动态规划解0-1规划

合集下载

动态规划与回溯法解决0-1背包问题

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。

原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。

但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。

判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。

0 1规划求解方法

0 1规划求解方法

0 1规划求解方法0-1规划(0-1 integer programming)是一种数学优化问题,它的模型形式是在一组约束条件下,找到一组0-1变量的取值,使得目标函数取得最小或最大值。

在0-1规划中,变量的取值只能是0或1,不能是其它实数或整数。

0-1规划在实际生活和工程中有广泛的应用,例如资源分配、排产计划、物流运输等等。

0-1规划的求解方法包括暴力搜索、分支定界法、动态规划和启发式算法等。

下面将对这几种求解方法进行详细介绍。

1. 暴力搜索法:暴力搜索法是最简单也是最直观的求解0-1规划的方法。

其基本思想是穷举所有可能的解,并计算出每个解对应的目标函数值,然后找出最优解。

虽然暴力搜索法可以得到最优解,但是随着问题规模的增大,搜索空间呈指数级增长,计算复杂度非常高,不适用于大规模问题。

2. 分支定界法:分支定界法是一种基于树状结构的搜索算法,用于求解0-1规划问题。

它根据目标函数值的上下界对搜索空间进行限制,并逐步缩小搜索范围,直到找到最优解为止。

分支定界法的核心思想是通过分支操作将问题分解为更小的子问题,然后利用界限函数对子问题进行剪枝,从而减少搜索的时间复杂度。

3. 动态规划:动态规划是一种通过拆分问题为更小的子问题,并解决子问题的方法,适用于满足最优子结构性质的问题。

0-1规划满足最优子结构性质,因此可以使用动态规划进行求解。

动态规划的核心思想是将原问题拆解为多个子问题,然后通过递推关系式计算每个子问题的最优解,并用表格记录中间结果,最终得到原问题的最优解。

动态规划方法具有较高的求解效率,但对于大规模问题的计算复杂度依然很高。

4. 启发式算法:启发式算法是一种基于经验和启发知识的搜索算法,通过指导搜索方向和策略来减少搜索空间并找到近似最优解。

启发式算法的求解过程类似于人类的思维方式,它通过不断调整搜索方向和策略,试图找到最优解。

常用的启发式算法包括遗传算法、模拟退火算法、蚁群算法等。

启发式算法不保证能找到最优解,但在大规模问题和复杂问题中具有较好的求解能力。

一种求解分组0—1背包问题的动态规划法

一种求解分组0—1背包问题的动态规划法

l 次背 包 问题 L 、 目标 0 二 6多 ] —1 背包 问题 [ 、 维 7多 ]
全 部取完 并且 总价值 最 大. 选择 装 人 背 包 的 物 品 在
* 收 稿 日期 :0 11—1 2 1 —23 基 金 项 目 ; 南 省 科 技计 划 资 助 项 目(0 1 J0 6 湖 2 1F 3 6 ) 作 者 简介 ; 亚 军 ( 9 5 )男 , 南 永 州人 , 教 授 , 士 蒋 1 7一 , 湖 副 博
1 引 言
0 —1背 包 问题 属 于 NP完 全 问 题 , 以 表 述 可 为: 已知 个 物 品和一 个 承 重量 为 W 的背 包 , 个 每 物品 i 的重 量为 W , 价值 为 ( 一 1 2 … , , , , ) 现要
术 意义.
本文将 传统 的 0 l 一 背包 问题扩展 为 分组 0 1 —
E ma : jl 1 3 c m - i j a @ 6 .o ly l

7 ~ 6
经 济 数 学
第 2 卷 9
时 , 每个 物 品只有两种 选择 , 对 即装入 背包或不装 入
p —l , 幻,



背包 . 能将物 品装入 背包多 次 , 不 也不 能只装入 部分
为 了用动 态规划 法求解 分组 。 1 一 背包 问题 , 可
M [ ,]满足相应 的最 大价值 :
1 )当 z 1时( = 对应 (,)一 ( ,) , 知对 于 J 11) 易
任 意 七 由公式 ( ) 出的 M( [ ,] 足最 大价值 . , 1给 ” 1七 满
当Z =2时( 对应 (,) ( ,) , = 2 1 ) 易知对 于任 意

0_1背包问题的多种解法

0_1背包问题的多种解法

、问题描述0/1背包问题:现有n种物品,对1<=i<=n,已知第i种物品的重量为正整数W,价值为正整数V,背包能承受的最大载重量为正整数V,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过W且总价值尽量大。

(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)、算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:nw i x i Wi i ⑴X i {0,1(1 i n)nmax v i x (2)i 1于是,问题就归结为寻找一个满足约束条件( 1),并使目标函数式(2)达到最大的解向量首先说明一下0-1背包问题拥有最优解假设(X1, X2,X3,……,X n)是所给的问题的一个最优解,则 (X2,X3,……,X n)是下面问题的一个最优解:nWi 2X i {0,1}(2W1X1 maxi n) inv i X。

如果不是的话,设(y2> y3>....2..,y n)是这个问题的一个最优解,则n nV i y i V i X ii 2 i 2,且 W1X1n nW i y i W。

因此,V1X1 V i y ii 2 i 2n nV1X1V j X VX i,这说明i 2 i 1(X1,y2,y3, ....... , y n)是所给的0-1背包问题比(X1,X2,X3, ............ , X n)更优的解,从而与假设矛盾穷举法:用穷举法解决0-1背包问题,需要考虑给定n个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。

由于精品(X1, X2,X3,……X n)。

程序过于简单,在这里就不再给出,用实例说明求解过程。

下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。

(a)四个物品和一个容量为10的背包(b)用回溯法求解0-1背包问题的过程递归法:在利用递归法解决0-1背包问题时,我们可以先从第n个物品看起。

动态规划求解01背包问题

动态规划求解01背包问题

动态规划求解01背包问题问题给定n种物品和⼀个背包,物品(1<=i<=n)重量是w I ,其价值v i,背包容量为C,对每种物品只有两种选择:装⼊背包和不装⼊背包,即物品是不可能部分装⼊,部分不装⼊。

如何选择装⼊背包的物品,使其价值最⼤?想法该问题是最优化问题,求解此问题⼀般采⽤动态规划(dynamic plan),很容易证明该问题满⾜最优性原理。

动态规划的求解过程分三部分:⼀:划分⼦问题:将原问题划分为若⼲个⼦问题,每个⼦问题对应⼀个决策阶段,并且⼦问题之间具有重叠关系⼆:确定动态规划函数:根据⼦问题之间的重叠关系找到⼦问题满⾜递推关系式(即动态规划函数),这是动态规划的关键三:填写表格:设计表格,以⾃底向上的⽅式计算各个⼦问题的解并填表,实现动态规划过程。

思路:如何定义⼦问题?0/1背包可以看做是决策⼀个序列(x1,x2,x3,…,xn),对任何⼀个变量xi的决策时xi=1还是xi=0. 设V(n,C)是将n个物品装⼊容量为C的背包时背包所获得的的最⼤价值,显然初始⼦问题是将前i个物品装如容量为0的背包中和把0个物品装⼊容量为j的背包中,这些情况背包价值为0即V(i,0)=V(0,j)=0 0<=i<=n, 0<=j<=C接下来考虑原问题的⼀部分,设V(I,j)表⽰将前i个物品装⼊容量为j的背包获得的最⼤价值,在决策xi时,已经确定了(x1,x2,…,xi-1),则问题处于下列两种情况之⼀:1. 背包容量不⾜以装⼊物品i,则装⼊前i-1个物品的最⼤价值和装⼊前i个物品最⼤价值相同,即xi=0,背包价值没有增加2. 背包容量⾜以装⼊物品i,如果把物品i装⼊背包,则背包物品价值等于把前i-1个物品装⼊容量为j-wi的背包中的价值加上第i个物品的价值vi;如果第i个物品没有装⼊背包,则背包价值等于把前i-1个物品装⼊容量为j的背包中所取得的价值,显然,取⼆者最⼤价值作为把物品i装⼊容量为j的背包中的最优解,得到如下递推公式为了确定装⼊背包中的具体物品,从V(n,C)的值向前推,如果V(n,C)>V(n-1,C),则表明第n个物品被装⼊背包中,前n-1个物品被装⼊容量为C-wn的背包中;否则,第n个物品没有被装⼊背包中,前n-1个物品被装⼊容量为C的背包中,依次类推,直到确认第⼀个物品是否被装⼊背包中代码C++实现1. // dp_01Knapsack.cpp : 定义控制台应⽤程序的⼊⼝点。

用动态规划法求解0-1背包问题

用动态规划法求解0-1背包问题

0 — 1背包 问题 的解 决 方法 多 种 多样 ,常用 的算法 有贪 心算 法 、 回溯法 、 分 枝一限界法 等 。本文 采用 动态
规 划 原理 来 求 解 0 一 l背 包 问题 也不 失 为 一 种 简单 明 了、 清 晰 易懂 的方法 。 参考 文献 :
[ 1 ] 王 晓东. 计算机 算法设计与分析 [ M] . 北京: 电子 工业 出版社
w h i l e( m【 i Ⅱ c 】 = = m[ i 一 1 ] [ c ] ) i - - ; w h i l e( i > 0 ) { j = i 一 1 ; w h i l e( m『 j 1 [ c ] 一 m [ j 】 【 c ] != v i i - 1 ] & &- j > 0 )
[ i ] [ j 】 是 下 面两 个 量 的最 大值 : m[ i + 1 ] [ j ] 和 m【 i + 1 】 【 j — w [ i 】
] + V 嘲


f o r ( j = 0 ; j < = c ; j + + ) p r i n t f ( ” %3 d . t , m f i 1 【 j 】 ) ; p i f n f ( ” \ I 1 ” ) ;}
等于 v 『 n 1 ;
k n a p s a c k ( ) ;d i s p O ; p r i n t f ( ” 最 大价值= %d \ n ” , m 【 n ] [ c 】 ) ;
o f r ( i _ 0 ; i < = n ; i + + )
②当前的背包容量 J 大于等于物品重量 w [ i ] 时, m
2 0 07 .
i n t n , C , w [ M A X ] , v [ MA X ] , m [ MA x】 [ MA x 】 = { 0 } ; v o i d k n a p s a c k 0 {i n t i ;

0-1背包问题-贪心法和动态规划法求解

0-1背包问题-贪心法和动态规划法求解

实验四“0-1”背包问题一、实验目的与要求熟悉C/C++语言的集成开发环境;通过本实验加深对贪心算法、动态规划算法的理解。

二、实验内容:掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。

三、实验题1.“0-1”背包问题的贪心算法2.“0-1”背包问题的动态规划算法说明:背包实例采用教材P132习题六的6-1中的描述。

要求每种的算法都给出最大收益和最优解。

设有背包问题实例n=7,M=15,,(w0,w1,。

w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。

,p6)=(10,5,15,7,6,18,3)。

求这一实例的最优解和最大收益。

四、实验步骤理解算法思想和问题要求;编程实现题目要求;上机输入和调试自己所编的程序;验证分析实验结果;整理出实验报告。

五、实验程序// 贪心法求解#include<iostream>#include"iomanip"using namespace std;//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ); //获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u);int main(){float w[7]={2,3,5,7,1,4,1}; //物品重量数组float p[7]={10,5,15,7,6,18,3}; //物品收益数组float avgp[7]={0}; //单位毒品的收益数组float x[7]={0}; //最后装载物品的最优解数组const float M=15; //背包所能的载重float ben=0; //最后的收益AvgBenefitsSort(avgp,p,w);ben=GetBestBenifit(p,w,x,M);cout<<endl<<ben<<endl; //输出最后的收益system("pause");return 0;}//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ) {//求出物品的单位收益for(int i=0;i<7;i++){arry_avgp[i]=arry_p[i]/arry_w[i];}cout<<endl;//把求出的单位收益排序,冒泡排序法int exchange=7;int bound=0;float temp=0;while(exchange){bound=exchange;exchange=0;for(int i=0;i<bound;i++){if(arry_avgp[i]<arry_avgp[i+1]){//交换单位收益数组temp=arry_avgp[i];arry_avgp[i]=arry_avgp[i+1];arry_avgp[i+1]=temp;//交换收益数组temp=arry_p[i];arry_p[i]=arry_p[i+1];arry_p[i+1]=temp;//交换重量数组temp=arry_w[i];arry_w[i]=arry_w[i+1];arry_w[i+1]=temp;exchange=i;}}}}//获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u) {int i=0; //循环变量ifloat benifit=0; //最后收益while(i<7){if(u-arry_w[i]>0){arry_x[i]=arry_w[i]; //把当前物品重量缴入最优解数组benifit+=arry_p[i]; //收益增加当前物品收益u-=arry_w[i]; //背包还能载重量减去当前物品重量cout<<arry_x[i]<<" "; //输出最优解}i++;}return benifit; //返回最后收益}//动态规划法求解#include<stdio.h>#include<math.h>#define n 6void DKNAP(int p[],int w[],int M,const int m); void main(){int p[n+1],w[n+1];int M,i,j;int m=1;for(i=1;i<=n;i++){m=m*2;printf("\nin put the weight and the p:");scanf("%d %d",&w[i],&p[i]);}printf("%d",m);printf("\n in put the max weight M:");scanf("%d",&M);DKNAP(p,w,M,m);}void DKNAP(int p[],int w[],int M,const int m) {int p2[m],w2[m],pp,ww,px;int F[n+1],pk,q,k,l,h,u,i,j,next,max,s[n+1];F[0]=1;p2[1]=w2[1]=0;l=h=1;F[1]=next=2;for(i=1;i<n;i++){k=l;max=0;u=l;for(q=l;q<=h;q++)if((w2[q]+w[i]<=M)&&max<=w2[q]+w[i]){u=q;max=w2[q]+w[i];}for(j=l;j<=u;j++){pp=p2[j]+p[i];ww=w2[j]+w[i];while(k<=h&&w2[k]<ww){p2[next]=p2[k];w2[next]=w2[k];next++;k++;}if(k<=h&&w2[k]==ww){if(pp<=p2[k])pp=p2[k];k++;}else if(pp>p2[next-1]){p2[next]=pp;w2[next]=ww;next++;}while(k<=h&&p2[k]<=p2[next-1])k++;}while(k<=h){p2[next]=p2[k];w2[next]=w2[k];next=next+1;k++;}l=h+1;h=next-1;F[i+1]=next;}for(i=1;i<next;i++)printf("%2d%2d ",p2[i],w2[i]);for(i=n;i>0;i--){next=F[i];next--;pp=pk=p2[next];ww=w2[next];while(ww+w[i]>M&&next>F[i-1]){next=next-1;pp=p2[next];ww=w2[next];}if(ww+w[i]<=M&&next>F[i-1])px=pp+p[i];if(px>pk&&ww+w[i]<=M){s[i]=1;M=M-w[i];printf("M=%d ",M);}else s[i]=0;}for(i=1;i<=n;i++)printf("%2d ",s[i]);}六、实验结果1、贪心法截图:七、实验分析。

动态规划中的0-1背包模型

动态规划中的0-1背包模型

动态规划中的0-1背包模型 看完题后能否形成⼀个清晰思路的关键就在于能否根据题意的描述构建出⼀个恰当的模型,适合这道题⽬本⾝同时⼜能联系⾃⼰之前头脑库中的模型。

⽽对于01背包这类模型来说,形成的关键思维就在想最后⼀个n,即⽤⼀种抽象的语⾔把最终的结果给描述出来。

01背包的例⼦就不举了,这⾥先给出⼀个简单的01背包变形的例⼦: 按照之前的逻辑,我们⽤抽象的语⾔描述这道题的结果就是:给定⼀个长度为n的数列,问从这n个数中获取某些的数的和,使这个和最⼤同时⼜不超过某个值k,问能取⼏个或者这个和是多少。

话说到这⾥,就很容易和0-1背包⼀⼀对应起来了,这个k就是0-1中的最⼤背包容量,某些数的最⼤和就是0-1背包中所有物品的最⼤价值。

不过0-1背包中的value和weight两个量在这道题⽬中缩成了num这⼀个变量。

下⾯给出两个例题,都是这样的思路。

饭卡Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 18818 Accepted Submission(s): 6584Problem Description电⼦科⼤本部⾷堂的饭卡有⼀种很诡异的设计,即在购买之前判断余额。

如果购买⼀个商品之前,卡上的剩余⾦额⼤于或等于5元,就⼀定可以购买成功(即使购买后卡上余额为负),否则⽆法购买(即使⾦额⾜够)。

所以⼤家都希望尽量使卡上的余额最少。

某天,⾷堂中有n种菜出售,每种菜可购买⼀次。

已知每种菜的价格以及卡上的余额,问最少可使卡上的余额为多少。

Input多组数据。

对于每组数据:第⼀⾏为正整数n,表⽰菜的数量。

n<=1000。

第⼆⾏包括n个正整数,表⽰每种菜的价格。

价格不超过50。

第三⾏包括⼀个正整数m,表⽰卡上的余额。

m<=1000。

n=0表⽰数据结束。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档