选修1-2_4-4测试题

合集下载

人教版高中高二文科数学选修1-2测试题教学教材

人教版高中高二文科数学选修1-2测试题教学教材

高二数学(文)选修1-2测试题(60分钟)满分:100分 考试时间:2018年3月姓名: 班级: 得分:附:1.22(),()()()()n ad bc K n a b c d a b a c b c b d -==+++++++ 2.“X 与Y 有关系”的可信程度表:P (K 2≥k ) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.01 0.005 0.001k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828一、 单项选择题(每题4分,共40分。

每题只有一个选项正确,将答案填在下表中)1、下列说法不正确的是( )A .程序图通常有一个“起点”,一个“终点”B .程序框图是流程图的一种C .结构图一般由构成系统的若干要素和表达各要素之间关系的连线(或方向箭头)构成D .流程图与结构图是解决同一个问题的两种不同的方法 2. 给出下列关系:其中具有相关关系的是( ) ①考试号与考生考试成绩; ②勤能补拙; ③水稻产量与气候; ④正方形的边长与正方形的面积。

A .①②③ B .①③④ C .②③ D .①③ 3、黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n 个图案中的白色地面砖有( ). A .4n -2块 B .4n +2块 C .3n +3块D .3n -3块4、如图是一商场某一个时间制订销售计划时的局部结构图,则直接影响“计划” 要素有( )A .1个B .2个C .3个D .4个 5、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。

A.假设三内角都不大于60度;B. 假设三内角都大于60度;C. 假设三内角至多有一个大于60度;D. 假设三内角至多有两个大于60度。

6、在复平面内,复数103ii+的共轭复数应对应点的坐标为( ) A . (1,3) B .(1,-3) C .(-1,3) D .(3 ,-1)7、已知两个分类变量X 和Y ,由他们的观测数据计算得到K 2的观测值范围是3.841<k<6.635,根据K 2的临界值表,则以下判断正确的是( )A .在犯错误概率不超过0.05的前提下,认为变量X 与Y 有关系B. 在犯错误概率不超过0.05的前提下,认为变量X 与Y 没有关系C.在犯错误概率不超过0.01的前提下,认为变量X 与Y 有关系D. 在犯错误概率不超过0.01的前提下,认为变量X 与Y 没有关系8、已知数列{}n a 的前n 项和为n S ,且11a =,2n n S n a =*()n ∈N ,可归纳猜想出n S 的表达式为 ( )A .21n n + B .311n n -+ C .212n n ++D .22nn + 9、z 为纯虚数,且|z-1|=|-1+i|,则z=( )A.iB. -iC. ± iD.±2i 10、求135101S =++++L 的流程图程序如右图所示,其中①应为 ( )A .101?A =B .101?A ≤C .101?A >D .101?A ≥二、填空题:(每小题4分,共16分)11、对于一组数据的两个线性模型,其R 2分别为0.85和0.25,若从中选取一个拟合效果好的函数模型,应选 (选填“前者” 或“后者”) 12、2006)11(ii -+=___________ 13、若三角形内切圆半径为r ,三边长为a,b,c 则三角形的面积12S r a b c =++();利用类比思想:若四面体内切球半径为R ,四个面的面积为124S S S 3,,S ,;则四面体的体积V= 14、 把“函数y=2x+5的图像是一条直线”改写成三段论形式:题号 1 2 3 4 5 6 7 8 9 10 答案ˆˆˆ∑∑∑∑nnii i ii=1i=1nn222iii=1i=1(x-x)(y -y)x -nxyb==,(x-x)x-nxa=y -bx y开始 ①是 否 S =0 A =1S =S +A A =A +2输出x 结束三、解答题:(共44分)15.证明题(每小题6分共12分): (1>(2)若0a >,0b >,求证:()11()4a b a b++≥16、(10分)据不完全统计,某厂的生产原料耗费x (单位:百万元)与销售额y (单位:百万元)如下:变量X ,Y 为线性相关关系,(1)求线性回归方程必过的点; (2)求线性回归方程, 6.5y bx a b ∧=+=; (3)若实际销售额要求不少于54百万元,则原材料耗费至少要多少百万元17、(10分)实数m 取什么值时,复数i m m m z )2(122--+-=是 (1)纯虚数;(2)对应的点在直线y=2x-2上18、(12(1)请将上述的列联表的空缺处完成;(2) 请你根据所给数据判断能否有85%的把握认为在恶劣气候下航行,女人比男人更容易晕船?。

高二数学选修第(一、二)章测试题

高二数学选修第(一、二)章测试题

高二数学选修第(1-2)单元测试题试卷满分150考试时间120分钟第Ⅰ卷(共100分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合1.对两个变量y 和x 进行回归分析,得到一组样本数据:),2211n n y ,则下列说法中不正确的是( )A .由样本数据得到的回归方程y ^=b ^x +a ^必过样本点的中心),(y x B .残差平方和越小的模型,拟合的效果越好C .用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好D .若变量y 和x 之间的相关系数r =-0.9362,则变量y 和x 之间具有线性相关关系 2.下面使用类比推理正确的是 A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D.“n n a a b =n (b )” 类推出“n n a a b +=+n(b )” 3.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数” 结论显然是错误的,是因为 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 4.设)()(,sin )('010x f x f x x f ==,'21()(),,f x f x = '1()()n n f x f x +=,n ∈N ,则2007()f x = A.sin xB.-sin xC.cos xD.-cos x5右面是一个2×2列联表:则表中a 、b 处的值分别为( ) A .52、60 B .52、50 C .94、96 D .54、52 6.某产品的广告费用x 与销售额y 的统计数据如下表: 根据上表可得回归方程y ^=b ^x +a ^中的b ^约等于9,据此模型预报广告费用为6万元时,销售额为( ) A .63.5万元 B .64.5万元C .65.5万元D .66.0万元 7.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。

高二数学选修1-2模块测试题二

高二数学选修1-2模块测试题二

高二数学选修1-2模块测试题二一、选择题:1.若复数12z i=+,则z 在复平面内对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.按流程图的程序计算,若开始输入的值为3x =,则输出的x 的值是 ( )A .6B .21C .156D .231 3.已知ABC 中,30,60A B ∠=∠= ,求证a b <.证明:30,60A B ∠=∠= ,A B ∴∠<∠,a b ∴<,画线部分是演绎推理的是( ). A.大前提 B.小前提 C.结论 D.三段论 4.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为 ( ) A .62n - B .82n - C .62n + D .82n +5.计算1i1i-+的结果是 ( ) A .i B .i - C .2 D .2-6.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中有相关关系的是 ( ) A .①②③ B .①② C .②③7.求135101S =++++ 的流程图程序如右图所示, 其中①应为 ( ) A .101?A =B .101?A ≤C .101?A >D .101?A ≥8.在线性回归模型y bx a e =++中,下列说法正确的是A .y bx a e =++是一次函数B .因变量y 是由自变量x 唯一确定的… ① ② ③C .因变量y 除了受自变量x 的影响外,可能还受到其它因素的影响,这些因素会导致随机误差e 的产生D .随机误差e 是由于计算不准确造成的,可以通过精确计算避免随机误差e 的产生 9.对相关系数r ,下列说法正确的是 ( )A .||r 越大,线性相关程度越大B .||r 越小,线性相关程度越大C .||r 越大,线性相关程度越小,||r 越接近0,线性相关程度越大D .||1r ≤且||r 越接近1,线性相关程度越大,||r 越接近0,线性相关程度越小 10.在独立性检验中,统计量2K 有两个临界值:3.841和6.635;当2K >3.841时,有95%的把握说明两个事件有关,当2K >6.635时,有99%的把握说明两个事件有关,当2K ≤3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算的2K =20.87,根据这一数据分析,认为打鼾与患心脏病之间 ( ) A .有95%的把握认为两者有关 B .约有95%的打鼾者患心脏病 C .有99%的把握认为两者有关 D .约有99%的打鼾者患心脏病11.若定义运算:()()a a b a b b a b ≥⎧⊗=⎨<⎩,例如233⊗=,则下列等式不能成立....的是( ) A .a b b a ⊗=⊗B .()()a b c a b c ⊗⊗=⊗⊗C .222()a b a b ⊗=⊗D .()()()c a b c a c b ⋅⊗=⋅⊗⋅(0c >)12.已知数列{}n a 的前n 项和为n S ,且11a =,2n n S n a =*()n ∈N ,可归纳猜想出n S 的表达式为 ( )A .21n n + B .311n n -+ C .212n n ++ D .22nn +二、填空题:13必过点 .14.在数列{}n a 中,11a =,1112n n n a a a +⎛⎫=+ ⎪⎝⎭,试猜想出这个数列的通项公式为.15.已知,x y ∈R ,若i 2i x y +=-,则x y -= .16.16. 由“以点()00,x y 为圆心,r 为半径的圆的方程为()()22200x x y y r -+-=”可以类比推出球的类似属性是 .NMPCBA三、解答题17.实数m 取什么值时,复数()()22563z m m m m i =-++-是 ⑴实数? ⑵虚数? ⑶纯虚数?18. 已知复数()()21312i i z i-++=-,若21z az b i ++=-,⑴求z ; ⑵求实数,a b 的值.19.已知,x y R +∈,且2x y +>, 求证:1x y +与1yx+中至少有一个小于220. 如图P 是ABC ∆所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点,3AN NB =。

新课标高二数学文同步测试(9)(选修1-2第四章)

新课标高二数学文同步测试(9)(选修1-2第四章)

普通高中课程标准实验教科书——数学选修2—1(文科)[人教版]高中学生学科素质训练新课标高二数学同步测试(9)(1-2第四章)说明:本试卷分第一卷和第二卷两部分,第一卷74分,第二卷76分,共150分;答题时间120分钟。

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。

1.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为()A.26 B.24 C.20 D.192.有一堆形状、大小相同的珠子,其中只有一粒重量比其它的轻,某同学经过思考,他说根据科学的算法,利用天平,三次肯定能找到这粒最轻的珠子,则这堆珠子最多有几粒()A.21 B.24 C.27 D.303.“对于大于2的整数,依次从2~n 检验是不是n的因数,即整除n的数。

若有这样的数,则n不是质数;若没有这样的数,则n是质数”,对上面流程说法正确的是()A.能验证B.不能验证C.有的数可以验证,有的不行D.必须依次从2~n-1检验4.“韩信点兵”问题:韩信是汉高祖手下大将,他英勇善战,谋略超群,为建立汉朝立下不朽功勋。

据说他在一次点兵的时候,为保住事秘密,不让敌人知道自己里的事实力,采用下述点兵方法:先令士兵1~3报数,结果最后一个士兵报2;又令士兵1~5报数,结果最后一个士兵报3;又令士兵1~7报数,结果最后一个士兵报4;这样韩信很快算出自己士兵的总数。

士兵至少有多少人()A.20 B.46 C.53 D.395.注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递,则单如图,小圆圈表示网络的结点,结点之间的连线表示他们有网线相连,连线标位时间内传递的最大信息量为()A.26 B.24 C.20 D.196.“烧开水泡壶茶喝”是我国著名数学家华罗庚教授作为“统筹法”的引子,虽然是生活中的小事,但其中有不少的道理。

高二数学人教A版选修1-2试题和答案

高二数学人教A版选修1-2试题和答案

模块综合测评(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.已知复数z1=2+i,z2=1+3i,则复数z=在复平面内所对应的点位于() 第二象限A.第一象限B.第二象限C.第三象限D.第四象限第四象限解析:复数z=i, z对应的点的坐标为位于第四象限.答案:D 2.等于() A. B.C. D.1 解析:∵i, ∴.答案:B 3.下列说法错误的是() 球的体积与它的半径具有相关关系A.球的体积与它的半径具有相关关系B.计算误差、测量误差都将影响到残差的大小计算误差、测量误差都将影响到残差的大小C.在回归分析中R2的值越接近于1,说明拟合效果越好说明拟合效果越好D.在独立性检验中,K2的观测值k越大,说明确定两个分类变量有关系的把握越大说明确定两个分类变量有关系的把握越大 解析:A中球的体积与球的半径是函数关系,不是相关关系.B,C,D都正确.答案:A 4.在△ABC中,=a,=b,且a·b>0,则△ABC是() 锐角三角形A.锐角三角形B.直角三角形直角三角形C.钝角三角形钝角三角形D.等腰直角三角形等腰直角三角形cos(ππ-∠ABC)>0, 解析:由于a·b>0,即|a||b|cos(即cos∠ABC<0.又∵0<∠ABC<π, ∴∠ABC是钝角.∴△ABC是钝角三角形.答案:C 5.设回归方程=7-3x,当变量x增加两个单位时() 个单位A.y平均增加3个单位B.y平均减少3个单位个单位C.y平均增加6个单位个单位D.y平均减少6个单位个单位解析:由回归方程可知,y与x是负相关,x每增加2个单位,y平均减少6个单位.答案:D 6.在如图所示的程序框图中,输入a=,b=,则输出c=() A. B.C.1D.0 故输出c=|tan 解析:由程序框图知,当输入a=,b=时,tan a=-,tan b=-,则tan a>tan b.故输出a|=.答案:A 7.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,第100项为() A.10B.14 C.13D.100 解析:由于1有1个,2有2个,3有3个,…,则13有13个,所以1~13的总个数为=91,故第100个数为14答案:B 8.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知:四面体S-ABC的四个面的面积分别为S1,S2,S3,S4,内切球的半径为r,四面体S-ABC 的体积为V,则r=() A.B.C.D.解析:设四面体S-ABC的内切球球心为O,那么由V S-ABC=V O-ABC+V O-SAB+V O-SAC+V O-SBC, 即V=S1r+S2r+S3r+S4r, 可得r=.答案:C 9.等于() A.2i B.-1+i C.1+i D.-1 解析:∵=i, ∴=i2014=(i2)1007=-1.答案:D 10.已知两条直线m,n,两个平面α,β.给出下面四个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊂α,n⊂β⇒m∥n;③m∥n,m∥α⇒n∥α;④α∥β,m∥n,m⊥α⇒n⊥β其中正确命题的序号是() ②④A.①③B.②④C.①④D.②③②③解析:由α∥β,m⊂α,n⊂β⇒m∥n或m,n异面, ∴②错;由m∥n,m∥α⇒n∥α或n⊂α, ∴③错.故选C.答案:C 11.已知f(x+y)=f(x)+f(y)且f(1)=2,则f(1)+f(2)+…+f(n)不等于() A.f(1)+2f(1)+…+nf(1) B.fC.n(n+1) D.n(n+1)f(1) 解析:由f(x+y)=f(x)+f(y)且f(1)=2,知f(2)=f(1)+f(1)=2f(1),f(3)=f(2)+f(1)=3f(1),…,f(n)=nf(1), ∴f(1)+f(2)+…+f(n)=(1+2+…+n)f(1)=f(1)=n(n+1).答案:D 12.如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件,在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为() A.15B.16C.17D.18 解析:方法一:若AB之间不相互调动, 则A调出10件给D,B调出5件给C,C再调出1件给D,即可满足调动要求,此时共调动的件次n=10+5+1=16; 若AB之间相互调动,则B调动4件给C,调动1件给A,A调动11件给D,此时共调动的件次n=4+1+11=16.所以最少调动的件次为16,故应选B. 方法二:设A调动x件给D(0≤x≤10),则调动了(10-x)件给B,从B调动了5+10-x=(15-x)件给C,C调动出了15-x-4=(11-x)件给D,由此满足调动需求,此时调动件次n=x+(10-x)+(15-x)+(11-x)=36-2x,当且仅当x=10时,n取得最小值16,故应选B.答案:B 二、填空题(本大题共4小题,每小题4分,共16分) 13.已知复数z=(m∈R,i是虚数单位)是纯虚数,则m的值是的值是 .解析:z=, ∴=0,且≠0.∴m=-1答案:-1 14.按如图所示的程序框图运算,若输入x=8,则输出k=.解析:输入x=8时,k=0, 第一次循环,x=2×8+1=17,k=1,x<115; 第二次循环,x=2×17+1=35,k=2,x<115; 第三次循环,x=2×35+1=71,k=3,x<115; 第四次循环,x=2×71+1=143,k=4,x>115, 输出x=143,k=4.答案:4 15.观察下列式子1+,1+,1+,…,则可归纳出则可归纳出 .解析:根据三个式子的规律特点进行归纳可知,1++…+(n∈N*).答案:1++…+(n∈N*) 16.已知x,y取值如下表:x0 1 4 5 6 8 y 1.3 1.8 5.6 6.1 7.4 9.3 从所得的数点图分析可知,y 与x 线性相关,且=0.95x+,则的值为的值为 . 解析:×(0+1+4+5+6+8)=4, ×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25, 又=0.95x+必过样本中心点(),即(4,5.25),于是有5.25=0.95×4+a ,解得a=1.45.答案:1.45 三、解答题(本大题共6小题,共74分) 17.(12分)调查某桑场采桑员和患桑毛虫皮炎病的情况,结果如下表:采桑采桑 不采桑不采桑 总计总计患者人数患者人数 18 12 健康人数健康人数 5 78 总计总计利用独立性检验估计“患桑毛虫皮炎病与采桑”是否有关,并求出认为两者有关系犯错误的概率是多少. (注:K 2=,其中n=a+b+c+d.P (K 2≥k ) 0.005 0.001 k7.879 10.828 ) 解:因为a=18,b=12,c=5,d=78,所以a+b=30,c+d=83,a+c=23,b+d=90,n=113, 所以K 2的观测值k==≈39.6>10.828.所以有99.9%的把握认为“患桑毛虫皮炎病与采桑”有关系,认为两者有关系会犯错误的概率是0.1%.18.(12分)已知x 2-(3-2i)x-6i =0,i 为虚数单位. (1)若x ∈R ,求x 的值; (2)若x ∈C ,求x 的值.分析:(1)利用复数相等的充要条件可直接求解;(2)中要求x 的值,就应先设出x 的代数形式再利用复数相等的充要条件求解. 解:(1)当x ∈R 时,由已知方程, 得(x 2-3x )+(2x-6)i =0, 则解得x=3.(2)当x∈C时,设x=a+b i(a,b∈R),将其代入已知方程, 整理,得(a2-b2-3a-2b)+(2ab-3b+2a-6)i=0.则解得故x=-2i或x=3.19.(12分)已知△ABC的三边长为a,b,c,且其中任意两边长均不相等.若成等差数列.(1)比较的大小,并证明你的结论; (2)求证角B不可能是钝角.(1)解:大小关系为.证明如下: 要证,只需证∵a,b,c>0,∴只需证b2<ac.∵成等差数列, ∴≥2.∴b2≤ac.又△ABC的任意两边长均不相等,即a,b,c任意两数不相等,∴b 2<ac成立故所得大小关系正确,即.(2)证明:假设角B是钝角,则cos B<0, 而cos B=>0.这与cos B<0矛盾,故假设不成立, 即角B不可能是钝角.20.(12分)已知f(x)=,且f(1)=log162,f(-2)=1.(1)求函数f(x)的表达式; (2)已知数列{x n}的项满足x n=[1-f(1)]·(1)]·[1[1-f(2)]·…·[1-f(n)],试求x1,x2,x3,x4; (3)猜想{x n}的通项.解:(1)把f(1)=log162=,f(-2)=1代入f(x)=,得整理,得解得所以f(x)=(x≠-1).(2)x1=1-f(1)=1-, x2=, x3=, x4=(3)由(2),得x1=,x2=,x3=,x4=,可变形为,…,从而可归纳出{x n}的通项x n=.21.(12分)某市公交车票价按下列规则定价:(1)5公里以内(包括5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算).已知相邻两个公共汽车站之间相距约1公里,如果沿途(包括起点站和终点站)共有16个汽车站,请设计一个算法求出某人坐车x公里所用的票价,画出程序框图.解:依题意得,某人坐车x公里所用的票价y=程序框图如下: 22.(14分)设△ABC的两个内角A,B所对的边分别为a,b,复数z1=a+b i,z2=cos A+icos B,若复数z1·z2为纯虚数,试判断△ABC的形状,并说明理由.解:△ABC为等腰三角形或直角三角形.理由:∵z1=a+b i,z2=cos A+icos B, ∴z1z2=(a cos A-b cos B)+i(a cos B+b cos A).又∵z1z2为纯虚数, ∴由①及正弦定理, 得sin A cos A=sin B cos B, 即sin 2A=sin 2B.∵A,B为△ABC的内角, ∴0<2A<2π,0<2B<2π,且2A+2B<2π∴2A=2B或2A=π-2B, 即A=B或A+B=, 也就是A=B或C=.由②及正弦定理,得sin A cos B+sin B cos A≠0, 即sin(A+B)≠0∵A,B是△ABC的内角, ∴0<A+B<π.∴sin(A+B)≠0成立.综上所述,知A=B或C=.∴△ABC为等腰三角形或直角三角形.。

2012高二下学期期中文科数学测试题(选修1-2、选修4-4综合测试题)

2012高二下学期期中文科数学测试题(选修1-2、选修4-4综合测试题)

依兰县高级中学2011-2012学年度下学期期中考试高二数学试题(文科)考试时间120分钟,满分150分一、选择题(共12道题,每题5分,共60分)1.复数设i 为虚数单位,则5-i1+i=( )A .-2-3iB .-2+3iC .2-3iD .2+3i 2.已知x 与y 之间的一组数据:x0 1 2 3 y1357则y 与x 的线性回归方程为∧∧∧+=a x b y 必过点( ) A .(2,2) B. (1.5 ,4) C.(1.5 ,0) D.(1,2)3.实数系的结构图为右图所示其中1、2、3三个方格中的内容分别为( )A. 有理数、整数、零B. 有理数、零、整数C. 零、有理数、整数D. 整数、有理数、零4.用反证法证明命题“220,0(a b a a +=∈若则、b 全为、b R)”,其反设正确的是( )A. 0a b 、至少有一个为B. 0a b 、至少有一个不为C. 0a b 、全不为D. 0a b 、中只有一个为5.若复数i a a a z )3()32(2++-+=为纯虚数(i 为虚数单位),则实数a 的值是( )A .3-B .3-或1C .3 或1-D .16.设有一个回归方程为y=2-3x ,变量x 增加1个单位时,则y 平均( ) A.增加2个单位 B.减少2个单位 C.增加3个单位 D.减少3个单位 7.设点P 对应的复数为i 33+-,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标可能为( ) A. (3,π43) B. (3,π45) C. (23,π43) D. (23,π45)8. 极坐标系中,以(9,3π)为圆心,9为半径的圆的极坐标方程为( ) A. )(θπρ-3cos 18= B. )(θπρ-3cos 18-=C. )(θπρ-3sin 18= D. )(θπρ-3cos 9= 9. 曲线⎩⎨⎧==θθsin 4cos 5y x (θ为参数)的焦距是 ( ) A.3 B.6 C. 8 D. 1010.在同一坐标系中,将曲线x y 3sin 2=变为曲线x y sin =的伸缩变换是( )⎪⎩⎪⎨⎧==''23.A y y x x ⎪⎩⎪⎨⎧==y y x x 23.B ''⎪⎩⎪⎨⎧==y y x x 213.C '' ⎪⎩⎪⎨⎧==''213.D yy x x 11.若实数y x 、 满足:221169x y +=,则x+y+10的取值范围是( ) A .[5,15] B .[10,15] C .[ -15,10] D .[ -15,35] 12.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即 [k]={5n+k 丨n ∈Z},k=0,1,2,3,4。

高中数学选修4-4习题(含答案)

高中数学选修4-4习题(含答案)

统考作业题目——4-46.21.在平面直角坐标系xOy 中,直线l 的参数方程为12,(2x t t y t =+⎧⎨=-⎩为参数),以原点O 为极点,以x 轴非负半轴为极轴建立极坐标系,两坐标系取相同的长度单位。

曲线C 的极坐标方程为 22cos 4sin 40ρρθρθ+++=. (1)求l 的普通方程和C 的直角坐标方程;(2)已知点M 是曲线C 上任一点,求点M 到直线l 距离的最大值.2.已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同。

直线的极坐标方程为:,点,参数.(I )求点轨迹的直角坐标方程; (Ⅱ)求点到直线距离的最大值.1、【详解】(1)12,2x t y t=+⎧⎨=-⎩10x y ∴+-= 因为222,cos ,sin x y x y ρρθρθ=+==,所以222440x y x y ++++=,即22(1)(2)1x y +++= (2)因为圆心(1,2)--到直线10x y +-=距离为222=, 所以点M 到直线l 距离的最大值为2222 1.r +=+ 2、解:(Ⅰ)设,则,且参数,消参得:所以点的轨迹方程为(Ⅱ)因为所以所以,所以直线的直角坐标方程为法一:由(Ⅰ)点的轨迹方程为圆心为(0,2),半径为2.,点到直线距离的最大值等于圆心到直线距离与圆的半径之和, 所以点到直线距离的最大值.法二:当时,,即点到直线距离的最大值为.6.33.在平面直角坐标系xOy 中,已知曲线的参数方程为(为参数),曲线的参数方程为(,t 为参数).(1)求曲线的普通方程和曲线的极坐标方程;(2)设P 为曲线上的动点,求点P 到上点的距离的最小值,并求此时点P 的坐标.4.在直角坐标系xOy 中曲线1C 的参数方程为cos 3x y αα=⎧⎪⎨=⎪⎩ (α为参数,以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin 224πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.3、【详解】 (1)对曲线:,,∴曲线的普通方程为.对曲线消去参数可得且∴曲线的直角坐标方程为.又,从而曲线的极坐标方程为。

高二数学选修1-2模块测试题一

高二数学选修1-2模块测试题一

高二数学选修1-2模块测试题一参考公式或数据:1122211()()ˆ()ˆˆnni i i ii i n ni i i i x x y y x y nx yb x x x nxay bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑一、选择题:每题4分,共64分。

1、由数列1,10,100,1000,……猜测该数列的第n 项可能是( )。

A .10n ;B .10n-1;C .10n+1;D .11n. 2.数列2,5,11,20,,47,x …中的x 等于 ( )A .28B .32C .33D .273. 设1234,23z i z i =-=-+,则12z z -在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限 4.复数534+i的共轭复数是( ) A .34-i B .3545+i C .34+iD .3545-i 5.0=a 是复数)(R b a bi a z ∈+=,为纯虚数的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件 6则A .(2,2) B .(1,2) C .(1.5,0)D .(1.5,4)7.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是 ( ) A .假设三内角都不大于60度; B .假设三内角都大于60度; C .假设三内角至多有一个大于60度; D .假设三内角至多有两个大于60度 8.下列表述正确的是( )①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理。

A .①②③;B .②③④;C .②④⑤;D .①③⑤。

9.下面几种推理是类比推理的是( )A..两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线的同旁内角,则∠A +∠B =1800B .由平面三角形的性质,推测空间四边形的性质C .某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.D .一切偶数都能被2整除,1002是偶数,所以1002能被2整除.10、若大前提是:任何实数的平方都大于0,小前提是:a R ∈,结论是:20a >,那么这个演绎推理出错在:A 、大前提B 、小前提C 、推理过程D 、没有出错11.已知数列1121231234,,,,2334445555++++++ 则这个数列的第100项为: A 、49 B 、49.5 C 、50 D 、50.5 12.黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第五个图案中有白色地面砖( )块.A.21B.22C.20D.2313.根据右边程序框图,当输入10时,输出的是( ) A .12 B .19 C .14.1 D .-3014、若(m 2-m )+(m 2-3m +2)i 是纯虚数,则实数m 的值为( ) (A )1 (B )1或2 (C )0 (D )-1, 1, 2 二、填空题:每题4分,共24分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参考公式或数据:一、选择题(每小题4分,共48分)1.设i 为虚数单位,则复数 5-i1+i=( )A .-2-3iB .-2+3iC .2-3iD .2+3i 2.若直线的参数方程为12()23x tt y t=+⎧⎨=-⎩为参数,则直线的斜率为( )A .23B .23- C .32D .32-3.实数系的结构图为右图所示其中1、2、3三个方格中的内容分别为( ) A. 有理数、整数、零 B. 有理数、零、整数 C. 零、有理数、整数 D. 整数、有理数、零4.为了考察高中生学习语文与数学之间的关系,在某中学学生中随机地抽取了610名学生得到如下列表:由表中数据计算知2K 的观测值k ≈4.326.有_______的把握认为高中生的语文与数学成绩有关。

A .5% B .1% C .95% D .99%) < >= D.不能确定6.曲线⎩⎨⎧==θθsin 4cos 5y x (θ为参数)的焦距是 ( )A.3B.6C. 8D. 10 7.极坐标系中,以(9,3π)为圆心,9为半径的圆的极坐标方程为( ) A. )(θπρ-3cos 18= B. )(θπρ-3cos 18-=C. )(θπρ-3sin 18= D. )(θπρ-3cos 9=8.设点P 对 应的复数为i 33+-,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标可能为( )A. (3,π43) B. (3,π45) C. (23,π43) D. (23,π45)9.定义某种运算⊗,S a b =⊗的运算原理如右图:则式子5324⊗+⊗=( )A.31B.18C.16D.1410.在同一坐标系中,将曲线x y 3sin 2=变为曲线x y sin =的伸缩变换是( )⎪⎩⎪⎨⎧==''23.A y y x x ⎪⎩⎪⎨⎧==y y x x 23.B ''⎪⎩⎪⎨⎧==y y x x 213.C '' ⎪⎩⎪⎨⎧==''213.D yy x x 11.若实数y x 、 满足:221169x y +=,则x + y + 10的取值范围是( )A .[5,15]B .[10,15]C .[ -15,10]D .[ -15,35] (图9) 12.若z C ∈且221z i +-=,则12z i --的最小值是( ) A. 5 B. 4 C. 3 D. 2 二、填空题(每题4分,共16分)13.计算:12⨯|3+4i|-10⨯(i 2010+i 2011+i 2012+i 2013)=______ . (其中i 为虚数单位) 14.不等式01312<--x 的解集是 15.曲线 8cos 7sin 62222=-θρθρ 关于直线4πθ=对称的曲线的极坐标方程是 .16.观察下列各式:112>,111123++>, 111111312345672++++++>, 111122315++++>,…. 由此归纳,得出的一般结论是 .答 题 纸一、 选择题(每小题4分,共48分)二、填空题(每小题4分,共16分)13. ;14. ; 15. ;16. ; 三、解答题(共56分)17. (本题满分6分)已知复数1z i =-(i 是虚数单位)(1)计算2z ; (2)若233z az b i ++=-,求实数a ,b 的值.18.(本题满分8分)把下列的极坐标方程和参数方程化为直角坐标方程(并说明对应的曲线): ○14cos 2sin ρθθ=-+ ○22sin cos 7x y θθ=⎧⎨=-⎩(θ为参数)19. (本题满分8分)已知,,a b c 是全不相等的正实数,求证3>-++-++-+ccb a b bc a a a c b 。

20.(本题满分10分)在平面直角坐标系xOy 中,圆C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩(θ为参数),直线l 经过点(2,2)P ,倾斜角3πα=。

(1)写出圆的标准方程和直线l 的参数方程; (2)设l 与圆C 相交于A 、B 两点,求||||PA PB ⋅的值。

21、(本题满分12分)1221ni i i i i x y n x yb x n x==-=-∑∑x b y aˆˆ-=天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,剩下的2组数据用于回归方程检验.(1)若选取12月1日和12月5日这两日的数据进行检验,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程∧∧∧+=a x b y ;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠? (3)请预测温差为14℃的发芽数。

回归直线方程参考公式:22、(本题满分12分)在直角坐标系xoy 中,直线l 的方程为40x y -+=,曲线C 的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数) (Ⅰ)已知在极坐标(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)2π,判断点P 与直线l 的位置关系;(Ⅱ)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最值;(Ⅲ)请问是否存在直线m , m ∥l 且m 与曲线C 的交点A 、B 满足43=∆AOB S ;若存在请求出满足题意的所有直线方程,若不存在请说明理由。

答案一、选择题(每小题4分,共48分)二、填空题(每小题4分,共16分) 13. 60 ; 14. 11(,)62; 15. 22226cos 7sin 8ρθρθ-= ; 16. 111123212nn++++>-; 三、解答题17.解:⑴2-2z i =………………………………………………………………………………2分⑵()()21133i a i b i -+++=-,得()21a b a i i +++=- 解得1;4a b =-=……6分18.(1)51y 2x 22=-++)()(……………………………………………………3分表示的曲线为圆。

…………………………………………………………4分(2)6-x y 2-= ()(1x 1-≤≤…………………………………………………7分表示的曲线为抛物线的一部分。

……………………………………………8分19.∵ a ,b ,c 全不相等∴ a b与b a ,a c 与c a ,b c 与cb 全不相等. ∴ 2,2,2b a c a c b aba cb c+>+>+>…………………………………………………………..4分三式相加得6b c c a a b aabbcc+++++>∴ (1)(1)(1)3b c c a a b aabbcc+-++-++->即 3b c a a c b a b c abc+-+-+-++>.………………………………………………………8分20.(Ⅰ)圆的标准方程为2216x y +=. 直线l 的参数方程为2cos 32sin 3x t y t ππ⎧=+⎪⎪⎨⎪=+⎪⎩,即12222x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)……………… 5分(Ⅱ)把直线的方程12222x t y ⎧=+⎪⎪⎨⎪=+⎪⎩代入2216x y +=, ……………… 6分得221(2)(2)162t ++=,21)80t t +-=, ………… 8分 所以128t t =-,即=8PA PB ⋅. ……………… 10分 21.(1)由数据求得,12,27x y ==, ……………… 2分由公式求得.b ^=52,a ^=-3. ………………… 4分所以y 关于x 的线性回归方程为y ^=52x -3. ………………… 6分 (2)当x =10时,y ^=52×10-3=22,|22-23|<2;当x =8时,y ^=52×8-3=17,|17-16|<2. 所以该研究所得到的线性回归方程是可靠的.………………… 10分 (3)当x=14时,有y ^=52x -3=35-3=32 所以当温差为14℃的发芽数约为32颗。

……………… 12分 22.解:(I )把极坐标系下的点(4,)2π化为直角坐标,得P (0,4)。

……2分因为点P 的直角坐标(0,4)满足直线l 的方程40x y -+=, 所以点P 在直线l 上. ………………………4分(II )因为点Q 在曲线C 上,故可设点Q的坐标为,sin )αα, ……5分从而点Q到直线l的距离为2cos()4)6dπαπα++===++,…6分由此得,当cos()16πα+=-时,d当cos()16πα+=时,d取得最大值,且最大值为……8分(Ⅲ)设l平行线m方程:x-y+n = 0 ……9分243n-32AB=,由弦长公式得椭圆与直线方程联立再设O到直线m的距离为d,则2nd=……………10分2n43n-3221dAB2143S2AOB∙=∙==∆1n3n±=±=或经验证均满足题意所以满足题意直线m有4条,方程为:,,01y-x3y-x=±=±12分。

相关文档
最新文档