锂离子电解液的介绍英文PPT
锂电池电解液详解.ppt

2ROCO2Li+H2O HF+ROLi Li2CO3+2HF ROCO2Li+2HF
Li2CO3+CO2+2ROH LiF+ROH
LiF+H2CO3 nLiF+ROH+H2CO3+ROH
破环电极活性物质 HF与正极氧化物材料反应
导致电池胀气、极化增大、容量衰减、循环性降低等
❖ 变色
正常电解液
保存不当,变色电解液
用量少,见效快
特点:
(1) 较少用量即能改善电池的一种或几种性能; (2) 对电池性能无副作用,不与电池中其它材料发生副反应; (3) 与有机溶剂有较好的相溶性,甚至能完全溶于其中; (4) 价格相对较低; (5) 无毒性或毒性较小。
锂离子电池基本结构ppt课件

120 mAh/g
电位平 台 3.7V
4V
4.2V
性价比 3 2 1
特点
性能稳定,高比容量,放电平 台平稳
高比容量,价格较低热稳定性 较差,
低成本,高温循环和存放性能 较差
10
1
LiCoO2正极材料
具有层状结构,理论容量274 mAh/g,实际容量140mAh/g 充放电过程中,层状结构易转化为尖晶石结构,高温循环性 能差。
负极 采用石墨层间化合物LiXC6; 隔膜 聚烯烃微孔膜(PE / PP); 电解液 锂盐的有机溶液(LiPF6+PC /EC/DMC) 外壳五金件 铝/钢壳、盖板、极耳、绝缘片
3
锂离子电池结构示意图
4
1、锂离子电池结构——正极
(1)正极物质:活性物质、导电剂(碳黑)、黏结剂 组 (2)正极集流体:Al箔 成 (3)正极极耳:Al带
13
4
LiFePO4正极材料
具有橄榄石型结构,具有层状结构,理论容量274mAh/g, 实际容量170mAh/g,原料资源丰富,价格低廉,且无毒对 环境友好。
离子和电子电导率低,大电流放电性能不好。
解决途径:加入导电性物质、掺杂、包覆。
14
层状结构材料( LiCoO2、 LiNiO2等)
15
尖晶石结构材料LiMn2O4
Li-ion Battery 第四章 锂离子电池基本结构
;.
1
一、锂离子电池的组成
正极
LiCoO2 、 LiNiO2 、 LiMn2O4 等
电池组成
负极
人造石墨系列、天然石墨系列、焦炭系列等
电解质
有机溶剂电解质(液态) 聚合物电解质(固态、凝胶)
专业英语-锂离子电池

3. Expensive to manufacture - about 40 percent higher in cost than nickel-cadmium.
4. If a LIB is fully discharged, Application
Chemical name
Material Abbreviation Short form Applications
Lithium Cobalt Oxide*
LiCoO2 (60% Co)
Lithium Manganese Oxide*
LiMn2O4
Lithium Iron Phosphate* LiFePO4
5. Not fully mature - metals and chemicals are changing on a continuing basis.
The Lithium-Ion battery has three basic shape size: the cylindrical , Prismatic or brickshaped, flat sandwich
In 1992, Sony first invented Li-ion battery for consumer electronics.
Owing to its ascendant performance, now lithium-ion is the fastest growing and most promising battery chemistry.
electric powertrain
and grid storage
锂电池电解液简介演示

在充电和放电过程中,电解液通 过可逆的锂离子迁移实现电能的 储存和释放。
电解液的构成
01
02
03
04
成分
电解液主要由有机溶剂、锂盐 和其他添加剂组成。
有机溶剂
通常采用碳酸酯类有机溶剂, 如碳酸乙烯酯(EC)、碳酸丙烯
酯(PC)等。
锂盐
核心成分,通常为锂离子盐, 如LiPF6、LiBF4等。
添加剂
06
相关案例及实践应用展示
案例一:某公司新型电解液研发成果展示
总结词
成果显著、具有突破性
VS
详细描述
该公司成功研发出一款新型锂电池电解液 ,具有高能量密度、长寿命、环保等优点 ,为锂电池行业带来了突破性的成果。
案例二
总结词
强强联合、性能卓越
详细描述
该公司将新型电池材料与新型电解液结合应 用,产生了强强联合的效果,电池性能得到 了显著提升。
动力电池领域对电解液的导电性能、 热稳定性和化学稳定性有较高的要求 ,以确保电池的安全和可靠运行。
储能领域
储能电站、储能系统等储能领域中,锂电池电解液作为关键 材料之一,承担着储存和释放电能的任务。
储能领域对电解液的循环寿命、安全性和成本有较高的要求 ,以确保储能系统的长期稳定运行和经济效益。
其他领域
特性
高电化学稳定性、低粘度、高离子导 电性、对电极材料兼容性好等。
添加剂电解液
常用添加剂
阻燃剂、过氧化稳定性、增强抗氧化性等。
特殊电解液
特殊类型
高温电解液、低温电解液、凝胶型电解液、固体电解质等。
特性
适应特殊环境要求、提高安全性、降低成本等。
为改善电解液性能而添加的成 分,如稳定剂、防过充剂、阻
锂离子电解液的介绍英文PPT

Face these challenges, what we can do?
LiBOB or LiPF6 , which is suitable?
Since a new lithium salt-lithium bis(oxalate)borate was disclosed by Lischka 1999 firstly , and it was successfully syntheticed by the united states air force laboratory in 2000. A novel lithium salt, (LiBOB), which possesses good film-forming property and high thermal stability, is becoming the most potential salt to replace commercial LiPF6 for lithium-ion battery electrolytes in recent years.
1.on the conductivity
Salt(1mol/L) Co-sovent Specific conductivity(ms/cm)
Li(CF3SO2)2N
DMC DEC MP
9.2 6.5 8.8 11.2 7.8 10.3
LiPF6
DMC DEC MP
Electrolyte additives – three primary functions
Face these challenges what we can do?
Electrolyte additives are one of significant measurements for safety currently recognized of lithium batteries. You can improve the all kinds of performance by adding different additives.
锂离子电解液

ropylenecarbonate)、DMC(dim ethyl carbonate)、DEC (diethyl carbonate),多数采用混合溶剂,如EC2DMC 和PC2DMC 等。
导电盐有L iClO 4、L iPF6、L iBF6、L iA sF6 和L iO SO 2CF3,它们导电率大小依次为L iA sF6> L iPF6> L iClO 4>L iBF6> L iO SO 2CF3。
L iClO4因具有较高的氧化性容易出现爆炸等安全性问题,一般只局限于实验研究中;L iAsF6离子导电率较高易纯化且稳定性较好,但含有有毒的A s,使用受到限制;L iBF6化学及热稳定性不好且导电率不高,LiO SO2CF3导电率差且对电极有腐蚀作用,较少使用;虽然LiPF6会发生分解反应,但具有较高的离子导电率,因此目前锂离子电池基本上是使用L iPF6。
目前商用锂离子电池所用的电解液大部分采用L iPF6 的EC2DMC,它具有较高的离子导电率与较好的电化学稳定性。
2、固体电解液用金属锂直接用作阳极材料具有很高的可逆容量,其理论容量高达3862mAh·g-1,是石墨材料的十几倍,价格也较低,被看作新一代锂离子电池最有吸引力的阳极材料,但会产生枝晶锂。
采用固体电解质作为离子的传导可抑制枝晶锂的生长,使得金属锂用作阳极材料成为可能。
此外使用固体电解质可避免液态电解液漏液的缺点,还可把电池做成更薄(厚度仅为0.1mm )、能量密度更高、体积更小的高能电池。
破坏性实验表明固态锂离子电池使用安全性能很高,经钉穿、加热( 200℃)、短路和过充(600%) 等破坏性实验,液态电解质锂离子电池会发生漏液、爆炸等安全性问题,而固态电池除内温略有升高外(<20℃)并无任何其它安全性问题出现。
固体聚合物电解质具有良好的柔韧性、成膜性、稳定性、成本低等特点,既可作为正负电极间隔膜用又可作为传递离子的电解质用。
锂离子电池电解液英文资料

锂离子电池电解液英文资料Lithium-ion Battery ElectrolyteElectrolyte is a key component of lithium-ion batteries, which are widely used in portable electronic devices and electric vehicles. It plays a critical role in the overall performance and safety of the battery system. The electrolyte serves as a medium for lithium ions to shuttle between the positive and negative electrodes during charge and discharge cycles.The electrolyte commonly used in lithium-ion batteries is a mixture of organic solvents, lithium salts, and additives. Organic solvents provide high conductivity and dissolve lithium salts to form ionic solutions. The most commonly used solvents include ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC).Lithium salts, such as lithium hexafluorophosphate (LiPF6), lithium perchlorate (LiClO4), and lithium trifluoromethanesulfonate (LiCF3SO3), provide the necessary lithium ions for electrochemical reactions. These salts are usually added to the electrolyte in a concentration of 0.5-1.5 M.Additives are used to improve the performance and safety of the lithium-ion battery. They can enhance the stability and cycling life of the electrode-electrolyte interface, suppress the formation of lithium dendrites, and improve the thermal stability of the electrolyte. Common additives include vinylene carbonate (VC), fluoroethylene carbonate (FEC), and lithium salt complexes.The electrolyte composition and properties are carefully designed to optimize the performance and safety of thelithium-ion battery. High ionic conductivity is essential for efficient charge and discharge processes. However, excessive conductivity can lead to side reactions, increased battery self-discharge, and thermal instability. Therefore, electrolytes with a balance between conductivity andstability are desired.In recent years, researchers have been actively developing new electrolytes with improved properties, such as high voltage stability, wide temperature range operation, and enhanced safety. Solid-state electrolytes, which eliminate the use of flammable organic solvents, are also being explored as a potential replacement for liquid electrolytes.Overall, the electrolyte is a crucial component of lithium-ion batteries, ensuring the efficient and safe operation of the battery system. Ongoing research and development efforts are focused on advancing electrolyte technology to enable the next generation of high-performance lithium-ion batteries.。
Li-ion-Battery-introduction锂离子电池介绍教学教材

carbon materials
Li4Ti5O12
Metal lithium is deposited on the carbon surface.It can explosively react with a variety of materials. Burning, explode and gas expansion are all protential safety problems.
safety
great
good
good
bad
bad
temp(℃)
-20~75
<50
low temp stable
-20 ~55
N/A
Page 11
poisonous
not bad -20 ~55
Li-ion battery anode materials
LiCoO2
LiNiO2
LiMn2O4
poor safety, high cost
Page 18
Li-ion battery electrolyte
Electrolyte is one of four major part of the Li-ion battery,which plays an important role in Li+ transfer and has an effect on Capacity, work temperature range cycle and safety of the battery.
purification
fine purification
electrolyte
solution prepare
stir
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Face these challenges, what we can do?
LiBOB or LiPF6 , which is suitable?
Since a new lithium salt-lithium bis(oxalate)borate was disclosed by Lischka 1999 firstly , and it was successfully syntheticed by the united states air force laboratory in 2000. A novel lithium salt, (LiBOB), which possesses good film-forming property and high thermal stability, is becoming the most potential salt to replace commercial LiPF6 for lithium-ion battery electrolytes in recent years.
Solute
LiPF6 ,LiBF4,LiClO4,LiAsF6,LiCF3SO. Conductivity: LiAsF6> LiPF6 >LiClO4>LiBF4 Thermal stability: LiAsF6>LiBF4 > LiPF6 Resistnce to oxidation: LiAsF6 > LiPF6 >LiBF4 >LiClO4
Characteristics of salt
Electrolyte salt LiClO4 advantages High conductivity disadvantages Strong oxidant Bad high temperature Performance and unsafe Toxic, high cost Bad thermal stability Sensitive to water Bad thermal stability
2、On the solid electrolyte interface It is possible to modify the anode surface chemistry by using active additives in solutions, whose reduction may form higly compact insoluble films. Eg: PC-based electrolyte Vinylene Carbonate to form a stable SEI layer.
1. Organic Solvent 2. Electrolyte Salt 3. Electrolyte Additives 4. Current development situation
Electrolyte additives – three primary functions
1、on the conductivity Freezing point, viscosity, dielectric constant and donating number of solvent. Eg: LiPF6 ,LiBF4,LiClO4,LiAsF6,LiCF3SO. DMC ,DEC , EMC`````
DMC It has completed the insulating or resistant to high temperatures, high flash point, low freezing point. It can works between long-term 5℃ ~ 80℃, excellent water resistence. Non-toxic, insipidity.
Vinylene Carbonate to form a stable SEI layer.
Q↑
C↑
ξ↑
Add VC quantity and circulation performance relationship
0.3C
1C
Add VC additives and different temperature discharge properties
1.on the conductivity
Salt(1mol/L) Co-sovent Specific conductivity(ms/cm)
Li(CF3SO2)2N
DMC DEC MP
9.2 6.5 8.8 11.2 7.8 10.3
LiPF6
DMC DEC MP
Electrolyte additives – three primary functions
Face these challenges what we can do?
Electrolyte additives are one of significant measurements for safety currently recognized of lithium batteries. You can improve the all kinds of performance by adding different additives.
1 2
EC+DEC+DMC (3.5:2.5:2.5) EC+DMC+EMC+ DEC (4:2:3:1) EC+DEC+DMC (1:1:0.8) EC+EMC+DMC (1.1:0.9:2.1) EC+DMC (1:1.5)
344 355
3
93.64
623
98.4
94.4
79.3
397
4
91.93
Two salts, have each their preponderance
Two salts, have each their preponderance
Room temperature
65℃
LiBOB
LiBOB formed a good crystalline phase and as show in XRD patterns, the impurity reduced. The conductivity of LiBOB based electrolyte is the half of that of LiPF6 counterpart from 0℃to 80℃ .In half cell, LiBOB has a superior chargedischarge capacity at elevated temperature than that of LiPF6
solvent
PC (PropyleneCarbonate) C4H6O3 EC (EthyleneCarbonate) C3H4O3 DEC (DimethylCarbonate) (key to SEI) DMC (Dimethyl cyclosiloxane)
DMC today's synthetic organic "new foundation".
LiAsF6 LiPF6 LiBF4
High conductivity Good thermal stability High conductivity High conductivity
At present LiPF6 is the common lithium salt which uses in commodity lithium-ion batteries. LiPF6 has poor hydrolysis stability and thermal stability and the hydrolysis product HF would adversely affected the performance of battery. The effective SEI film formed in the surface of the negative electrode only when LiPF6 and ethylene carbonate (EC) combining used. But high melt point (37℃) of EC become the limitation of the using of batteries at lower temperature.
The influence of solvent composition of the capacity holding rate and cycle characteristics of Li-ion battery
N O Composition of solvent(V/V) Capacity holding rate(%) 92.92 93.16 0.2C Capacity /mAh 632 639` 0.5C Capacity ratio/% 98.6 98.5 1C Capacity ratio/% 96.3 94.5 2C Capacity ratio/% 85.1 78.7 Cycle life
Tip Of The Iceberg for Electrolytes
CATALOGUE
1. Organic Solvent 2. Electrolyte Salts 3. Electrolyte Additives 4. Current development situation
Electrolytes are one of four key material ( cathode, anode, electrolyte material and separator ) and called as blood of Li-ion batteries .they are in proportion of preparation of high concentration organic solvent, electrolyte salt and other raw materials. in given conditions.