高中物理 第八章 气体过关检测(二)新人教版选修33
人教版高中物理选修3-3-第八章《气体》测试题(解析版)

第八章《气体》测试题一、单选题(共15小题)1.下列选项中属于物理学中实物模型的是()A.分子B.电场C.电子D.理想气体2.如图所示为A、B两部分理想气体的V-t图象,设两部分气体是质量相同的同种气体,根据图中所给条件,可知()A.当t=273.15 ℃时,气体的体积A比B大0.2 m3B.当tA=tB时,VA∶VB=3∶1C.当tA=tB时,VA∶VB=1∶3D.A,B两部分气体都作等压变化,它们的压强之比pA∶pB=3∶13.下列有关“温度”的概念的说法中正确的是()A.温度反映了每个分子热运动的剧烈程度B.温度是分子平均动能的标志C.一定质量的某种物质,内能增加,温度一定升高D.温度升高时物体的每个分子的动能都将增大4.对于一定质量的气体,在体积不变时,压强增大到原来的二倍,则气体温度的变化情况是()A.气体的摄氏温度升高到原来的二倍B.气体的热力学温度升高到原来的二倍C.气体的摄氏温度降为原来的一半D.气体的热力学温度降为原来的一半5.如图所示,在均匀U型管两端开口,装有如图所示的水银,今在管的一侧B上端加入同种液体,设缓缓加入且中间不留空隙,则B、C液面高度差将()A.变大B.变小C.不变D.不能确定6.如图所示,质量为M导热性能良好的汽缸由一根平行于斜面的细线系在光滑斜面上.汽缸内有一个质量为m的活塞,活塞与汽缸壁之间无摩擦且不漏气.汽缸内密封有一定质量的理想气体.如果大气压强增大(温度不变),则()A.气体的体积增大B.细线的张力增大C.气体的压强增大D.斜面对汽缸的支持力增大7.温度为27 ℃的一定质量的气体保持压强不变,把体积减为原来的一半时,其温度变为()A. 127 KB. 150 KC. 13.5 ℃D. 23.5 ℃8.如V-T图所示,一定质量的理想气体,从状态A变化到状态B,最后变化到状态C.线段AB平行横轴,线段AC连线过坐标原点.则气体压强p变化情况是()A.不断增大,且pC小于pAB.不断增大,且pC大于pAC.先增大再减小,且pC大于pAD.先增大再减小,且pC与pA相等9.如图所示,一个横截面积为S的圆筒形容器竖直放置,金属圆板的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M,不计圆板与容器内壁的摩擦.若大气压强为p0,则被圆板封闭在容器中的气体的压强等于()A.B.+C.p0+D.p0+10.用活塞气筒向一个容积为V的容器内打气,每次能把体积为V0,压强为p0的空气打入容器内,若容器内原有空气的压强为p,打气过程中温度不变,则打了n次后容器内气体的压强为()A.B.p0+np0C.p+n()D.p0+()n·p011.一个密闭的钢管内装有空气,在温度为20 ℃时,压强为1 atm,若温度上升到80 ℃,管内空气的压强约为()A. 4 atmB.atmC. 1.2 atmD.atm12.一只轮胎容积为V=10 L,已装有p1=1 atm的空气.现用打气筒给它打气,已知打气筒的容积为V0=1 L,要使胎内气体压强达到p2=2.5 atm,应至少打多少次气?(设打气过程中轮胎容积及气体温度维持不变,大气压强p0=1 atm)()A. 8次B. 10次C. 12次D. 15次13.一定质量的理想气体,经历了如图所示的状态变化过程,则这三个状态的温度之比是()A. 1∶3∶5B. 3∶6∶5C. 3∶2∶1D. 5∶6∶314.关于密闭容器中气体的压强,下列说法正确的是()A.是由于气体分子相互作用产生的B.是由于气体分子碰撞容器壁产生的C.是由于气体的重力产生的D.气体温度越高,压强就一定越大15.一定质量的理想气体,经历一膨胀过程,这一过程可以用图中的直线ABC来表示,在A、B、C三个状态上,气体的温度TA、TB、TC相比较,大小关系为()A.TB=TA=TCB.TA>TB>TCC.TB>TA=TCD.TB<TA=TC二、实验题(共3小题)16.如图所示,在“用DIS研究在温度不变时,一定质量的气体压强与体积的关系”实验中,某同学将注射器活塞置于刻度为10 mL处,然后将注射器连接压强传感器并开始实验,气体体积V每增加1 mL测一定压强p,最后得到p和V的乘积逐渐增大.(1)由此可推断,该同学的实验结果可能为图________.(2)图线弯曲的可能原因是在实验过程中______.A.注射器有异物B.连接软管中存在的气体C.注射器内气体温度升高D.注射器内气体温度降低17.用DIS研究一定质量气体在温度不变时,压强与体积关系的实验装置如图1所示,实验步骤如下:①把注射器活塞移至注射器中间位置,将注射器与压强传感器、数据采集器、计算机逐一连接;②移动活塞,记录注射器的刻度值V,同时记录对应的由计算机显示的气体压强值p;③用V-图象处理实验数据,得出如图2所示图线.(1)为了保持封闭气体的质量不变,实验中采取的主要措施是_______________________;(2)为了保持封闭气体的温度不变,实验中采取的主要措施是_______________________和________________________________________________________________________;(3)如果实验操作规范正确,但如图所示的V-图线不过原点,则V0代表___________.18.某小组在“用DIS研究温度不变时一定质量的气体压强与体积的关系”实验.(1)实验过程中,下列哪些操作是正确的()A.推拉活塞时,动作要快,以免气体进入或漏出B.推拉活塞时,手可以握住整个注射器C.压强传感器与注射器之间的连接管脱落后,应立即重新接上,继续实验D.活塞与针筒之间要保持润滑又不漏气(2)该实验小组想利用实验所测得的数据测出压强传感器和注射器的连接管的容积,所测得的压强和注射器的容积(不包括连接管的容积)数据如下表所示:①为了更精确的测量也可以利用图象的方法,若要求出连接管的容积也可以画_______图.A.p-V B.V-pC.p-D.V-②利用上述图线求连接管的容积时是利用图线的________.A.斜率B.纵坐标轴上的截距C.横坐标轴上的截距D.图线下的“面积”三、计算题(共3小题)19.一轻活塞将一定质量的理想气体封闭在水平放置的固定汽缸内,开始时气体体积为V0,温度为27 ℃.在活塞上施加压力,将气体体积压缩到V0,温度升高到47 ℃.设大气压强p0=1.0×105Pa,活塞与汽缸壁的摩擦不计.(1)求此时气体的压强;(2)保持温度不变,缓慢减小施加在活塞上的压力使气体体积恢复到V0,求此时气体的压强.20.一定质量的理想气体经历了温度缓慢升高的变化,如图所示,p-T和V-T图各记录了其部分变化过程,试求:(1)温度600 K时气体的压强;(2)在p-T图象上将温度从400 K升高到600 K的变化过程补充完整.21.如图所示,一导热性能良好、内壁光滑的汽缸竖直放置,在距汽缸底部l=36 cm处有一与汽缸固定连接的卡环,活塞与汽缸底部之间封闭了一定质量的气体.当气体的温度T0=300 K、大气压强p0=1.0×105Pa时,活塞与汽缸底部之间的距离l0=30 cm,不计活塞的质量和厚度.现对汽缸加热,使活塞缓慢上升,求:(1)活塞刚到卡环处时封闭气体的温度T1;(2)封闭气体温度升高到T2=540 K时的压强p2.四、填空题(共3小题)22.在一个坚固的圆筒内,装有100 L压强为1个大气压的空气,现在想使筒内的空气压强增为10个大气压,应向筒内打入_________ L压强为1个大气压的空气.(设温度不变)23.如图所示是医院里给病人输液的示意图,假设药液瓶挂在高处的位置不变,则在输液过程中a、b两处气体的压强的变化是:a处气体的压强________,b处气体的压强________,药液进入人体的速度________.(填“变小”“变大”或“不变”)24.一定质量的理想气体经历如图所示的状态变化,变化顺序为a→b→c→d,图中坐标轴上的符号p指气体压强,V指气体体积,ab线段延长线过坐标原点,cd线段与p轴垂直,da 线段与轴垂直.气体在此状态变化过程中属于等温变化过程的是________,在b→c的变化过程中气体的内能______(填“增大”“减小”或“不变”).五、简答题(共3小题)25.某医院治疗一种疾病的治愈率为10 %,那么,前9个病人都没有治愈,第10个人就一定能治愈吗?26.如图所示为两种不同温度T1、T2下气体分子的麦克斯韦速率分布曲线,横坐标为速率,纵坐标为对应这一速率的分子个数,你能判断T1、T2的大小吗?27.从微观领域解释:一定质量的理想气体,在状态发生变化时,至少有两个状态参量同时发生变化,而不可能只有一个参量发生变化,其他两个参量不变.答案解析1.【答案】D【解析】建立理想化模型的一般原则是首先突出问题的主要因素,忽略问题的次要因素,为了使物理问题简单化,也为了便于研究分析,我们往往把研究的对象、问题简化,忽略次要的因素,抓住主要的因素,建立理想化的模型,电子、电场、分子都是实际的物体,而忽略气体分子的自身体积,将分子看成是有质量的几何点;假设分子间没有相互吸引和排斥,分子之间及分子与器壁之间发生的碰撞是完全弹性的,不造成动能损失,这种气体称为理想气体,故A、B、C错误,D正确.2.【答案】B【解析】由图象可知,A、B两部分气体都发生等压变化,由=C知它们在相同温度下体积之比不变.选择0 ℃读数,由y轴可知VA∶VB=3∶1,所以pA∶pB=VB∶VA=1∶3.3.【答案】B【解析】温度是分子平均动能大小的标志,而对某个确定的分子来说,其热运动的情况无法确定,不能用温度反映.故A、D错,B对.温度不升高而仅使分子的势能增加,也可以使物体内能增加,冰熔化为同温度的水就是一个例证,故C错.4.【答案】B【解析】一定质量的气体体积不变时,压强与热力学温度成正比,即=,得T2==2T1,B正确.5.【答案】C【解析】在B端加入水银后,A段水银柱不变,左侧密闭气体的压强不变,则B、C液面高度差不变,故C项正确.6.【答案】C【解析】对活塞受力分析,沿斜面方向可得:pS+mg sinα=p0S,所以p=p0-,若p0增大,则p增大,根据pV=常量,可知V减小;对汽缸和活塞的整体而言,细线的张力F T=(M+m)g sinα,;斜面对汽缸的支持力F=(M+m)g cosα,与大气压强无关,选项C 正确.7.【答案】B【解析】由盖—吕萨克定律得=,所以T2=·T1==K=150 K.8.【答案】D【解析】V-T图象中过原点的直线为等压线,直线斜率越大压强越小,如图可知:过OA的直线斜率大于过OB的直线斜率,故A的压强小于B的压强,由A到B压强增大,由B到C压强减小,AC的直线过原点,故pC与pA相等,D正确.9.【答案】D【解析】为求气体的压强,应以封闭气体的圆板为研究对象,分析其受力,如图所示.由平衡条件得p·cosθ=p0S+Mg解得:p=p0+,所以正确选项为D.10.【答案】C【解析】将n次打气的气体和容器中原有气体分别看成是初态,将打气后容器内气体看成是末态,利用等温分态分式,有pV+np0V0=p′V,得n次打气后容器内气体的压强p′=p+n(),即C正确.11.【答案】C【解析】由查理定律知=,代入数据解得,p2≈1.2 atm,所以C正确.12.【答案】D【解析】本题中,胎内气体质量发生变化,选打入的气体和原来的气体组成的整体为研究对象.设打气次数为n,则V1=V+nV0,由玻意耳定律,p1V1=p2V,解得n=15次.13.【答案】B【解析】由理想气体状态方程得:=C(C为常数),可见pV=TC,即pV的乘积与温度T 成正比,故B项正确.14.【答案】B【解析】气体的压强是由容器内的大量分子撞击器壁产生的,A、C错,B对;气体的压强与温度和体积两个因素有关,温度升高压强不一定增大,故D错.15.【答案】C【解析】由图中各状态的压强和体积的值可知:pA·VA=pC·VC<pB·VB,因为=恒量,可知TA =TC<TB.另外从图中也可知A、C处在同一等温线上,而B处在离原点更远的一条等温线上,所以TB>TA=TC.16.【答案】(1)(a)(2)C【解析】(1)由于“最后得到p和V的乘积逐渐增大”,因此在V-图象中,斜率k=pV逐渐增大,斜率变大,故选(a).(2)注射器有异物不会影响图线的斜率,故A错误.连接软管中存在气体可以视为被封闭的气体总体积较大,不会影响斜率,故B错误.注射器内气体温度升高,由克拉柏龙方程知=c,当T增大时,pV会增大,故C正确,D错误.17.【答案】(1)用润滑油涂活塞(2)缓慢抽动活塞不能用手握住注射器封闭气体部分(3)注射器与压强传感器连接部位的气体体积【解析】(1)为了保证气体的质量不变,要用润滑油涂活塞达到封闭效果.(2)要让气体与外界进行足够的热交换,一要时间长,也就是动作缓慢,二要活塞导热性能好,再者,不能用手握住封闭气体部分的注射器.(3)根据p(V+V0)=C,C为定值,则V=-V0,体积读数值比实际值大V0.18.【答案】(1)D (2)①D②B【解析】19.【答案】(1)1.6×105Pa(2)1.1×105Pa【解析】(1)由理想气体状态方程得:=,所以此时气体的压强为:p1=×=×Pa=1.6×105Pa.(2)由玻意耳定律得:p2V2=p3V3,所以p3==Pa≈1.1×105Pa.20.【答案】(1)1.25×105Pa(2)如图所示【解析】(1)由题图知,p1=1.0×105Pa,V1=2.5 m3,T1=400 Kp2=?,V2=3 m3,T2=600 K由理想气体状态方程得=p2==1.25×105Pa(2)在原p-T图象上补充两段直线21.【答案】(1)360 K(2)1.5×105Pa【解析】(1)设汽缸的横截面积为S.由题意可知,活塞缓慢上升,说明活塞平衡,此过程为等压膨胀由盖—吕萨克定律有=T1=T0=360 K(2)由题意可知,封闭气体后体积保持不变由查理定律有=p2=p0=1.5×105Pa.22.【答案】900【解析】取后来筒中气体为研究对象,根据玻意耳定律得:1 atm×(100 L+V)=100 L×10 atm,从而得V=900 L.23.【答案】变大不变不变【解析】选A管下端液面为研究对象,在大气压强p0(向上)、液柱h1的压强ρgh1(向下)和液柱h1上方液面处压强pa(向下)作用下平衡.因为p0=pa+ρgh1,则有pa=p0-ρgh1,因为输液过程中h1不断减小,所以pa不断增大.再对b处气体上方液面进行受力分析,B管中与A管最低液面在同一水平面处的压强也为p0,则有pb=p0+ρgh2,因为在输液过程中p0、h2不变,所以pb不变,则药液进入人体的速度也不变.24.【答案】a→b增大【解析】根据理想气体状态变化方程=C得p=T,可知当温度不变时p-是一条过原点的倾斜直线,所以a→b是等温变化.由p=T可知图线的斜率表示温度的高低,所以b→c的过程中气体温度升高,又因为理想气体的内能只跟温度有关,所以内能增大.25.【答案】如果把治疗一个病人作为一次试验,这个病人的治愈率是10 %.随着试验次数的增加,即治疗的病人数的增加,大约有10 %的人能够治愈.对于某一次试验来说,其结果是随机的,因此,前9个病人没有治愈是可能的,对第10个人来说,其结果仍然是随机的,既有可能治愈,也可能没有治愈,治愈率仍为10 %.【解析】26.【答案】T2>T1【解析】温度升高分子的热运动加剧,分子的平均速率变大,速率大的分子所占的比例变大,曲线峰值向速率大的一方移动,所以T2>T1.27.【答案】从微观领域分析,气体的压强由气体的分子密度和气体分子的平均动能决定,而温度是平均动能的标志.对一定质量的理想气体,若体积变化,分子的密度必然发生变化,必引起压强变化;若温度变化,则分子的平均动能发生变化,那么气体的压强必然发生变化;若气体的压强发生变化,必然是决定气体压强的因素发生变化,即气体的分子密度或气体分子的平均动能发生变化.所以说气体状态发生变化时,不可能只有一个参量发生变化,其他两个参量不变.【解析】。
人教版高中物理选修3-3-第八章《气体》测试题(解析版)

一、单选题(共15小题)1.下列选项中属于物理学中实物模型的是( )A.分子B.电场C.电子D.理想气体2.如图所示为A、B两部分理想气体的V-t图象,设两部分气体是质量相同的同种气体,根据图中所给条件,可知( )A.当t=℃时,气体的体积A比B大 m3B.当tA=tB时,VA∶VB=3∶1C.当tA=tB时,VA∶VB=1∶3D.A,B两部分气体都作等压变化,它们的压强之比pA∶pB=3∶13.下列有关“温度”的概念的说法中正确的是( )A.温度反映了每个分子热运动的剧烈程度B.温度是分子平均动能的标志C.一定质量的某种物质,内能增加,温度一定升高D.温度升高时物体的每个分子的动能都将增大4.对于一定质量的气体,在体积不变时,压强增大到原来的二倍,则气体温度的变化情况是( )A.气体的摄氏温度升高到原来的二倍B.气体的热力学温度升高到原来的二倍C.气体的摄氏温度降为原来的一半D.气体的热力学温度降为原来的一半5.如图所示,在均匀U型管两端开口,装有如图所示的水银,今在管的一侧B上端加入同种液体,设缓缓加入且中间不留空隙,则B、C液面高度差将( )A.变大B.变小C.不变D.不能确定6.如图所示,质量为M导热性能良好的汽缸由一根平行于斜面的细线系在光滑斜面上.汽缸内有一个质量为m的活塞,活塞与汽缸壁之间无摩擦且不漏气.汽缸内密封有一定质量的理想气体.如果大气压强增大(温度不变),则( )A.气体的体积增大B.细线的张力增大C.气体的压强增大D.斜面对汽缸的支持力增大7.温度为27 ℃的一定质量的气体保持压强不变,把体积减为原来的一半时,其温度变为( )A. 127 KB. 150 KC. 13.5 ℃D. 23.5 ℃8.如V-T图所示,一定质量的理想气体,从状态A变化到状态B,最后变化到状态C.线段AB平行横轴,线段AC连线过坐标原点.则气体压强p变化情况是( )A.不断增大,且pC小于pAB.不断增大,且pC大于pAC.先增大再减小,且pC大于pAD.先增大再减小,且pC与pA相等9.如图所示,一个横截面积为S的圆筒形容器竖直放置,金属圆板的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M,不计圆板与容器内壁的摩擦.若大气压强为p0,则被圆板封闭在容器中的气体的压强等于( )A.B.+C.p0+D.p0+10.用活塞气筒向一个容积为V的容器内打气,每次能把体积为V0,压强为p0的空气打入容器内,若容器内原有空气的压强为p,打气过程中温度不变,则打了n次后容器内气体的压强为( )A.B.p0+np0C.p+n()D.p0+()n·p011.一个密闭的钢管内装有空气,在温度为20 ℃时,压强为1 atm,若温度上升到80 ℃,管内空气的压强约为( )A. 4 atmB.atmC. 1.2 atmD.atm12.一只轮胎容积为V=10 L,已装有p1=1 atm的空气.现用打气筒给它打气,已知打气筒的容积为V0=1 L,要使胎内气体压强达到p2=2.5 atm,应至少打多少次气(设打气过程中轮胎容积及气体温度维持不变,大气压强p0=1 atm)( )A. 8次B. 10次C. 12次D. 15次13.一定质量的理想气体,经历了如图所示的状态变化过程,则这三个状态的温度之比是( )A.1∶3∶5B.3∶6∶5C.3∶2∶1D.5∶6∶314.关于密闭容器中气体的压强,下列说法正确的是( )A.是由于气体分子相互作用产生的B.是由于气体分子碰撞容器壁产生的C.是由于气体的重力产生的D.气体温度越高,压强就一定越大15.一定质量的理想气体,经历一膨胀过程,这一过程可以用图中的直线ABC来表示,在A、B、C三个状态上,气体的温度TA、TB、TC相比较,大小关系为( )A.TB=TA=TCB.TA>TB>TCC.TB>TA=TCD.TB<TA=TC二、实验题(共3小题)16.如图所示,在“用DIS研究在温度不变时,一定质量的气体压强与体积的关系”实验中,某同学将注射器活塞置于刻度为10 mL处,然后将注射器连接压强传感器并开始实验,气体体积V每增加1mL测一定压强p,最后得到p和V的乘积逐渐增大.(1)由此可推断,该同学的实验结果可能为图________.(2)图线弯曲的可能原因是在实验过程中______.A.注射器有异物B.连接软管中存在的气体C.注射器内气体温度升高D.注射器内气体温度降低17.用DIS研究一定质量气体在温度不变时,压强与体积关系的实验装置如图1所示,实验步骤如下:①把注射器活塞移至注射器中间位置,将注射器与压强传感器、数据采集器、计算机逐一连接;②移动活塞,记录注射器的刻度值V,同时记录对应的由计算机显示的气体压强值p;③用V-图象处理实验数据,得出如图2所示图线.(1)为了保持封闭气体的质量不变,实验中采取的主要措施是_______________________;(2)为了保持封闭气体的温度不变,实验中采取的主要措施是_______________________和________________________________________________________________________;(3)如果实验操作规范正确,但如图所示的V-图线不过原点,则V0代表___________.18.某小组在“用DIS研究温度不变时一定质量的气体压强与体积的关系”实验.(1)实验过程中,下列哪些操作是正确的( )A.推拉活塞时,动作要快,以免气体进入或漏出B.推拉活塞时,手可以握住整个注射器C.压强传感器与注射器之间的连接管脱落后,应立即重新接上,继续实验D.活塞与针筒之间要保持润滑又不漏气(2)该实验小组想利用实验所测得的数据测出压强传感器和注射器的连接管的容积,所测得的压强和注射器的容积(不包括连接管的容积)数据如下表所示:①为了更精确的测量也可以利用图象的方法,若要求出连接管的容积也可以画_______图.A.p-V B.V-pC.p-D.V-②利用上述图线求连接管的容积时是利用图线的________.A.斜率B.纵坐标轴上的截距C.横坐标轴上的截距D.图线下的“面积”三、计算题(共3小题)19.一轻活塞将一定质量的理想气体封闭在水平放置的固定汽缸内,开始时气体体积为V0,温度为27 ℃.在活塞上施加压力,将气体体积压缩到V0,温度升高到47 ℃.设大气压强p0=×105Pa,活塞与汽缸壁的摩擦不计.(1)求此时气体的压强;(2)保持温度不变,缓慢减小施加在活塞上的压力使气体体积恢复到V0,求此时气体的压强.20.一定质量的理想气体经历了温度缓慢升高的变化,如图所示,p-T和V-T图各记录了其部分变化过程,试求:(1)温度600 K时气体的压强;(2)在p-T图象上将温度从400 K升高到600 K的变化过程补充完整.21.如图所示,一导热性能良好、内壁光滑的汽缸竖直放置,在距汽缸底部l=36 cm处有一与汽缸固定连接的卡环,活塞与汽缸底部之间封闭了一定质量的气体.当气体的温度T0=300 K、大气压强p0=1.0×105Pa时,活塞与汽缸底部之间的距离l0=30 cm,不计活塞的质量和厚度.现对汽缸加热,使活塞缓慢上升,求:(1)活塞刚到卡环处时封闭气体的温度T1;(2)封闭气体温度升高到T2=540 K时的压强p2.四、填空题(共3小题)22.在一个坚固的圆筒内,装有100 L压强为1个大气压的空气,现在想使筒内的空气压强增为10个大气压,应向筒内打入_________ L压强为1个大气压的空气.(设温度不变)23.如图所示是医院里给病人输液的示意图,假设药液瓶挂在高处的位置不变,则在输液过程中a、b两处气体的压强的变化是:a处气体的压强________,b处气体的压强________,药液进入人体的速度________.(填“变小”“变大”或“不变”)24.一定质量的理想气体经历如图所示的状态变化,变化顺序为a→b→c→d,图中坐标轴上的符号p指气体压强,V指气体体积,ab线段延长线过坐标原点,cd线段与p轴垂直,da线段与轴垂直.气体在此状态变化过程中属于等温变化过程的是________,在b→c的变化过程中气体的内能______(填“增大”“减小”或“不变”).五、简答题(共3小题)25.某医院治疗一种疾病的治愈率为10 %,那么,前9个病人都没有治愈,第10个人就一定能治愈吗26.如图所示为两种不同温度T1、T2下气体分子的麦克斯韦速率分布曲线,横坐标为速率,纵坐标为对应这一速率的分子个数,你能判断T1、T2的大小吗27.从微观领域解释:一定质量的理想气体,在状态发生变化时,至少有两个状态参量同时发生变化,而不可能只有一个参量发生变化,其他两个参量不变.答案解析1.【答案】D【解析】建立理想化模型的一般原则是首先突出问题的主要因素,忽略问题的次要因素,为了使物理问题简单化,也为了便于研究分析,我们往往把研究的对象、问题简化,忽略次要的因素,抓住主要的因素,建立理想化的模型,电子、电场、分子都是实际的物体,而忽略气体分子的自身体积,将分子看成是有质量的几何点;假设分子间没有相互吸引和排斥,分子之间及分子与器壁之间发生的碰撞是完全弹性的,不造成动能损失,这种气体称为理想气体,故A、B、C错误,D正确.2.【答案】B【解析】由图象可知,A、B两部分气体都发生等压变化,由=C知它们在相同温度下体积之比不变.选择0 ℃读数,由y轴可知VA∶VB=3∶1,所以pA∶pB=VB∶VA=1∶3.3.【答案】B【解析】温度是分子平均动能大小的标志,而对某个确定的分子来说,其热运动的情况无法确定,不能用温度反映.故A、D错,B对.温度不升高而仅使分子的势能增加,也可以使物体内能增加,冰熔化为同温度的水就是一个例证,故C错.4.【答案】B【解析】一定质量的气体体积不变时,压强与热力学温度成正比,即=,得T2==2T1,B 正确.5.【答案】C【解析】在B端加入水银后,A段水银柱不变,左侧密闭气体的压强不变,则B、C液面高度差不变,故C项正确.6.【答案】C【解析】对活塞受力分析,沿斜面方向可得:pS+mg sinα=p0S,所以p=p0-,若p0增大,则p增大,根据pV=常量,可知V减小;对汽缸和活塞的整体而言,细线的张力F T=(M+m)g sinα,;斜面对汽缸的支持力F=(M+m)g cosα,与大气压强无关,选项C正确.7.【答案】B【解析】由盖—吕萨克定律得=,所以T2=·T1==K=150 K.8.【答案】D【解析】V-T图象中过原点的直线为等压线,直线斜率越大压强越小,如图可知:过OA的直线斜率大于过OB的直线斜率,故A的压强小于B的压强,由A到B压强增大,由B到C压强减小,AC的直线过原点,故pC与pA相等,D正确.9.【答案】D【解析】为求气体的压强,应以封闭气体的圆板为研究对象,分析其受力,如图所示.由平衡条件得p·cosθ=p0S+Mg解得:p=p0+,所以正确选项为D.10.【答案】C【解析】将n次打气的气体和容器中原有气体分别看成是初态,将打气后容器内气体看成是末态,利用等温分态分式,有pV+np0V0=p′V,得n次打气后容器内气体的压强p′=p+n(),即C正确.11.【答案】C【解析】由查理定律知=,代入数据解得,p2≈1.2 atm,所以C正确.12.【答案】D【解析】本题中,胎内气体质量发生变化,选打入的气体和原来的气体组成的整体为研究对象.设打气次数为n,则V1=V+nV0,由玻意耳定律,p1V1=p2V,解得n=15次.13.【答案】B【解析】由理想气体状态方程得:=C(C为常数),可见pV=TC,即pV的乘积与温度T成正比,故B项正确.14.【答案】B【解析】气体的压强是由容器内的大量分子撞击器壁产生的,A、C错,B对;气体的压强与温度和体积两个因素有关,温度升高压强不一定增大,故D错.15.【答案】C【解析】由图中各状态的压强和体积的值可知:pA·VA=pC·VC<pB·VB,因为=恒量,可知TA=<TB.另外从图中也可知A、C处在同一等温线上,而B处在离原点更远的一条等温线上,所以TB>TA=TC.TC16.【答案】(1)(a) (2)C【解析】(1)由于“最后得到p和V的乘积逐渐增大”,因此在V-图象中,斜率k=pV逐渐增大,斜率变大,故选(a).(2)注射器有异物不会影响图线的斜率,故A错误.连接软管中存在气体可以视为被封闭的气体总体积较大,不会影响斜率,故B错误.注射器内气体温度升高,由克拉柏龙方程知=c,当T增大时,pV会增大,故C正确,D错误.17.【答案】(1)用润滑油涂活塞(2)缓慢抽动活塞不能用手握住注射器封闭气体部分(3)注射器与压强传感器连接部位的气体体积【解析】(1)为了保证气体的质量不变,要用润滑油涂活塞达到封闭效果.(2)要让气体与外界进行足够的热交换,一要时间长,也就是动作缓慢,二要活塞导热性能好,再者,不能用手握住封闭气体部分的注射器.(3)根据p(V+V0)=C,C为定值,则V=-V0,体积读数值比实际值大V0.18.【答案】(1)D (2)①D②B【解析】19.【答案】(1)×105Pa (2)×105Pa【解析】(1)由理想气体状态方程得:=,所以此时气体的压强为:p1=×=×Pa=×105Pa.(2)由玻意耳定律得:p2V2=p3V3,所以p3==Pa≈×105Pa.20.【答案】(1)×105Pa (2)如图所示【解析】(1)由题图知,p1=×105Pa,V1= m3,T1=400 Kp2=,V2=3 m3,T2=600 K由理想气体状态方程得=p2==×105Pa(2)在原p-T图象上补充两段直线21.【答案】(1)360 K (2)1.5×105Pa【解析】(1)设汽缸的横截面积为S.由题意可知,活塞缓慢上升,说明活塞平衡,此过程为等压膨胀由盖—吕萨克定律有=T1=T0=360 K(2)由题意可知,封闭气体后体积保持不变由查理定律有=p2=p0=1.5×105Pa.22.【答案】900【解析】取后来筒中气体为研究对象,根据玻意耳定律得:1 atm×(100 L+V)=100 L×10 atm,从而得V=900 L.23.【答案】变大不变不变【解析】选A管下端液面为研究对象,在大气压强p0(向上)、液柱h1的压强ρgh1(向下)和液柱h1上方液面处压强pa(向下)作用下平衡.因为p0=pa+ρgh1,则有pa=p0-ρgh1,因为输液过程中h1不断减小,所以pa不断增大.再对b处气体上方液面进行受力分析,B管中与A管最低液面在同一水平面处的压强也为p0,则有pb=p0+ρgh2,因为在输液过程中p0、h2不变,所以pb不变,则药液进入人体的速度也不变.24.【答案】a→b增大【解析】根据理想气体状态变化方程=C得p=T,可知当温度不变时p-是一条过原点的倾斜直线,所以a→b是等温变化.由p=T可知图线的斜率表示温度的高低,所以b→c的过程中气体温度升高,又因为理想气体的内能只跟温度有关,所以内能增大.25.【答案】如果把治疗一个病人作为一次试验,这个病人的治愈率是10 %.随着试验次数的增加,即治疗的病人数的增加,大约有10 %的人能够治愈.对于某一次试验来说,其结果是随机的,因此,前9个病人没有治愈是可能的,对第10个人来说,其结果仍然是随机的,既有可能治愈,也可能没有治愈,治愈率仍为10 %.【解析】26.【答案】T2>T1【解析】温度升高分子的热运动加剧,分子的平均速率变大,速率大的分子所占的比例变大,曲线峰值向速率大的一方移动,所以T2>T1.27.【答案】从微观领域分析,气体的压强由气体的分子密度和气体分子的平均动能决定,而温度是平均动能的标志.对一定质量的理想气体,若体积变化,分子的密度必然发生变化,必引起压强变化;若温度变化,则分子的平均动能发生变化,那么气体的压强必然发生变化;若气体的压强发生变化,必然是决定气体压强的因素发生变化,即气体的分子密度或气体分子的平均动能发生变化.所以说气体状态发生变化时,不可能只有一个参量发生变化,其他两个参量不变.【解析】、。
物理人教版选修3-3 第8章气体 章节检测题-打印版本

2021届高三物理选修3-3新授课章末综合检测第八章气体1.如图所示,两端开口的弯折的玻璃管竖直放置,三段竖直管内各有一段水银柱,两段空气封闭在三段水银柱之间,若左.右两管内水银柱长度分别为h 1.h 2,且水银柱均静止,则中间管内水银柱的长度为()A.h 1-h 2B.(h 1+h 2)/2C.(h 1-h 2)/2D.h 1+h 22.如图中A.B 两点代表一定质量理想气体的两个不同的状态,状态A 的温度为T A ,状态B 的温度为T B ,由图可知()A.T B =2T AB.T B =4T AC.T B =6T AD.T B =8T A3.在一定温度下,当一定量气体的体积增大时,气体的压强减小,这是由于()A.单位体积内的分子数变少,单位时间内对单位面积器壁碰撞的次数减少B.气体分子的密集程度变小,分子的平均动能也变小C.每个分子对器壁的平均撞击力变小D.气体分子的密集程度变小,分子势能变小4.(多选)如图所示,两端开口的弯管,左管插入水银槽中,右管有一段高为h 的水银柱,中间封有一段空气,则()A.弯管左管内外水银面的高度差为hB.若把弯管向上移动少许,则管内气体体积增大C.若把弯管向下移动少许,则右管内的水银柱沿管壁上升D.若环境温度升高,则右管内的水银柱沿管壁上升5.一定质量的气体,在压强不变时,温度每升高1℃,它的体积的增加量()A.相同B.逐渐增大C.逐渐减小D.成正比例地增大6.(多选)如图所示,在一端封闭的玻璃管中,用一段水银将管内气体与外界隔绝,管口向下放置,若将管倾斜,待稳定后则呈现的物理现象是()A.封闭端内气体的压强增大B.封闭端内气体的压强减小C.封闭端内气体的压强不变D.封闭端内气体的体积减小7.(多选)一定质量的某种气体自状态A 经状态C 变化到状态B,这一过程的V-T 图像如图所示,则()A.在过程A→C 中,气体的压强不断变小B.在过程C→B 中,气体的压强不断变大C.在状态A 时,气体的压强最大D.在状态B 时,气体的压强最大8.对一定量的理想气体,下列说法正确的是()A.气体体积是指所有气体分子的体积之和B.气体分子的热运动越剧烈,气体的温度就越高C.当气体膨胀时,气体的分子势能减小,因而气体的内能一定减少D.气体的压强是由气体分子的重力产生的,在失重的情况下,密闭容器内的气体对器壁没有压强9.粗细均匀的U 形管,右端封闭有一段空气柱,两管内水银面高度差为19cm,封闭端空气柱长度为40cm,如图所示,问向左管内再注入多少水银可使两管水银面等高?已知外界大气压强p 0=76cmHg,注入水银过程中温度保持不变。
20192020学年高中物理 第八章 气体测评含解析新人教版选修33.doc

第八章气体测评(时间:60分钟满分:100分)一、选择题(本题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~10题有多项符合题目要求。
全部选对的得5分,选对但不全的得3分,有选错的得0分)1.关于理想气体的下列说法正确的是()A.气体对容器的压强是由气体的重力产生的B.气体对容器的压强是由大量气体分子对器壁的频繁碰撞产生的C.一定质量的气体,分子的平均动能越大,气体压强也越大D.压缩理想气体时要用力,是因为分子之间有斥力解析气体对容器的压强是由气体分子对器壁的碰撞产生的,选项A错误,B正确;气体的压强与分子密集程度及分子的平均动能大小有关,平均动能越大则温度越高,但如果体积变为很大,压强可能减小,故选项C错误;压缩理想气体要用力,克服的是气体的压力(压强),而不是分子间的斥力,选项D错误。
答案B2.已知离地面越高大气压强越小,温度也越低。
现有一气球由地面向上缓慢升起,则大气压强与温度对此气球体积的影响如何()A.大气压强减小有助于气球体积变大,温度降低有助于气球体积增大B.大气压强减小有助于气球体积变小,温度降低有助于气球体积减小C.大气压强减小有助于气球体积变大,温度降低有助于气球体积减小D.大气压强减小有助于气球体积变小,温度降低有助于气球体积增大解析若温度不变,大气压强减小时,内部气体压强不变,则气体将要膨胀,体积增大,故大气压强减小有助于气球体积增大;若压强不变,温度降低时,根据理想气体状态方程=C得知,气体的体积将要减小,故温度降低有助于气球体积减小。
选项A、B、D均错误,C正确。
答案C3.如图所示,元宵佳节,室外经常悬挂红灯笼烘托喜庆的气氛,若忽略空气分子间的作用力,大气压强不变,当点燃灯笼里的蜡烛燃烧一段时间后,灯笼内的空气()A.分子总数减少B.分子的平均动能不变C.压强不变,体积增大D.单位时间与单位面积器壁碰撞的分子数增大解析蜡烛燃烧后,灯笼内温度升高,部分气体分子将从灯笼内部跑到外部,所以灯笼内分子总数减少,故A正确;灯笼内温度升高,分子的平均动能增大,故B错误;灯笼始终与大气连通,压强不变,灯笼内气体体积也不变,故C错误;温度升高,气体分子的平均动能增大,每次与器壁碰撞的分子平均作用力增大,而气体压强不变,所以单位时间与单位面积器壁碰撞的分子数减少,故D错误。
人教版高中物理选修3-3第八章《气体》检测题(含答案)

B.甲图中,封闭气体压强为
C.乙图中,地面对汽缸的支持力为Mg+p0S
D.乙图中,封闭气体压强为
8.一定质量的气体,温度由-13℃升高到117℃,若保持体积不变,它的压强的增加量是原来压强的
A.0.5倍B. 倍C. 倍D.2倍
9.下列关于分子运动和热现象的说法正确的是( )
C.气体压强是原来的3倍
D.气体压强比原来增加了
6.下列说法正确的.大头针能浮在水面上,是由于水的表面存在张力
C.人感觉到空气湿度大,是因为空气中水蒸气的饱和汽压大
D.气体分子热运动越剧烈,气体压强越大
7.质量为M的汽缸口朝上静置于地面上(如图甲),用质量为m的活塞封闭一定量的气体(气体的质量忽略不计),活塞的截面积为S.将汽缸倒扣在地面上(如图乙),静止时活塞没有接触地面.已知大气压强为p0,取重力加速度为g,不计一切摩擦,则下列分析正确的是
A.气体如果失去了容器的约束就会散开,这是因为气体分子之间存在斥力的缘故
B.一定量100℃的水变成100℃的水蒸气,其分子之间的势能增加
C.一定质量的理想气体,当压强不变而温度由100℃上升到200℃时,其体积增大为原来的2倍
D.如果气体分子总数不变,而气体温度升高,气体分子的平均动能增大,因此压强必然增大
A.A→B过程中,气体对外界做功
B.B→C过程中,气体分子的平均动能增大
C.C→D过程中,单位时间内碰撞单位面积器壁的分子数增多
D.D→A过程中,气体分子的速率分布曲线不发生变化
E. 该循环过程中,气体吸热
12.下列说法正确的是__________
A.用油膜法估测分子直径的实验中,用酒精稀释过的油酸滴在水面上形成单分子层,单分子油膜的厚度就是酒精分子和油酸分子半径的平均值
高中物理第八章气体第2节气体的等容变化和等压变化讲义含解析新人教版选修3_3

第2节气体的等容变化和等压变化1.查理定律:一定质量的某种气体,在体积不变的情况下,压强p 与热力学温度T 成正比,即p T=C 。
2.盖-吕萨克定律:一定质量的某种气体,在压强不变的情况下,其体积V 与热力学温度T 成正比,即V T=C 。
3.玻意耳定律、查理定律、盖-吕萨克定律的适用条件均为一定质量的某种气体。
一、气体的等容变化 1.等容变化一定质量的某种气体,在体积不变时,压强随温度的变化。
2.查理定律 (1)内容:一定质量的某种气体,在体积不变的情况下,压强p 与热力学温度T 成正比。
(2)表达式:p T =C 或p 1T 1=p 2T 2。
(3)适用条件:①气体的质量不变;②气体的体积不变。
3.等容线一定质量的气体,在体积不变时,其p T 图像是一条过原点的直线,这条直线叫做等容线。
二、气体的等压变化 1.等压变化一定质量的某种气体,在压强不变时,体积随温度的变化。
2.盖-吕萨克定律 (1)内容:一定质量的某种气体,在压强不变的情况下,体积V 与热力学温度T 成正比。
(2)表达式:V =CT 或V T =C 或V 1T 1=V 2T 2。
(3)适用条件:①气体的质量不变;②气体的压强不变。
3.等压线一定质量的气体,在压强不变时,其V T 图像是一条过原点的直线,这条直线叫做等压线。
1.自主思考——判一判(1)气体的温度升高,气体体积一定增大。
(×)(2)一定质量的气体,在压强不变时体积与温度成正比。
(×)(3)一定质量的某种气体,在压强不变时,其V T 图像是过原点的直线。
(√) (4)一定质量的气体在体积不变的情况下,气体的压强与摄氏温度成正比。
(×) (5)pV =C 、p T =C 、V T=C ,三个公式中的常数C 是同一个值。
(×) 2.合作探究——议一议(1)某登山运动员在一次攀登珠穆朗玛峰的过程中,在接近山顶时他裸露在手腕上的防水手表的表盘玻璃突然爆裂了,而手表没有受到任何撞击,你知道其中的原因吗?提示:手表表壳可以看成一个密闭容器,出厂时封闭着一定质量的气体,登山过程中气体发生等容变化,因为高山山顶附近的压强比山脚处小很多,内外压力差超过表盘玻璃的承受限度,便会发生爆裂。
人教版高中物理选修3-3 第八章 气体 测试含答案和详细解析

绝密★启用前人教版高中物理选修3-3 第八章气体测试本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分第Ⅰ卷一、单选题(共15小题,每小题4.0分,共60分)1.一根竖直静止放置的两端封闭的细玻璃管,管内封闭着的空气被一段水银柱分为上下两部分,如图所示,当它在竖直方向运动时,发现水银柱相对玻璃管向上移动(温度不变),以下说法正确的是()A.玻璃管做匀速运动B.玻璃管向下加速运动C.玻璃管向下减速运动D.玻璃管向上加速运动2.已知湖水深度为20 m,湖底水温为4 ℃,水面温度为17 ℃,大气压强为1.0×105Pa.当一气泡从湖底缓慢升到水面时,其体积约为原来的(取g=10 m/s2,ρ水=1.0×103kg/m3)()A. 12.8倍B. 8.5倍C. 3.1倍D. 2.1倍3.如图,竖直放置、开口向下的试管内用水银封闭一段气体,若试管自由下落.管内气体()A.压强增大,体积增大B.压强增大,体积减小C.压强减小,体积增大D.压强减小,体积减小4.一端封闭的圆筒内用活塞封闭着一定质量的理想气体,它分别处在如图所示的三种状态时的温度关系是()A.TA>TB>TCB.TA<TB<TCC.TA=TB>TCD.TB>TA>TC5.一根粗细不均匀的水平放置的管道如图所示,用横截面积为S1和S2的两个活塞封闭住一定质量的气体,S2=2S1,在两个活塞上分别施以水平力F1和F2时,整个系统处于平衡状态,则关于气体作用在活塞S1和S2上的压强p1和p2以及水平力F1和F2的大小有(不计活塞与管壁间的摩擦)()A.F1=F2,p1=2p2B.F2=2F1,p1=p2C.F2≠2F1,p1=p2D.F1=F2,p1=p26.温度为27 ℃的一定质量的气体保持压强不变,把体积减为原来的一半时,其温度变为()A. 127 KB. 150 KC. 13.5 ℃D. 23.5 ℃7.一端封闭的玻璃管倒插入水银槽中,管竖直放置时,管内水银面比管外高h,上端空气柱长为L,如图所示,已知大气压强为H cmHg,下列说法正确的是()A.此时封闭气体的压强是(L+h) cmHgB.此时封闭气体的压强是(H-h) cmHgC.此时封闭气体的压强是(H+h) cmHgD.此时封闭气体的压强是(H-L) cmHg8.下列说法中正确的是()A.一定质量的气体被压缩时,气体压强不一定增大B.一定质量的气体温度不变压强增大时,其体积也增大C.气体压强是由气体分子间的斥力产生的D.在失重的情况下,密闭容器内的气体对器壁没有压强9.某种气体在不同温度下的分子速率分布曲线如图所示,f(v)表示分子速率v附近单位速率区间内的分子数百分率.曲线Ⅰ和Ⅱ所对应的温度分别为TⅠ和TⅡ,所对应的气体分子平均动能分别为E k1和E k2,则()A.TⅠ>TⅡ,E k1>E k2B.TⅠ>TⅡ,E k1<E k2C.TⅠ<TⅡ,E k1>E k2D.TⅠ<TⅡ,E k1<E k210.一端封闭的玻璃管开口朝下浸入水中,在某一深度恰好能保持静止.如果水面上方大气压突然降低一些,玻璃管在水中的运动情况是()A.加速上升,直到玻璃管一部分露出水面B.加速下降,直到水底C.先加速下降,后减速下降至某一深度平衡D.仍然静止11.一定质量的理想气体的p-t图象如图所示,气体从状态A到状态B的过程中,体积将()A.一定不变B.一定减小C.一定增大D.不能判定怎样变化12.如图所示,一定质量的某种理想气体,由状态A沿直线AB变化到状态B,A、C、B三点所对应的热力学温度分别记为TA、TC、TB,在此过程中,气体的温度之比TA∶TB∶TC为()A. 1∶1∶1B. 1∶2∶3C. 3∶3∶4D. 4∶4∶313.如图所示,汽缸内封闭一定质量的气体,不计活塞与缸壁间的摩擦,当外界大气压变化时,以下物理量中发生改变的有:①弹簧弹力的大小,②密封气体的体积,③密封气体的压强()A.①B.①②C.①③D.②③14.两端封闭、内径均匀的直玻璃管水平放置,如图所示.V左<V右,温度均为20 ℃,现将右端空气柱温度降为0 ℃,左端空气柱温度降为10 ℃,则管中水银柱将()A.不动B.向左移动C.向右移动D.无法确定是否移动15.有关气体压强,下列说法正确的是()A.气体分子的平均速率增大,则气体的压强一定增大B.气体分子的密集程度增大,则气体的压强一定增大C.气体分子的平均动能增大,则气体的压强一定增大D.气体分子的平均动能增大,气体的压强有可能减小第Ⅱ卷二、计算题(共4小题,每小题10分,共40分)16.汽车行驶时轮胎的胎压太高容易造成爆胎事故,太低又会造成耗油量上升.已知某型号轮胎能在-40 ℃~90 ℃正常工作,为使轮胎在此温度范围内工作时的最高胎压不超过3.5 atm,最低胎压不低于1.6 atm,那么,在t=20 ℃时给该轮胎充气,充气后的胎压在什么范围内比较合适(设轮胎的体积不变)17.一端开口的U形管内由水银柱封有一段空气柱,大气压强为76 cmHg,当气体温度为27 ℃时空气柱长为8 cm,开口端水银面比封闭端水银面低2 cm,如图所示,求:(1)当气体温度上升到多少℃时,空气柱长为10 cm?(2)若保持温度为27 ℃不变,在开口端加入多长的水银柱能使空气柱长为6 cm?18.如图,绝热汽缸A与导热汽缸B均固定于地面,由刚性杆连接的绝热活塞与两汽缸间均无摩擦.两汽缸内装有处于平衡状态的理想气体,开始时体积均为V0、温度均为T0.缓慢加热A中气体,停止加热达到稳定后,A中气体压强为原来的1.2倍.设环境温度始终保持不变,求汽缸A中气体的体积VA和温度TA.19.如图所示,汽缸中封闭着温度为100 ℃的空气,一重物用轻质绳索经光滑滑轮跟缸中活塞相连接,重物和活塞都处于平衡状态,这时活塞离汽缸底的高度为10 cm.如果缸内空气温度变为0 ℃,重物将上升多少厘米?(绳索足够长,结果保留三位有效数字)答案解析1.【答案】B【解析】水银柱相对玻璃管向上运动,由pV=C知,p1变大,p2变小,F合向下,则a向下.2.【答案】C【解析】湖底压强大约为p0+ρ水gh,即3个大气压,由气体状态方程,=,当一气泡从湖底缓慢升到水面时,其体积约为原来的3.1倍,选项C正确.3.【答案】B【解析】初始状态p0=px+ph,若试管自由下落,则ph=0,px=p0,所以压强增大,由玻意耳定律知,pV=C,故V减小.4.【答案】D【解析】由题图可知VA=VB>VC,pA=pC<pB,由理想气体状态方程,可判断TB>TA>TC.5.【答案】B【解析】气体的压强是相等的,所以A选项不正确;由受力平衡可知F1+p0S=pS,F2+2p0S=2pS,故有F2=2F1,B选项正确.6.【答案】B【解析】由盖—吕萨克定律得=,所以T2=·T1==K=150 K.7.【答案】B【解析】利用等压法,选管外水银面为等压面,则封闭气体压强p+ph=p0,得p=p0-ph,即p=(H-h) cmHg,故B项正确.8.【答案】A【解析】气体质量一定时,=恒量,显然A对,B错;由气体压强产生的原因知C错;D选项因为容器密闭,气体对器壁有压强,故选A.9.【答案】D【解析】根据麦克斯韦分布规律知,气体的温度越高,速率较大的分子所占的比例越大,所以Ⅰ的温度低,Ⅱ的温度高,即TⅠ<TⅡ,而温度是分子平均动能的标志,温度越高,分子平均动能越大,则E k1<E k2,故D正确.10.【答案】A【解析】上方大气压突然降低,玻璃管中的气体体积增大,将管中的水挤出一部分而上升,上升过程中压强进一步减小,管内气体进一步膨胀,继续加速上升,直到玻璃管一部分露出水面,A正确.11.【答案】D【解析】题目中给出的图线是p-t(摄氏温度)图,而不是p-T图,在图甲中,p-t图中的等容线的反向延长线通过(-273 ℃,0),而没有通过原点,只有在p-T图中的等容线才能通过原点,如图乙所示.因该题中的AB反向延长线是否通过-273 ℃,题设条件中无法找到,所以就不能判断A到B变化过程中体积如何变化,故D正确.12.【答案】C【解析】由p-V图象可知,pA=3 atm,VA=1 L,pB=1 atm,VB=3 L,pC=2 atm,VC=2 L,由理想气体状态方程可得==,代入数据得TA∶TB∶TC=3∶3∶4.13.【答案】D【解析】先判断弹簧弹力是否改变,以活塞、汽缸及缸内气体组成的整体为研究对象,系统受重力、弹簧的弹力及外界气体压力的作用,由于外界气体压力的合力始终为零,故弹簧的弹力等于系统重力,不随外界大气压的变化而变化.再分析判断气体的压强.以汽缸为研究对象,受力情况如图所示:汽缸处于平衡状态,所以有mg+pS=p0S.当外界大气压p0变化时,为重新达到平衡,缸内气体的压强p也跟着变化,气体的体积也发生变化.14.【答案】C【解析】设降温后水银柱不动,则两段空气柱均为等容变化,初始状态左右压强相等,即p左=p右=p对左端空气柱=,则Δp左=p左=p,同理右端空气柱Δp右=p,所以Δp右>Δp左,即右侧压强降低得比左侧多,故水银柱向右移动,选项C正确.15.【答案】D【解析】气体的压强在微观上与两个因素有关:一是气体分子的平均动能,二是气体分子的密集程度,密集程度或平均动能增大,都只强调问题的一方面,也就是说,平均动能增大的同时,分子的密集程度可能减小,使得压强可能减小;同理,当分子的密集程度增大时,分子的平均动能也可能减小,气体的压强变化不能确定,故正确答案为D.16.【答案】2.01 atm≤p≤2.83 atm【解析】由于轮胎容积不变,轮胎内气体做等容变化.设在T0=293 K充气后的最小胎压为p min,最大胎压为p max.依题意,当T1=233 K时胎压为p1=1.6 atm.根据查理定律=,即=,解得p min≈2.01 atm,当T2=363 K时胎压为p2=3.5 atm.根据查理定律=,即≈,解得p max≈2.83 atm.17.【答案】(1)122.3 ℃(2)28.7 cm【解析】(1)气体的初状态:p1=p0-ph=74 cmHg,V1=8S,T1=300 K,气体的末状态:p2=p0+ph=78 cmHg,V2=10S,由公式=,代入数据得:T2≈395.3 K,t2=122.3 ℃.(2)气体的状态:V3=6S,T3=300 K,由公式=,代入数据得:p3≈98.7 cmHg.加入水银柱的长度为L=98.7-76+2+(2×2)=28.7 cm.18.【答案】V0 1.4T0【解析】设初态压强为p0,膨胀后A、B压强相等=1.2p0pBB中气体始末状态温度相等,p0V0=1.2p0(2V0-VA)得VA=V0A部分气体满足=,得TA=1.4T0.19.【答案】2.68 cm【解析】这是一个等压变化过程,设活塞的横截面积为S.初态:T1=(273 +100) K=373 K,V1=10S末态:T2=273 K,V2=LS由盖—吕萨克定律=得LS=V1,L=×10 cm≈7.32 cm重物上升高度为10 cm-7.32 cm=2.68 cm.。
人教版高中物理选修3-3第8章《气体》章末检测

高中物理学习材料金戈铁骑整理制作《气体》章末检测(时间:60分钟满分:100分)第Ⅰ卷(选择题50分)一、选择题(本题共10小题,每小题5分,共50分.把符合题意的选项前的字母填写在题后括号内.)1.下图是氧气分子在不同温度(0 ℃和100 ℃)下的速率分布,由图可得信息( )A.同一温度下,氧气分子呈现出“中间多,两头少”的分布规律B.随着温度的升高,每一个氧气分子的速率都增大C.随着温度的升高,氧气分子中速率小的分子所占的比例高D.随着温度的升高,氧气分子的平均速率变小解析温度升高,分子的平均动能增大,质量不变,分子的平均速率增大,每个分子的速率不一定增大,A正确,B、C、D错误.答案 A2.如图所示,a 、b 、c 三根完全相同的玻璃管,一端封闭,管内各用相同长度的一段水银柱封闭了质量相等的空气,a 管竖直向下做自由落体运动,b 管竖直向上做加速度为g 的匀加速运动,c 管沿倾角为45°的光滑斜面下滑,若空气温度始终不变,当水银柱相对管壁静止时,a 、b 、c 三管内的空气柱长度L a 、L b 、L c 间的关系为( )A .L b =L c =L aB .L b <L c <L aC .L b >L c >L aD .L b <L c =L a解析 以液柱为研究对象,分析受力, 对a :由牛顿第二定律得 mg +p 0S -p a S =mg 得p a =p 0对b :p b S -mg -p 0S =mg 得p b =p 0+2mgS>p 0对c :mgsin θ+p 0S -p c S =mg·sin θ 得p c =p 0由理想气体状态方程可知, L b <L c =L a ,故D 选项正确. 答案 D3.对于一定质量的气体,在体积不变时,压强增大到原来的二倍,则气体温度的变化情况是( ) A .气体的摄氏温度升高到原来的二倍 B .气体的热力学温度升高到原来的二倍 C .气体的摄氏温度降为原来的一半 D .气体的热力学温度降为原来的一半解析 一定质量的气体体积不变时,压强与热力学温度成正比, 即p 1T 1=p 2T 2,得T 2=p 2T 1p 1=2T 1,B 正确.答案 B4.(多选题)一定质量的理想气体处于平衡状态Ⅰ.现设法使其温度降低而压强升高,达到平衡状态Ⅱ,则( )A.状态Ⅰ时气体的密度比状态Ⅱ时的大B.状态Ⅰ时分子的平均动能比状态Ⅱ时的大C.状态Ⅰ时分子间的平均距离比状态Ⅱ时的大D.状态Ⅰ时每个分子的动能都比状态Ⅱ时的分子平均动能大解析由理想气体状态方程p1V1T1=p2V2T2,T2<T1,p2>p1,可知V2<V1,故B、C选项正确.答案BC5.将一根长75 cm、两端开口、粗细均匀的玻璃管竖直插入水银槽中,露出水银面部分的长度为27 cm,此时大气压强为75 cm汞柱,然后用手指封闭玻璃管上端,把玻璃管慢慢地提离水银面,这时留在玻璃管中水银的长度为( )A.15 cm B.20 cmC.30 cm D.35 cm解析被封闭的气体进行等温变化,如图所示设留在玻璃管中的水银的长度为h,则有p0L1=(p0-h)(L-h)75×27=(75-h)(75-h)解得h=30 cm.答案 C6.如图所示为一定质量的理想气体的P -1V 图象,图中BC 为过原点的直线,A 、B 、C 为气体的三个状态,则下列说法中正确的是( )A .T A >TB =TC B .T A >T B >T C C .T A =T B >T CD .T A <T B <T C解析 由图象可知A→B 为一等容线,根据查理定律p A T A =p BT B,因为p A >p B ,故T A >T B ,B→C 为等温线,故T B =T C ,所以A 选项正确.答案 A7.如图所示,三只相同的试管A 、B 、C ,开口端都竖直插入水银槽中,封口端用线悬挂在天花板上,管内有气体,A 管内的水银面比管外高,B 管内的水银面比管外低,C 管内的水银面和管外相平,三根悬线的拉力T A 、T B 、T C 的关系为( )A. T A =T B =T CB. T A >T B >T CC. T A >T C >T BD .无法判断解析 三只试管都静止,处于平衡状态,分别进行受力分析,首先对A 管,设A 管中的水银面高出管外h ,管内气体压强为p A ,管的横截面为S.A 管受重力G A ,拉力T A ,大气向上压力p 0S ,管内气体向下压力p A S =(p 0-ρgh)S ,则T A +(p 0-ρgh)S =G A +p 0S 所以T A =G A +ρghS同理对B 管受力分析后,可得出T B =G B -ρgh′S(B 管中水银面低于管外h′);对C 管受力分析得T C=G C ,因为G A =G B =G C ,所以T A >T C >T B .答案 C8.已知理想气体的内能与温度成正比.如图所示的实线为气缸内一定质量的理想气体由状态1到状态2的变化曲线,则在整个过程中气缸内气体的内能( )A .先增大后减小B .先减小后增大C .单调变化D .保持不变解析 根据等温线可知,从1到2变化过程中温度先降低再升高,变化规律复杂,由此判断B 正确. 答案 B9.有一定质量的理想气体,如果要使它的密度减小,可能的办法是( ) A .保持气体体积一定,升高温度 B .保持气体的压强和温度一定,增大体积 C .保持气体的温度一定,增大压强 D .保持气体的压强一定,升高温度解析 由ρ=m/V ,可知ρ减小,V 增大,又由pVT =C 可知,D 选项正确.答案 D 10.两个容器A 、B ,用截面均匀的水平细玻璃管相连,如图所示,A 、B 所装气体的温度分别为17 ℃和27 ℃,水银柱在管中央平衡,如果两边温度都升高10 ℃,那么水银柱将( )A .向右移动B .向左移动C .不动D .条件不足,不能确定解析 假设水银柱不动,分析A 、B 两部分气体压强随温度升高如何变化,由理想气体状态方程p A T A =p A ′T A +ΔT pA ′=p AT A +ΔT A=p A ×300290=30p A29p B T B =p B ′T B +Δt得p B ′=p B ×310300=31p B30由于p A =p B ,所以p A ′>p B ′, 则汞柱向右移动. 答案 A第Ⅱ卷(非选择题50分)二、实验题(本题包括2个小题,共14分)11.(8分)用如图所示的实验装置研究体积不变时气体的压强与温度的关系.当时大气压强为H(cmHg),封闭有一定质量的气体的烧瓶,浸在冰水混合物中,使U 形管压强计可动管A 和固定管B 中水银面刚好相平.将烧瓶浸入温度为t 的热水中时,B 管水银面将________,这时应将A 管________(以上两空格填“上升”或“下降”),使B 管中水银面________.记下此时A 、B 两管中水银面的高度差为h(cm),此状态下瓶中气体的压强为________(cmHg).答案 下降 上升 回到原处 H +h12.(6分)若一定质量的理想气体分别按下图所示的三种不同过程变化,其中表示等压变化的是________(填“A”“B”或“C”),该过程中气体内能________(填“增加”“减少”或“不变”).解析 由图象可知A 图中压强减小,B 图中压强增大;C 图中V 与T 成正比,为等压变化的图象,图为理想气体的内能只与温度有关,温度升高,内能增加.答案 C 增加三、计算题(本题包括3个小题,共36分.要求写出必要的文字和重要的演算步骤及各物理量的单位.)13.(10分)如图所示,重G 1的活塞a 和重G 2的活塞b ,将长为L 的气室分成体积比为1∶2的A 、B 两部分,温度是127 ℃,系统处于平衡状态,当温度缓慢地降到27 ℃时系统达到新的平衡,求活塞a 、b 移动的距离.解析 设b 向上移动y ,a 向上移动 x, 因为两个气室都做等压变化, 所以由盖-吕萨克定律有: 对于A 室系统: 13LS 400=13L-300对于B 室系统: 23LS 400=23L -y +300解得:x =112Ly =14L 答案112L 14L14.(12分)如图所示,上端开口的光滑圆柱形气缸竖直放置,截面积为40 cm 2的活塞将一定质量的气体和一形状不规则的固体A 封闭在气缸内.在气缸内距缸底60 cm 处设有a 、b 两限制装置,使活塞只能向上滑动.开始时活塞搁在a 、b 上,缸内气体的压强为p 0(p 0=1.0×105Pa 为大气压强),温度为300 K .现缓慢加热气缸内气体,当温度为330 K 时,活塞恰好离开a 、b ;当温度为360 K 时,活塞上升了4 cm.g 取10 m/s 2求:(1)活塞的质量; (2)物体A 的体积.解析 (1)设物体A 的体积为ΔV.T 1=300 K ,p 1=1.0×105Pa ,V 1=60×40-ΔV T 2=330 K ,p 2=(1.0×105+mg 40×10-4) Pa ,V 2=V 1T 3=360 K ,p 3=p 2,V 3=64×40-ΔV 由状态1到状态2为等容过程p 1T 1=p 2T 2代入数据得m =4 kg(2)由状态2到状态3为等压过程V 2T 2=V 3T 3代入数据得ΔV =640 cm 3 答案 (1)4 kg (2)640 cm 315.(14分)如图所示,水平放置的汽缸内壁光滑,活塞厚度不计,在A 、B 两处设有限制装置,使活塞只能在A 、B 之间运动,B 左边汽缸的容积为V 0,A 、B 之间的容积为0.1V 0.开始时活塞在B 处,缸内气体的压强为0.9 p 0(p 0为大气压强),温度为297 K ,现缓慢加热缸内气体,直至399.3 K .求:(1)活塞刚离开B 处时的温度T B ; (2)缸内气体最后的压强p ;(3)在图中画出整个过程的p -V 图线.解析 (1)活塞离开B 前是一个等容过程:0.9 p 0297 K =p 0T B T B =p 00.9p 0·297 K=330 K.(2)随着温度不断升高,活塞最终停在A 处,由理想气体状态方程: 0.9p 0V 0297 K =p×1.1V 0399.3 K得p =0.9×399.31.1×297p 0=1.1p 0.(3)整个过程的p -V 图线,如图所示:答案 (1)330 K (2)1.1p 0 (3)见解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章过关检测(二)(时间:45分钟满分:100分)一、选择题(本题共8小题,每小题6分,共48分。
在每小题给出的四个选项中,第1~5题只有一个选项符合题目要求,第6~8题有多个选项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分)1.下面的表格是某地区1~7月份气温与大气压强的对照表:月份/月1 23 4 5 6 7平均最高气温/℃1.4 3.910.719.626.730.2 30.8平均大气压强/105 Pa 1.0211.0191.0141.0081.0030.998 40.9967月份与1月份相比较,正确的是()A.空气分子无规则热运动的情况不变B.空气分子无规则热运动减弱了C.单位时间内空气分子对地面的撞击次数增多了D.单位时间内空气分子对单位面积的地面撞击次数减少了解析:温度升高,分子的无规则运动加剧,故选项A、B均错误;空气分子对地面的撞击更强烈了,但压强减小了,所以单位时间内气体分子对单位面积的撞击次数减少了,故选项D正确。
答案:D2.如图所示,玻璃管A和B同样粗细,A的上端封闭,两管下端用橡皮管连通,两管中水银柱高度差为h,若将B管慢慢地提起,则()A.A管内空气柱将变长B.A管内空气柱将变短C.两管内水银柱高度差将增大D.两管内水银柱高度差将减小解析:将B管慢慢提起,可以认为气体温度不变。
在气体的压强增大时,体积减小,所以气柱将变短,而p A=p0+p h,所以高度差增大。
答案:BC3.如图所示,两端开口的均匀玻璃管竖直插入水银槽中,管中有一段水银柱h1封闭一定质量的气体,这时管下端开口处内外水银面高度差为h2,若保持环境温度不变,当外界压强增大时,下列分析正确的是()A.h2变长B.h2变短C.h1上升D.h1下降解析:被封闭气体的压强为p=p0+h1,或p=p0+h2,始终有h1=h2;当p0增大时,被封闭气体的压强增大,由玻意耳定律知,封闭气体的体积应减小。
答案:D4.如图所示是一定质量的理想气体的三种升温过程,那么以下四种解释中,哪些是正确的()A.a→d的过程气体体积增大B.b→d的过程气体体积不变C.c→d的过程气体体积增大D.a→d的过程气体体积增大解析:要确定气体体积变化的情况,只要找出a、c、d三种状态的体积关系即可。
凡是等容线都过p-T图象的坐标原点。
如图所示,过a、c点作两条等容线,由于等容线斜率大的体积反而小,所以V a<V d<V c,故a→d的过程气体体积变大,b→d的过程气体体积不变,c→d的过程气体体积变小。
答案:A5.如图所示,轻弹a管(上端封闭,下端开口),使两段水银柱及被两段水银柱封闭的空气柱合在一起,如b管所示。
若此过程中温度不变,水银柱与管壁密封很好,则b管水银柱的下端面A'与原来a管水银柱的下端面A相比,将()A.在同一高度B.稍高C.稍低D.条件不足,无法判断解析:相当于a管下部分气体的压强减小,所以总体积要增大,故选C。
答案:C6.某同学用带有刻度的注射器做验证玻意耳定律的实验,温度计表明在整个实验过程中都是等温的,他根据实验数据绘出了p-的关系图线EF,从图中的图线可以得出()A.如果实验是从E状态→F状态,则表示外界有空气进入注射器内B.如果实验是从E状态→F状态,则表示注射器内有部分空气漏了出来C.如果实验是从F状态→E状态,则表示注射器内有部分空气漏了出来D.如果实验是从F状态→E状态,则表示外界有空气进入注射器内解析:连接OE、OF,因斜率k OF>k OE,表示(pV)F>(pV)E,知E→F,m增大,F→E,m减小,所以选项A、C正确,选项B、D错误。
答案:AC7.一个开口玻璃瓶内有空气,现将瓶口向下按入水中,在水面下5 m深处恰能保持静止不动,下列说法中正确的是()A.将瓶稍向下按,放手后又回到原来位置B.将瓶稍向下按,放手后加速下沉C.将瓶稍向上提,放手后又回到原处D.将瓶稍向上提,放手后加速上浮解析:瓶保持静止不动,受力平衡,mg=ρgV,由玻意耳定律,将瓶下按后,p增大而V减小,mg>ρgV,故放手后加速下沉,选项B正确。
同样道理,选项D也正确。
答案:BD8.两个相同的密闭容器分别装有等质量的同种理想气体,已知容器中气体的压强不相同,则下列判断中正确的是()A.压强小的容器中气体的温度比较高B.压强大的容器中气体单位体积内的分子数比较少C.压强小的容器中气体分子的平均动能比较小D.压强大的容器中气体分子对器壁单位面积的平均作用力比较大解析:相同的容器分别装有等质量的同种气体,说明它们所含的分子总数相同,即分子的密度相同,选项B错误;压强不同,一定是因为两容器气体分子平均动能不同造成的,压强小的容器中分子的平均动能一定较小,温度较低,故选项A错误,选项C正确;压强大的容器中气体分子对器壁单位面积的平均作用力比较大,故选项D正确。
答案:CD二、填空题(共20分)9.(12分)对于一定质量的理想气体,以p、V、T三个状态参量中的两个为坐标轴建立直角坐标系,在坐标系上描点能直观地表示这两个参量的数值。
如图所示,三个坐标系中,两个点都表示相同质量某种理想气体的两个状态。
根据坐标系中不同点的位置来比较第三个参量的大小。
(1)p-T图象(如图甲)中A、B两个状态,状态体积小。
(2)V-T图象(如图乙)中C、D两个状态,状态压强小。
(3)p-V图象(如图丙)中E、F两个状态,状态温度低。
解析:甲图画出的倾斜直线为等容线,斜率越小,体积越大,所以V B>V A。
乙图画出的倾斜直线为等压线,斜率越小,压强越大,所以p D>p C。
丙图画出的双曲线为等温线,离原点越远,温度越高,所以T E>T F。
答案:(1)A (2)C (3)F10.(8分)如图所示,T形汽缸内有一T形活塞,将汽缸分为A、B两部分,且两部分中都封闭有气体,活塞可沿汽缸壁无摩擦地滑动,其左端活塞面积为右端活塞面积的3倍,汽缸C孔与大气相通。
当大气压强为1 atm、A中气体压强为 0.9 atm 时,活塞保持静止不动,则此时B中气体压强为。
解析:设B面积为S,大气压为p0,受力分析得p A·3S=p0·2S+p B·S可得p B=0.7 atm。
答案:0.7 atm三、计算题(每题16分,共32分。
要求写出必要的文字说明、主要方程式和重要演算步骤,有数值计算的要明确写出数值和单位,只有最终结果的不得分)11.汽缸长为L=1 m(汽缸的厚度可忽略不计),固定在水平面上,汽缸中有横截面积为S=100 cm2的光滑活塞,活塞封闭了一定质量的理想气体,当温度为t=27 ℃,大气压为p0=1×105 Pa时,气柱长度为L0=0.4 m。
现缓慢拉动活塞,拉力最大值为F=500 N,求:(1)如果温度保持不变,能否将活塞从汽缸中拉出?(2)保持拉力最大值不变,汽缸中气体温度至少为多少摄氏度时,才能将活塞从汽缸中拉出?解析:(1)设L足够长,F达到最大值时活塞仍在气缸中,设此时气柱长L2,气体压强为p2,根据活塞受力平衡,有p2=p0-=5×104 Pap1=p0,V1=L0·S因为等温变化,根据玻意耳定律得p1L0S=p2L2S代入数据得L2=0.8 m<L,所以不能将活塞拉出。
(2)保持拉力最大值不变,温度升高,活塞刚到缸口,V3=L·S,p3=p2,由理想气体状态方程,代入数据得T3=375 K,t3=102 ℃。
答案:(1)不能,原因见解析(2)102 ℃12.如图,两汽缸A、B粗细均匀、等高且内壁光滑,其下部由体积可忽略的细管连通;A的直径是B 的2倍,A上端封闭,B上端与大气连通;两汽缸除A顶部导热外,其余部分均绝热。
两汽缸中各有一厚度可忽略的绝热轻活塞a、b,活塞下方充有氮气,活塞a上方充有氧气。
当大气压为p0、外界和汽缸内气体温度均为 7 ℃且平衡时,活塞a离汽缸顶的距离是汽缸高度的,活塞b在汽缸正中间。
(1)现通过电阻丝缓慢加热氮气,当活塞b恰好升至顶部时,求氮气的温度;(2)继续缓慢加热,使活塞a上升。
当活塞a上升的距离是汽缸高度的时,求氧气的压强。
解析:(1)活塞b升至顶部的过程中,活塞a不动,活塞a、b下方的氮气经历等压过程.设汽缸A的容积为V0,氮气初态体积为V1,温度为T1;末态体积为V2,温度为T2,按题意,汽缸B的容积为,由题给数据和盖—吕萨克定律有V1=V0+V0①V2=V0+V0=V0②③由①②③式和题给数据得T2=320 K④(2)活塞b升至顶部后,由于继续缓慢加热,活塞a开始向上移动,直至活塞上升的距离是汽缸高度的时,活塞a上方的氧气经历等温过程。
设氧气初态体积为V1'、压强为p1';末态体积为V2',压强为p2',由题给数据和玻意耳定律有V1'=V0,p1'=p0,V2'=V0⑤p1'V1'=p2'V2'⑥由⑤⑥式得p2'=p0⑦答案:(1)320 K(2)p0。