不变,则说明反应已达化学平衡状态B . a、b、c、d四个点表示的反应体系中,表示化学反应处于平衡状态的只有b点C. 25〜30 min内用X表示的平均化学反应速率是0.08 mol L1 min 1D.反应进行至25 min时,曲线发生变化的原因是增加Y的浓度答案D解析正反应是气体分子数减小的反应,所以当压强不再发生变化时,可以说明反应已经达到平衡状态,A项正确;根据图像可知,只有b点表示的反应体系中,各物质的浓度不再发生变化,所以只有b点表示反应处于平衡状态,B项正确;25〜30 min内X的浓度变化量是0.4 mol「1,所以用X表示的平均化学反应速率是0.4「ol L1 = 0.08 molL1 min 1, C项正5 min确;反应进行至25 min时,X物质的浓度增大,D项不正确。

(压轴题)高中数学高中数学选修4-4第二章《参数方程》测试题(包含答案解析)(1)

(压轴题)高中数学高中数学选修4-4第二章《参数方程》测试题(包含答案解析)(1)

一、选择题1.在直角坐标系xOy 中,曲线C :22x ty t⎧=⎪⎨=⎪⎩(t 为参数)上的点到直线l :230x y -+=的距离的最小值为( )A .23B .223C .233D .22.已知22451x y +=,则25x y +的最大值是( ) A .2 B .1C .3D .93.在参数方程cos sin x a t y b t θθ=+⎧⎨=+⎩,(0θπ<,t 为参数)所表示的曲线上有,B C 两点,它们对应的参数值分别为1t ,2t ,则线段BC 的中点M 对应的参数值是( ) A .122t t - B .122t t + C .122t t - D .122t t + 4.曲线的离心率是( )A .B .C .2D .5.已知点()1,2A -,()2,0B ,P 为曲线2334y x =-上任意一点,则AP AB ⋅的取值范围为( ) A .[]1,7B .[]1,7-C .1,33⎡+⎣D .1,323⎡-+⎣6.在直角坐标系xOy 中,直线l 的参数方程为()y 4t?x t t 为参数=⎧⎨=+⎩,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为=424πρθ⎛⎫+ ⎪⎝⎭,则直线l 和曲线C 的公共点有 A .0个B .1个C .2个D .无数个7.已知抛物线的参数方程为2x 4t y 4t ⎧=⎨=⎩,若斜率为1的直线经过抛物线的焦点,且与抛物线相交于A ,B 两点,则线段AB 的长为( )A .22B .42C .8D .48.若曲线2sin301sin30x t y t =-︒⎧⎨=-+︒⎩(t 为参数)与曲线22ρ=相交于B ,C 两点,则BC 的值为( )A .27B .60C .72D .309.已知点(),P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,且[),2θππ∈)上,则点P 到直线21x t y t =+⎧⎨=--⎩(t 为参数)的距离的取值范围是( )A .3232,22⎡⎤-⎢⎥⎣⎦ B .0tan 60x = C .(2,22⎤⎦D .:::2x r r q q q e αα==10.圆ρ=r 与圆ρ=-2rsin (θ+4π)(r >0)的公共弦所在直线的方程为( ) A .2ρ(sin θ+cos θ)=r B .2ρ(sin θ+cos θ)=-rC .2ρ(sin θ+cos θ)=rD .2ρ(sin θ+cos θ)=-r 11.在极坐标系下,已知圆的方程为,则下列各点在圆上的是 ( )A .B .C .D .12.极坐标cos ρθ=和参数方程12x ty t=--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线二、填空题13.在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(02)且倾斜角为α的直线l 与O 交于A ,B 两点.则α的取值范围为_________14.已知点B 在圆O :2216x y +=上,()2,2,A OM OA OB =+,若存在点N 使得MN 为定长,则点N 的坐标是______. 15.直线1413x ty t=+⎧⎨=--⎩(t 为参数)的斜率为______.16.点(),M x y 是椭圆222312x y +=上的一个动点,则2m x y =+的最大值为______17.设直线315:{45x tl y t=+=(t 为参数),曲线1cos :{sin x C y θθ==(θ为参数),直线l 与曲线1C 交于,A B 两点,则AB =__________.18.已知椭圆C 的方程为2212x y +=,若F 为C 的右焦点,B 为C 的上顶点,P 为C 上位于第一象限内的动点,则四边形OBPF 的面积的最大值为__________. 19.曲线1C 的极坐标方程2cos sin ρθθ=,曲线2C 的参数方程为31x ty t =-⎧⎨=-⎩,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则曲线1C 上的点与曲线2C 上的点最近的距离为__________.20.设(,0)M p 是一定点,01p <<,点(,)A a b 是椭圆2214xy +=上距离M 最近的点,则()==a f p ________.三、解答题21.已知直线5:12x l y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的坐标方程为2cos ρθ=. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M的直角坐标为(,直线l 与曲线C 的交点为A 、B ,求AB 的值.22.已知直线l的参数方程为12{2x ty ==(t 为参数),曲线C 的参数方程为4cos {4sin x y θθ==(θ为参数). (1)将曲线C 的参数方程化为普通方程;(2)若直线l 与曲线C 交于,A B 两点,求线段AB 的长.23.在平面直角坐标系xOy 中,已知直线l的参数方程:1221x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),以原点为极点,x 轴非负半轴为极轴(取相同单位长度)建立极坐标系,圆C 的极坐标方程为:2cos 0ρθ+=.(1)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; (2)求圆C 上的点到直线l 的距离的最小值,并求出此时点的坐标. 24.已知曲线C 的参数方程为2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以直角坐标系的原点o 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程是:12cos sin 6θθρ+=(Ⅰ)求曲线C 的普通方程和直线l 的直角坐标方程:(Ⅱ)点P 是曲线C 上的动点,求点P 到直线l 距离的最大值与最小值.25.在平面直角坐标系xOy 中,直线1l :cos ,sin x t y t αα=⎧⎨=⎩(t 为参数,π02α<<),曲线1C :2cos 4+2sin x y ββ=⎧⎨=⎩,(β为参数),1l 与1C 相切于点A ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求1C 的极坐标方程及点A 的极坐标; (2)已知直线2l :()6R πθρ=∈与圆2C:2cos 20ρθ-+=交于B ,C 两点,记AOB ∆的面积为1S ,2COC ∆的面积为2S ,求1221S S S S +的值. 26.在直角坐标系xOy 中,直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩.(t 为参数).以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 30p ρθ-+=.(1)求l 的普通方程及C 的直角坐标方程; (2)求曲线C 上的点P 到l 距离的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设曲线C上点的坐标为()2t ,利用点到直线的距离公式表示出距离,即可求出最小值. 【详解】设曲线C上点的坐标为()2t , 则C 上的点到直线l的距离2233d===,即C 上的点到直线1. 故选:C. 【点睛】本题考查参数方程的应用,属于基础题.2.A解析:A 【分析】设1cos 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,则2cos sin 4x πααα⎛⎫=+=+ ⎪⎝⎭,利用三角函数有界性得到最值.【详解】22451x y +=,则设1cos 2x y αα⎧=⎪⎪⎨⎪=⎪⎩ ,则2cos sin 4x πααα⎛⎫=+=+ ⎪⎝⎭当4πα=,即4x y ⎧=⎪⎪⎨⎪=⎪⎩故选:A 【点睛】本题考查了求最大值,利用参数方程1cos 25x y αα⎧=⎪⎪⎨⎪=⎪⎩是解题的关键. 3.D解析:D 【解析】 【分析】根据参数的几何意义求解即可。

高中化学人教版(新课标)选修4 第二章测试卷

高中化学人教版(新课标)选修4 第二章测试卷

高中化学人教版(新课标)选修4 第二章测试卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分) (2015高二上·济南期末) 对于反应C(s)+H2O(g)⇌CO(g)+H2(g);△H>0,下列有关说法正确的是()A . 升高体系温度,平衡常数K减小B . 增大体系压强,平衡常数K不发生变化C . 平衡常数表达式为K=D . 增加C(s)的量,平衡正向移动【考点】2. (2分) (2018高二上·黄陵开学考) 对于反应A+3B=2C+D来说,下列反应速率中最快的是()A . v(A)=0.3mol·L-1·min-1B . v(B)=0.6mol·L-1·min-1C . v(C)=0.5mol·L-1·min-1D . v(D)=0.001mol·L-1·min-1【考点】3. (2分) (2016高一下·温州期中) 可逆反应A(g)+3B(g)⇌2C(g)+2D(g)在4种不同情况下反应速率分别如下,其中反应速率v最大的是()A . v(A)=9.0mol/(L•min)B . v(B)=0.6 mol/(L•s)C . v(C)=0.3 mol/(L•s)D . v(D)=0.1 mol/(L•s)【考点】4. (2分) (2019高一下·长治期末) 把0.6mol气体X和0.4mol气体Y混合于2L的密闭容器中,发生反应:3X(g)+Y(g) ⇌nZ(g)+3W(g),测得5min末W的浓度为0.1mol·L-1 ,又知以Z表示的平均反应速率为0.02mol·L-1·min-1 ,则n值是()A . 2B . 3C . 4D . 6【考点】5. (2分)反应4NH3(气)+5O2(气)⇌4NO(气)+6H2O(气)在10L密闭容器中进行,半分钟后,水蒸气的物质的量增加了0.45mol,则此反应的平均速率(X)可表示为()A . (NH3)=0.0100mol∙L﹣1∙s﹣1B . (O2)=0.0010mol∙L﹣1∙s﹣1C . (NO)=0.0010mol∙L﹣1∙s﹣1D . (H2O)=0.045mol∙L﹣1∙s﹣1【考点】6. (2分) (2020高二上·丽水月考) 在一定条件下发生反应2SO3(g) 2SO2(g)+ O2(g),将1molSO3气体通入1L容积恒定的密闭容器中,维持容器内温度不变,5min末测得SO3的物质的量为0.4mol。

选修4第二章单元测试题

选修4第二章单元测试题

第二章单元测试题班级:姓名:一、选择题(每题3分)1.在2A+B3C+4D反应中,表示该反应速率最快的是()A.υ(A)=0.5 mol/(L·s)B.υ(B)=0.3 mol/(L·s)C.υ(C)=0.8 mol/(L·s)D.υ(D)=1 mol/(L·s)2.下列说法正确的是()A.增大反应物浓度,可增大单位体积内活化分子的百分数,从而使有效碰撞次数增大B.有气体参加的化学反应,若增大压强(即缩小反应容器的体积),可增加活化分子的百分数,从而使反应速率增大C.升高温度能使化学反应速率增大,主要原因是增加了反应物分子中活化分子的百分数D.催化剂不影响反应活化能但能增大单位体积内活化分子百分数,从而增大反应速率3.过程的自发性的作用是()A.判断过程的方向 B.确定过程是否一定会发生C.判断过程发生的速率 D.判断过程的热效应4.在2升的密闭容器中,发生以下反应:2A(g)+ B(g) 2C(g)+D(g) 。

若最初加入的A和B都是4 mol,在前10秒钟A的平均反应速度为0.12 mol/(L·s),则10秒钟时,容器中B 的物质的量是()A. 1.6 molB. 2.8 molC. 2.4 molD. 1.2 mol 5.一定条件下反应2AB(g) A(g)+B2(g)达到平衡状态的标志是()A.单位时间内生成nmolA2,同时消耗2n molABB.容器内,3种气体AB、A2、B2共存C.AB的消耗速率等于A2的消耗速率D.容器中各组分的体积分数不随时间变化6.在一定温度不同压强(PP2)下,可逆反应2X(g) 2Y(g) + Z(g)中,生成物Z在反应混合物中的体积分数(ψ)与反应时间(t)的关系有以下图示,正确的是()7.α1和α2分别为A、B在两个恒容容器中平衡体系A(g)2B(g)和2A(g)B(g)的转化率,在温度不变的情况下,均增加A的物质的量,下列判断正确的是()A .α1、α2均减小B .α1、α2均增大C .α1减小,α2增大D .α1增大,α2减小8.常温常压下,在带有相同质量活塞的容积相等的甲、乙两容器里,分别充有二氧化氮和空气,现分别进行下列两上实验:(N 2O 2NO 2 △H > 0) (a )将两容器置于沸水中加热(b )在活塞上都加2 kg 的砝码在以上两情况下,甲和乙容器的体积大小的比较,正确的是( )A .(a )甲>乙,(b )甲>乙B .(a )甲>乙,(b )甲=乙C .(a )甲<乙,(b )甲>乙D .(a )甲>乙,(b )甲<乙9.下列能用勒夏特列原理解释的是( )A .工业合成氨使用催化剂加快反应速率B .棕红色NO 2加压后颜色先变深后变浅C .SO 2催化氧化成SO 3的反应,往往需要使用催化剂D .H 2、I 2、HI 平衡混和气加压后颜色变深10.在恒温时,一固定容积的容器内发生如下反应:2NO 2(g )N 2O 4(g) 达到平衡时,再向容器内通入一定量的NO 2(g ),重新达到平衡后,与第一次平衡时相比,NO 2的体积分数( ) A .不变 B .增大C .减小D .无法判断11.在密闭容器中进行如下反应:X 2(g)+Y 2(g)2Z(g),已知X 2、Y 2、Z 的起始浓度分别为0.2mol/L 、0.6mol/L 、0.2mol/L ,当反应达到平衡时,各物质的浓度有可能是 ( )A . Z 为0.4mol/LB . Y 2为0.3mol/LC . X 2为0.25mol/LD .X 2为0.3mol/L12.在恒温时,一固定容积的容器内发生如下反应:2NO 2(g )N 2O 4(g) 达到平衡时,再向容器内通入一定量的NO 2(g ),重新达到平衡后,与第一次平衡时相比,NO 2的体积分数( ) A .不变 B .增大C .减小D .无法判断13.在密闭容中发生下列反应aA(g)cC(g)+dD(g),反应达到平衡后,将气体体积压缩到原来的一半,当再次达到平衡时,D 的浓度为原平衡的1.8倍,下列叙述正确的是A .A 的转化率增大B .平衡向正反应方向移动C .D 的体积分数变大 D .a < c +d14.某反应:A B+C 在室温下不能自发进行,在高温下能自发进行,对该反应过程ΔH 、ΔS 的判断正确的是( )A .ΔH <0、ΔS <0B .ΔH >0、ΔS <0C .ΔH <0、ΔS >0D .ΔH >0、ΔS>015.下列变化中,ΔS <0的是( )A.冰融化成水B.NH 3(g)与HCl(g)反应生成NH 4Cl(s)C.干冰(CO 2)的升华D.CaCO 3(s)分解为CaO(s)和CO 2(g)16. 某温度下,在固定容积的容器中,可逆反应A(g)+3B(g) 2C(g)达到平衡,此时测得n (A)∶n (B)∶n (C)=2∶2∶1。

选修4第二章测考试试题有答案

选修4第二章测考试试题有答案

第二章 化学反应速率和化学平衡一、选择题(本题包括7小题,每小题3分,共48分) 1、反应X(g)+Y(g)2Z(g);△H <0,达到平衡时,下列说法正确的是A.减小容器体积,平衡向右移动B.加入催化剂,Z 的产率增大C.增大c(X),X 的转化率增大D.降低温度,Y 的转化率增大00100⨯=理论产量实际产量产率 理论产量:完全反应得到的产量【答案】D2. 在一定温度下,将气体X 和气体Y 各0.16 mol 充入10 L 恒容密闭容器中,发生反应X (g )+ Y (g )2Z (g ) △H < 0,一段时间后达到平衡。

反应过程中测定的数据如下表( )A. B .其他条件不变,降低温度,反应达到新平衡前v (逆)>v (正) C .该温度下此反应的平衡常数K =1.44D .其他条件不变,再充入0.2 mol Z ,平衡时X 的体积分数增大 【答案】C3.一定条件下,通过下列反应可以制备特种陶瓷的原料MgO ·MgSO 3(s ) + CO (g )MgO (s ) + CO 2(g )+SO 2(g ) △H >0该反应在恒容的密闭容器中达到平衡后,若仅改变图中横坐标x 的值,重新达到平衡后,纵坐标y 随x 变化趋势合理的是4.一定条件下,通过下列反应可实现燃煤烟气中硫的回收: SO 2(g)+2CO(g)催化剂2CO 2(g)+S(l ) △H <0 若反应在恒容的密闭容器中进行,下列有关说法正确的是A .平衡前,随着反应的进行,容器内压强始终不变B .平衡时,其他条件不变,分离出硫,正反应速率加快C .平衡时,其他条件不变,升高温度可提高SO 2的转化率D .其他条件不变,使用不同催化剂,该反应平衡常数不变 答案:D5.合成氨所需的氢气可用煤和水作原料经过多步反应制得,其中的一步反应为: CO(g)+H 2O(g)催化剂CO 2(g)+H 2(g) △H < 0反应到达平衡后,为提高CO 的转化率,下列措施中正确的是 A .增加压强 B .降低温度 C .增大CO 的浓度D .更换催化剂答案:B6.温度为T 时,向2.0L 恒容密闭容器中充入1.0 molPCl 5,反应PCl 5(g) PCl 3(g)+Cl 2(g)经一段时间后达到平衡。

(必考题)高中数学高中数学选修4-4第二章《参数方程》测试卷(答案解析)

(必考题)高中数学高中数学选修4-4第二章《参数方程》测试卷(答案解析)

一、选择题1.在直角坐标系xOy 中,曲线C:2x ty ⎧=⎪⎨=⎪⎩(t 为参数)上的点到直线l:30x +=的距离的最小值为( )A .23BCD2.P 是直线:40l x y +-=上的动点,Q 是曲线C:sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数)上的动点,则PQ 的最小值是( ) A.2B.2CD.23.在极坐标系中,曲线C 的方程为22312sin ρθ,以极点O 为直角坐标系的原点,极轴为x 轴的正半轴,建立直角坐标系xOy ,设(),P x y 为曲线C 上一动点,则1x y +-的取值范围为()A.1⎡⎤⎣⎦B .[]3,1-C .[]22-,D .[]2,1--4.已知点(,)P x y 的坐标满足条件1,1,350,x y x x y ≥⎧⎪≥-⎨⎪+-≤⎩点(43,31)Q m m +-,则||PQ 的最小值为( ) A .2B .115C .95D .15.曲线C 的参数方程为2x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为212x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),若直线l 与曲线C 交于A ,B 两点,则AB 等于( )ABCD6.在直角坐标系xOy 中,过点()1,2P -的直线l的参数方程为1 2x y ⎧=--⎪⎪⎨⎪=⎪⎩(t 为参数),直线l 与抛物线2y x 交于点,A B ,则PA PB ⋅的值是( )AB .2C.D .107.直线34x ty t =-⎧⎨=+⎩,(t 为参数)上与点()3,4P( )A .()4,3B .()4,5-或()0,1C .()2,5D .()4,3或()2,58.圆ρ=r 与圆ρ=-2rsin (θ+4π)(r >0)的公共弦所在直线的方程为( ) A .2ρ(sin θ+cos θ)=r B .2ρ(sin θ+cos θ)=-rC(sin θ+cos θ)=rD(sin θ+cos θ)=-r9.点M的直角坐标是()1-,则点M 的极坐标为( ) A .52,6π⎛⎫ ⎪⎝⎭B .72,6π⎛⎫ ⎪⎝⎭C .112,6π⎛⎫⎪⎝⎭D .2,6π⎛⎫⎪⎝⎭10.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( ) AB.CD.11.已知点A 是曲线2213x y +=上任意一点,则点A到直线sin()6πρθ+=的距离的最大值是( )A.2BCD.12.设椭圆C :2211612x y +=上的一点P 到两条直线4y =和8x =的距离分别是1d ,2d ,则122d d +的最小值( ) A .5B .6C .7D .8二、填空题13.已知点(,)P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩,(θ为参数)上,则yx 的取值范围为_____.14.已知直线参数方程为355435x t y t⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),直线与圆5ρ=交于B 、C 两点,则线段BC 中点直角坐标________.15.在直角坐标平面内,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为4π⎛⎫ ⎪⎝⎭,曲线C的参数方程为1{x y αα=+=(α为参数),则点M 到曲线C 上的点的距离的最小值为 .16.已知(3,0)A -,(3,0)B ,点P 在圆22(3)(4)4x y -+-=上运动,则22PA PB +的最小值是________.17.在平面直角坐标系xOy 中,已知抛物线244x t y t ⎧=⎨=⎩(t 为参数)的焦点为F ,动点P 在抛物线上,动点Q 在圆3cos sin x y αα=+⎧⎨=⎩(α为参数)上,则PF PQ +的最小值为__________.18.在极坐标系中,圆1C的方程为4πρθ⎛⎫=- ⎪⎝⎭,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,圆2C 的参数方程为1cos (1x a y asin θθθ=-+⎧⎨=-+⎩为参数),若圆1C 与圆2C 外切,则正数a = _________.19.在直角坐标系xOy 中,直线l的参数方程是112x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=-,则圆C 的圆心到直线l 的距离为______.20.在直角坐标系中,曲线1C 的参数方程为cos ,sin ,x y θθ=⎧⎨=⎩[]0,πθ∈,以x 轴的正半轴为极轴建立极坐标系,曲线2C 在极坐标系中的方程为sin cos bρθθ=-.若曲线1C 与2C 有两个不同的交点,则实数b 的取值范围是_______.三、解答题21.在直角坐标系xOy 中,直线l的参数方程cos 1sin x t y t αα⎧=⎪⎨=+⎪⎩(t 为参数,[0,)απ∈),曲线C的参数方程2sin x y ββ⎧=⎪⎨=⎪⎩(β为参数).(1)求曲线C 在直角坐标系中的普通方程;(2)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,当曲线C 截直线l 所得线段的中点极坐标为2,6π⎛⎫⎪⎝⎭时,求α.22.在平面直角坐标系中,曲线1C的参数方程是1x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 是参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是4cos 3πρθ⎛⎫=- ⎪⎝⎭. (Ⅰ)求曲线2C 的直角坐标方程;(Ⅱ)若曲线1C 与曲线2C 交于,A B 两点,求||AB 的值. 23.[选修4-4:坐标系与参数方程](10分)在极坐标系中,圆C 的极坐标方程为()24cos sin 3ρρθθ=+-,若以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系. (1)求圆C 的一个参数方程;(2)在平面直角坐标系中,(),P x y 是圆C 上的动点,试求2x y +的最大值,并求出此时点P 的直角坐标.24.在平面直角坐标系xOy 中,已知直线l的参数方程为1122x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C 的参数方程为cos 2sin x y θθ=⎧⎨=⎩(θ为参数)(1)将直线l 的参数方程化为极坐标方程;(2)设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长. 25.在平面直角坐标系中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数,0απ≤<).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为244cos 2sin ρρθρθ-=-.(1)写出曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A 、B 两点,且AB的长度为l 的普通方程. 26.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立坐标系,曲线C的方程,()222cos4sin4ρθθ+=,过点(2,1)的直线l的参数方程为221xy⎧=+⎪⎪⎨⎪=+⎪⎩(t为参数).(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C交于A、B两点,求||AB的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设曲线C上点的坐标为()2t,利用点到直线的距离公式表示出距离,即可求出最小值.【详解】设曲线C上点的坐标为()2t,则C上的点到直线l的距离2233d===,即C上的点到直线1.故选:C.【点睛】本题考查参数方程的应用,属于基础题.2.C解析:C【分析】设点,sin)Qθθ,利用点到直线的距离公式,结合三角函数的性质,即可求解.【详解】由曲线C:sinxyθθ⎧=⎪⎨=⎪⎩(θ为参数)消去参数,设点,sin)Qθθ,则点Q 到直线:40l x y +-=的距离为d ==,当2,6k k Z πθπ=+∈时,min d ==故选:C. 【点睛】本题主要考查曲线的参数方程,点到直线的距离公式,以及三角函数的恒等变换和余弦函数的性质的应用,着重考查运算与求解能力,以及转换能力,属于基础题.3.B解析:B 【分析】 将曲线C 的方程22312sin ρθ化为直角坐标形式,可得2213xy +=,设x α=,sin y α=,由三角函数性质可得1x y +-的取值范围.【详解】解:将cos =x ρθ ,sin y ρθ=代入曲线C 的方程22312sin ρθ,可得:2222sin 3ρρθ+=,即2233x y +=,2213x y+=设x α=,sin yα=,可得1sin 1sin )12sin()1213x y πααααα+-=-=+++--=, 可得1x y +-的最大值为:1,最小值为:3-, 故选:B. 【点睛】本题主要考查极坐标和直角坐标的互换及椭圆的参数方程,属于中档题,注意运算准确.4.A解析:A 【分析】根据Q 点坐标得到点Q 满足的参数方程,从而得到Q 点所在的直线方程l ,因此将求PQ 最小值问题转化为求可行域上的点(,)P x y 到直线l 的最小距离,然后运用数形结合得到可行域内点B (1,0)到直线l 距离最小,从而求出PQ 的最小值. 【详解】因为(43,31)Q m m +-,则点Q 满足的参数方程为43{31x m y m =+=-(m 为参数),消去参数得到普通方程为l :34130x y --=,则问题转化为求可行域上的点(,)P x y 到直线l 的最小距离,如图:由图可知当P 点与B 点重合时到直线l 的距离最小,而B 点为(1,0),B 到l 的距离为d ,所以min 223013102534PQ d --====+, 答案为A. 【点睛】主要考查线性规划问题,同时也考查了参数方程与普通方程的互化.这类型题的关键在于寻找出目标函数的几何意义,然后利用数形结合的方法寻找出最优解,求出最值,属于中档题.5.C解析:C 【解析】分析:首先将取消C 的方程化为直角坐标方程,然后结合直线参数方程的几何意义整理计算即可求得最终结果.详解:曲线C 的参数方程2x cos y sin θθ=⎧⎨=⎩(θ为参数)化为直角坐标方程即:2214y x +=,与直线l 的参数方程312x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)联立可得:21613t =, 则124134131313t t ==-, 结合弦长公式可知:12813AB t t =-=. 本题选择C 选项.点睛:本题主要考查参数方程的应用,弦长公式等知识,意在考查学生的转化能力和计算求解能力.6.B解析:B 【解析】设,A B对应的参数分别为12,t t,把l的参数方程12xy⎧=-⎪⎪⎨⎪=+⎪⎩代入2y x=中得:221⎛+=--⎝⎭,整理得:220t-=,()242100∴∆=-⨯-=>,1212?2,?t t t t PA PB+==-∴1212··2t t t t===,故选B.7.D解析:D【详解】因为直线3(4x tty t=-⎧⎨=+⎩为参数),所以设直线上到点(3,4)P(3,4)t t--,=1t=±,代入直线的参数方程,得点的坐标为(4,3)或(2,5),故选D.8.D解析:D【解析】分别出圆ρ=r的直角坐标方程222x y r+=和圆ρ=-2r sin(θ+4π)(r>0)直角坐标方程22()x y x y+=+,从而求出两圆的公共弦所在直线的方程2())x y r x y r+=+=-.再化为极坐标方程为(sinθ+cosθ)=-r,选D. 9.B解析:B【解析】3π7π2,tan(π,)26ρθθθ===∈⇒=,故选:B.点睛:(1)直角坐标方程化为极坐标方程,只要运用公式cosxρθ=及sinyρθ=直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos,sin,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.10.D解析:D【分析】先求出直线和圆的普通方程,再利用圆的弦长公式求弦长. 【详解】由题意得,直线l 的普通方程为y =x -4, 圆C 的直角坐标方程为(x -2)2+y 2=4, 圆心到直线l 的距离d=,直线l 被圆C 截得的弦长为= 【点睛】(1)本题主要考查参数方程极坐标方程与普通方程的互化,意在考察学生对这些知识的掌握水平和分析推理计算能力.(2)求直线和圆相交的弦长,一般解直角三角形,利用公式||AB =. 11.C解析:C 【分析】先将直线sin()6πρθ+=A 的坐标,利用点到直线的距离求解. 【详解】由直线sin()6πρθ+=1cos 2ρθθ⎫+=⎪⎪⎝⎭0x +-=. 又点A 是曲线2213x y +=上任意一点,设),sin Aαα则点A0x +-=的距离为:d ==≤ 当sin 14πα⎛⎫+=- ⎪⎝⎭时取得等号. 故选:C 【点睛】本题考查极坐标方程与直角坐标方程的互化、椭圆的参数方程和点到直线的距离,属于中档题.12.D解析:D 【分析】设()4,P cos θθ,02θπ≤<,由题意可得:1222484d d cos θθ+=-+-,利用三角函数的单调性、和差公式即可得出结论. 【详解】解:设()4,P cos θθ,02θπ≤<, 由题意可得:122248416416816886d d cos cos sin πθθθθθ⎛⎫+=-+-=--=-+≥-= ⎪⎝⎭.当且仅当816sin πθ⎛⎫+= ⎪⎝⎭时取等号. 122d d ∴+的最小值为8.故选:D 【点睛】本题考查了椭圆的标准方程及其参数方程、三角函数的单调性、和差公式,考查了推理能力与计算能力,属于中档题.二、填空题13.【分析】根据曲线参数方程为(为参数)将曲线先化为普通方程再利用的几何意义即可求出其范围【详解】曲线的参数方程为(为参数)将两个方程平方相加它在直角坐标系中表示圆心在半径为的圆又的几何意义是表示原点与解析:⎡⎢⎣⎦【分析】根据曲线参数方程为2cos sin x y θθ=-+⎧⎨=⎩(θ为参数),将曲线先化为普通方程,再利用yx 的几何意义即可求出其范围. 【详解】曲线的参数方程为2cos sin x y θθ=-+⎧⎨=⎩(θ为参数),∴2cos x θ+=,sin y θ=,将两个方程平方相加,∴22(2)1x y ++=,它在直角坐标系中表示圆心在(2,0)-半径为1的圆.又yx的几何意义是表示原点与圆上一点(,)P x y 连线的斜率, 画出图象,如图:当过原点的直线与圆相切时,设切线的斜率为k ,切线方程l 为:y kx =联立l 与圆的方程:22(2)1x y y kx ⎧++=⎨=⎩,消掉y 可得()22(2)1x kx ++= 直线与圆相切,可得0∆=,解得33k =± ∴当过原点的直线与圆相切时,切线的斜率是3 ∴y x 的取值范围为33⎡⎢⎣⎦. 故答案为:3333⎡-⎢⎣⎦. 【点睛】此题考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,线性规划问题,关键是根据所给的约束条件准确地画出可行域和目标函数.在平面区域中,求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义,从而确定目标函数在何处取得最优解.14.【分析】将直线的参数方程化为普通方程圆的极坐标方程转化为普通方程再求解【详解】直线参数方程为(t 为参数)转化为普通方程:圆转化为普通方程为将直线方程代入圆的方程中整理得设交点为中点坐标则即则线段BC 解析:4433,2525⎛⎫ ⎪⎝⎭【分析】将直线的参数方程化为普通方程,圆的极坐标方程,转化为普通方程,再求解.【详解】直线参数方程为355435x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),转化为普通方程:11433y x =-, 圆5ρ=转化为普通方程为2225x y += ,将直线方程代入圆的方程中,整理得225881040x x --= ,设交点为()()1122,,,x y x y ,中点坐标()00,x y , 则1208844252225x x x +=== , ()1212012114114112333333223325x x y y y x x -+-+===-+= , 即则线段BC 中点直角坐标为4433,2525⎛⎫⎪⎝⎭ . 【点睛】本题考查了参数方程、极坐标方程和直角坐标方程之间的转换,中点坐标公式的应用,以及一元二次方程根和系数关系的应用. 参数方程转化为直坐标方程,常用方法有代入法、加减(或乘除)消元法、三角代换法等,极坐标方程转化为直角坐标方程,常通过转化公式直接代入,或先将已知式子变形,如两边同时平方或同时乘以ρ,再代入公式. 15.【解析】试题分析:依题意点M 的直角坐标为曲线C 的普通方程为圆心(10)半径则点M 到曲线C 上的点的距离的最小值为考点:参数方程与极坐标解析:5【解析】试题分析:依题意点M 的直角坐标为()4,4,曲线C 的普通方程为22(1)2x y -+=,圆心(1,0M 到曲线C上的点的距离的最小值为5考点:参数方程与极坐标16.【分析】由题意设利用两点之间的距离公式表示出进而可得结论【详解】由题意得圆的参数方程为(为参数)设则∴其中当时有最小值为故答案为:【点睛】本题主要考查两点之间的距离公式圆的参数方程的应用属于基础题 解析:36【分析】由题意设()32cos ,42sin P θθ++,利用两点之间的距离公式表示出22PA PB +,进而可得结论.【详解】由题意得圆的参数方程为32cos 42sin x y θθ=+⎧⎨=+⎩(θ为参数),设()32cos ,42sin P θθ++, 则()()22262cos 42sin 5624cos 16sin PA θθθθ=+++=++, ()()2222cos 42sin 2016sin PB θθθ=++=+,∴()227624cos 32sin 7640sin PA PB θθθϕ+=++=++,其中3tan 4ϕ=, 当()sin 1θϕ+=-时, 22PA PB +有最小值为36. 故答案为:36.【点睛】本题主要考查两点之间的距离公式,圆的参数方程的应用,属于基础题.17.3【解析】根据题意抛物线参数方程为其普通方程为y2=4x 其焦点坐标为(10)准线方程为x=﹣1动点P 在抛物线上设P 到准线的距离为d 则d=|PF|圆的参数方程为(α为参数)其普通方程为(x ﹣3)2+y解析:3【解析】根据题意,抛物线参数方程为244x t y t⎧=⎨=⎩,其普通方程为y 2=4x , 其焦点坐标为(1,0),准线方程为x=﹣1,动点P 在抛物线上,设P 到准线的距离为d ,则d=|PF|,圆的参数方程为3x cos y sin αα=+⎧⎨=⎩(α为参数),其普通方程为(x ﹣3)2+y 2=1, 动点Q 在圆上,则|PF|+|PQ|=d+|PQ|,分析可得:当P 为抛物线的顶点时,|PF|+|PQ|取得最小值,且其最小值为3, 故答案为:3.18.【解析】圆C1的方程为的直角坐标方程为:(x−2)2+(y−2)2=8圆心C1(22)半径圆C2的参数方程为参数)的普通方程为:(x+1)2+(y+1)2=a2圆心距两圆外切时∴正数【解析】圆C 1的方程为)4πρθ=-的直角坐标方程为:(x −2)2+(y −2)2=8, 圆心C 1(2,2),半径1r = 圆C 2的参数方程1(1x acos y asin θθθ=-+⎧⎨=-+⎩为参数)的普通方程为:(x +1)2+(y +1)2=a 2.圆心距12C C =两圆外切时,1212C C r r a =+==,∴正数a =19.【解析】直线l 的参数方程为(t 为参数)普通方程为x ﹣y+1=0圆ρ=﹣4cosθ即ρ2=﹣4ρcosθ即x2+y2+4x=0即(x+2)2+y2=4表示以(﹣20)为圆心半径等于2的圆∴圆C 的圆心到 解析:12. 【解析】直线l的参数方程为1{12x y t =-+=(t 为参数),普通方程为x,圆ρ=﹣4cosθ 即ρ2=﹣4ρcosθ,即 x 2+y 2+4x=0,即 (x+2)2+y 2=4,表示以(﹣2,0)为圆心,半径等于2的圆.∴圆C 的圆心到直线l=12, 故答案为:12. 20.【分析】先消去参数得到曲线的普通方程再利用直角坐标与极坐标的互化公式得到直线的直角坐标方程利用点到直线的距离公式结合图象即可求解【详解】将曲线的参数方程为化为直角坐标方程可得曲线表示圆心在原点半径为解析:1b ≤<【分析】先消去参数θ得到曲线的普通方程,再利用直角坐标与极坐标的互化公式,得到直线的直角坐标方程,利用点到直线的距离公式,结合图象,即可求解.【详解】将曲线1C 的参数方程为cos sin x y θθ=⎧⎨=⎩,[]0,πθ∈, 化为直角坐标方程,可得221x y +=,曲线1C 表示圆心在原点,半径为1的上半圆,(如图所示)曲线2C 在极坐标系中的方程为sin cos b ρθθ=-,即sin cos b ρθρθ-=, 可得曲线2C 的直角坐标方程为0x y b -+=, 由圆心到直线的距离得:12bd ==,解得2b =±,结合图象,可得实数b 的取值范围是12b ≤<. 故答案为:12b ≤<.【点睛】本题主要考查了极坐标和直角坐标的互化,参数方程与普通方程的互化,以及直线与圆的位置关系的应用,着重考查数形结合思想,以及推理与运算能力.三、解答题21.(1)221124x y +=(2)56πα= 【分析】(1)消去参数β,即可得曲线的普通方程;(2)利用点差法求出直线的斜率k 的值,从而求得直线的倾斜角.【详解】(1)由32sin x y ββ⎧=⎪⎨=⎪⎩得cos 23sin 2yββ⎧=⎪⎪⎨⎪=⎪⎩β得221124x y +=,所以曲线C 的普通方程为221124x y +=; (2)直线l 所得线段的中点极坐标为2,6π⎛⎫ ⎪⎝⎭化成直角坐标为. 设直线l 与曲线C 相交于()11,A x y ,()22,B x y 两点,则122x x +=1212y y +=,2211222211241124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②, 由-②①得222221210124x x y y --+=, 所以()211221123y y x x x x y y -+=-==-+,即tan 3l k α=-=, 又∵[0,)απ∈,∴直线l 的倾斜角为56π. 【点睛】本题考查参数方程化为普通方程、极坐标与直角坐标的互化、点差法的应用,考查转化与化归思想,考查逻辑推理能力、运算求解能力.22.(Ⅰ)2220x y x +--=;(Ⅱ.【分析】(Ⅰ)曲线2C 的极坐标方程l转化为22cos sin ρρθθ=+,由此能求出曲线2C 的直角坐标方程.(Ⅱ)将曲线1C 的参数方程代入曲线2C的直角坐标方程,可得210t -=,设,A B对应的t 值分别为12t t 、,利用韦达定理可得12121t t t t ⎧+=⎪⎨⋅=-⎪⎩ 【详解】解:(Ⅰ)21:4cos 4cos 32C πρθθθ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭22cos sin ρρθθ=+即2220x y x +--=(Ⅱ)由题意,联立2221202230x y x y x x ⎧=+⎪⎪⎪⎪=+⎨⎪⎪+--=⎪⎪⎩得2610t t -=设,A B 对应的t 值分别为12t t 、,则121261t t t t ⎧+=⎪∴⎨⋅=-⎪⎩ 1212||AB t t t t ∴=+=- ()()221212124t t t t t t =-=+-⋅()26410=+=【点睛】本题考查极坐标方程与直角坐标方程的转化,直线的参数方程参数的几何意义的应用,属于中档题.23.(1)25(25x y ααα⎧=⎪⎨=⎪⎩是参数). (2)11,(3,4).【解析】试题分析:(1)根据222x y ρ=+,cos x ρθ=,sin y ρθ=,得到圆C 的直角坐标方程,从而可得圆C 的一个参数方程;(2)由(1)可设点(25,25)P ϕϕ,借助辅助角公式即可得2x y +,从而可得2x y +的最大值及点P 的直角坐标. 试题(1)因为24(cos sin )3ρρθθ=+-,所以22+4430x y x y --+=,即22(2)(2)5x y -+-=为圆C 的直角坐标方程,所以圆C的一个参数方程为2(2x y ϕϕϕ⎧=⎪⎨=⎪⎩为参数). (2)由(1)可知点P的坐标可设为(2,2)ϕϕ,则224x y ϕϕ+=+++65sin()6ϕϕϕα=++=++其中cos 55αα==,当2x y +取最大值时,sin()1ϕα+=,2,2k k Z πϕαπ+=+∈,此时cos cos()sin 25πϕαα=-==,sin sin()cos 2πϕαα=-==2x y +的最大值为11,此时点P 的直角坐标为()3,4.24.(1cos sin 0θρθ-=(2)167AB =【详解】(1)直线l0y -=,代入互化公式cos {sin x y ρθρθ==可得直线lcos sin 0θρθ-=(2)椭圆C 的普通方程为2214y x +=,将直线l的参数方程112x t y ⎧=+⎪⎪⎨⎪=⎪⎩,代入2214y x +=,得22)12(1)124t ++=,即27160t t +=,解得10t =,2167t =-, 所以12167AB t t =-=. 考点:极坐标方程,利用直线参数方程中参数的几何意义可求线段的长 25.(1)()()22219x y -++=;(2)34y x =和0x =. 【分析】 (1)将cos sin x y ρθρθ=⎧⎨=⎩代入曲线C 极坐标方程,化简后可求得对应的直角坐标方程; (2)将直线的参数方程代入曲线方程,利用弦长公式列方程,解方程求得直线的倾斜角或斜率,由此求得直线l 的普通方程.【详解】(1)将cos sin x y ρθρθ=⎧⎨=⎩代入曲线C 极坐标方程得曲线C 的直角坐标方程为22442x y x y +-=-,即()()22219x y -++=;(2)将直线的参数方程代入曲线方程:()()22cos 2sin 19t t αα-++=,整理得24cos 2sin 40t t t αα-+-=设点A 、B 对应的参数为1t 、2t ,解得124cos 2sin t t αα+=-,124t t ⋅=-, 则12||AB t t =-===得23cos 4sin cos 0ααα-=,因为0απ≤<,得2πα=或3tan 4α=,直线l 的普通方程为34y x =和0x =. 【点睛】本题主要考查极坐标方程和直角坐标方程互化,考查利用直线的参数方程来求弦长有关的问题,属于中档题. 26.(1)10x y --=;2214x y +=(2【分析】(1)利用公式,即可实现极坐标方程和直角方程之间的转化;消去参数,则可得直线的普通方程;(2)将直线的参数方程代入曲线C 的直角方程,根据韦达定理,结合参数几何意义,即可容易求得.【详解】(1)因为曲线C 的方程,()222cos 4sin 4ρθθ+=, 故可得2244x y +=,即2214x y +=; 因为直线l的参数方程为2212x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),消去参数t ,则其直角方程为10x y --=.(2)将直线参数方程代入曲线C的直角方程,可得2580t ++=,设点,A B 对应的参数12,t t t t ==,则121285t t t t +==,故可得12AB t t =-====故弦长AB = 【点睛】本题考查极坐标方程、参数方程和直角坐标方程之间的相互转化,以及利用参数的几何意义求弦长,属综合基础题.。

2019_2020学年 选修4 鲁科版 第二章 检测卷(100分)

2019_2020学年 选修4 鲁科版  第二章  检测卷(100分)

2019_2020学年选修4 鲁科版第二章检测试卷(100分)一、选择题(本题包括16小题,每小题3分,共48分;每小题只有一个选项符合题意)1.(2019年北京顺义)在一定条件下,可逆反应N 2(g)+3H2(g)2NH3(g)达到化学平衡的标志是() A.NH3的生成速率与NH3的分解速率相等B.单位时间内生成a mol N2同时生成3a mol H2C.单位时间内生成a mol N2同时消耗a mol H2D.单位时间内有1 mol N≡N键断裂同时有3 mol H—H键断裂答案 A2..一定条件下,下列反应中水蒸气含量随反应时间的变化趋势符合下图的是()A.CO 2(g)+2NH3(g)CO(NH2)2(s)+H2O(g)ΔH<0B.CO 2(g)+H2(g)CO(g)+H2O(g)ΔH>0C.CH 3CH2OH(g)CH2===CH2(g)+H2O(g)ΔH>0D.2C 6H5CH2CH3(g)+O2(g)2C6H5CH===CH2(g)+2H2O(g)ΔH<0答案 A3.(2019年湖北恩施)下图是恒温下某化学反应的反应速率随反应时间变化的示意图。

下列叙述与示意图不相符合的是()A.反应达平衡时,正反应速率和逆反应速率相等B.该反应达到平衡态Ⅰ后,增大反应物浓度,平衡发生移动,达到平衡态ⅡC.该反应达到平衡态Ⅰ后,减小反应物浓度,平衡发生移动,达到平衡态ⅡD.同一种反应物在平衡态Ⅰ和平衡态Ⅱ时浓度不相等答案 C4.反应m X(g)n Y(g)+p Z(g)ΔH,在不同温度下的平衡体系中物质Y的体积分数随压强变化的曲线如图所示。

下列说法错误的是()A.该反应的ΔH>0B.m<n+pC.B、C两点化学平衡常数:K B>K CD.A、C两点的反应速率v(A)<v(C)答案 C5.一定温度下,可逆反应a X(g)+b Y(g)c Z(g)在一密闭容器内达到平衡后,t 0时刻改变某一外界变化,化学反应速率(v)随时间(t)的变化如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

临界生选修4第二章《化学反应速率与化学平衡》训练题
1. 可逆反应A(s)+B
C 达到平衡后,B 的转化率与压强、温度的
关系如图所示。

下列说法正确的是( )
2.如图表示可逆反应:N 2(g)+3H 2(g)
2NH 3(g)达到化学平衡状态时外界条件影响导致平衡移动的曲线,
根据判断影响平衡移动的因素是( )
3.可逆反应m A(固)+n B(气)P c (气)+q D(气)反应过程中其他条件不变时C 的百分含量C%与温度(T )和
压强(p )的关系如图所示,下列叙述中正确的是( )
4.C+CO 22CO ;ΔH 1>0,反应速率v 1,N 2+3H 22NH 3;ΔH 2<0,反应速率v 2。

如升
温,v 1和v 2的变化是 ( ) A .同时增大 B .同时减少 C .v 1增大,v 2减少 D .v 1减少,v 2增大 5.已知某可逆反应
△H ,在密闭容器中进行,左下图表示在不
同反应时间t 时温度T 和压强P 与反应物B 在混合气体中的百分含量B%的关系曲线。

由曲
线分析,下列判断正确的是 ( )
A.T 1<T 2,P 1>P 2,m+n >p ,△H <0
B.T 1>T 2,P 1<P 2,m+n >p ,△H >0
C.T 1<T 2,P 1>P 2,m+n <p ,△H <0
D.T 1>T 2,P 1<P 2,m+n <p ,△H >0 6.在其它条件一定时,右上图中曲线表示反应2NO(g) + O 2(g)
2NO 2(g)( △H >0)达平
衡时NO 的转化率与温度的关系,图上标有A 、B 、C 、D 、E 点,其中表示未达平衡状态且V
正>V 逆的点是 ( ) A .A 或E
B .B 点
C .C 点
D .D 点
7.对于可逆反应A(g)+2B(g)2C(g)(正反应吸热),下列图象中正确的是()
8.在一定温度不同压强下(P1<P2),可逆反应2X(g) 2Y(g) + Z(g)中,生成物Z在反应混合物中的体积分数(ψ)与反应时间(t)的关系有以下图示,正确的是
9.(2个选项)在一定温度下的刚性密闭容器中,当下列哪些物理量不再发生变化时,表明下述反应:A(s)+2B(g)
C(g)+D(g)已达到平衡状态( )
A.混合气体的压强B.混合气体的密度C.各气体物质的物质的量浓度D.气体的总物质的量
10.一定条件下,下列反应中水蒸气含量随反应时间的变化趋势符
11.在一定体积的密闭容器中,进行如下化学反应:
CO 2(g)+H2(g)CO(g)+H2O(g),
其化学平衡常数
回答下列问题:(1)该反应的化学平衡常数表达式为K=。

(2)该反应为反应(选填吸热、放热)。

(3)能判断该反应是否达到化学平衡状态的依据是(多选扣分)。

a.容器中压强不变b.混合气体中c(CO)不变
c.v正(H2)=v逆(H2O)d.c(CO2)=c(CO)
(4)某温度下,平衡浓度符合下式: c (CO 2)·c (H 2)=c (CO )·c (H 2O ),试判断此时的温度为 ℃。

第二章《化学反应速率与化学平衡》临界生参考答案
一、选择题
二、非选择题
11.(1)]
][[]][[222H CO O H CO ;(2)吸热;(3)b 、c ;(4)830。

1.解析:从图像推理可知,压强p 增大,B 的转化率增大,表明增大压强,平衡向正反应方向移动,即向气体体积缩小的方向移动,所以B 为气体,C 则为固体;在三条温度曲线上做一条等压线,则可看出,温度越高,B 的转化率越大,说明升高温度,平衡向正反应方向移动,即正反应为吸热反应。

答案:B
2.解析:题中图像信息显示:改变条件后,正反应速率先突然增大,然后慢慢减小;逆反应的速率先突然减小,后慢慢增加,因此平衡向正反应方向移动。

答案:D
3.解析:使用催化剂,平衡不移动,A 错误;由图1知T 1>T 2(T 1时,达到平衡所需时间短),T 2→T 1(升温),C%减小,平衡向逆反应方向移动,B 正确;由图2知p 2>p 1(p 2时,达到平衡所需时间短),p 1→p 2(加压)C%减小,平衡向逆反应方向移动,则n <p +q ,C 错误。

A 是固体,其量的改变对化学平衡没有影响,D 错误。

答案:B
9.解析:解题时明确平衡状态的判断标志是变量不再发生变化。

特别注意A 的状态为固体。

由于A 为固体,反应前后气体的物质的量相等,在刚性容器中整个反应过程中压强不变,故A 、D 错;由于A 为固体,气体的质量在反应中会发生变化,直到达平衡状态,ρ=m
V ,由于V 不变,故混合气体的密度平衡前后
会发生变化,不变时即达到平衡,B 对;任何物质的物质的量浓度不变均可表明达到平衡状态,C 对。

答案:BC
10.解析:温度越高,反应越快,到达平衡的时间就越少,因此T2>T1;同理压强越大,反应越快,到达平衡的时间就越少,因此p1>p2;反应A 是一个体积减小的、放热的可逆反应,因此升高温度平衡向逆反应方向移动,降低水蒸气的含量;而增大压强平衡向正反应方向移动,增大水蒸气的含量,所以A 项正确;。

相关文档
最新文档