换热器制造工序过程卡
第5Hysys模拟换热过程

������ 等温(Equal Temperature)
������ 自动间隔(Auto Interval.)
独立热曲线 (Individual Heat
Curve Details)
进行外部循环迭代来更新压力曲线方法: dPdH 常数 dPdUA 常数
dPdA 常数
入口压力
出口压力
稳态核算(Steady State Rating)模型
壳并联
TEMA标准换热器与GB标准换热器
Design—核算选项卡
• 计算信息(Calculated Information)
– 壳程 HT 系数(Shell HT Coeff) – 管程 HT 系数(Tube HT Coeff) – 总 U 值(Overall U) – 总 UA 值(Overall UA) – 壳程压降 DP(Shell DP) – 管程压降 DP(Tube DP) – 每个壳的传热面积(Heat Trans. Area per Shell) – 每个壳的管体积(Tube Volume per Shell) – 每个壳的壳体积(Shell Volume per Shell)
2.1、heat exchanger
总传热量:Q=UA ΔTLMFt
• 换热器(Heat Exchanger)可以完成两侧的能量 和物料平衡计算。
• 可以解算温度、压力、热流量(包括热损失和热 泄露)、物料流股流量以及UA值。
– UA--总传热系数(Overall Heat Transfer Coefficient)与总有效传热面积的乘积
• 非常适合处理非线性热量曲线问题 单侧或双侧纯组分相变问题
• 热曲线(Heat Curve)被分成几个区间, 在每个区间中执行能量平衡计算
换热器检修规范

换热器检修基本规范一、换热器抽芯换热器的抽芯工作是在换热器置换干净以后,工艺确认可以抽芯后进行的。
对于高温处的螺栓应该提前涂抹松动剂,防止在松卸困难甚至卡死,管箱卸下以后,便可以进行抽芯工作。
拆管箱和抽芯过程中,对于可能有危险介质存在的部位,要高度小心,避免发生事故。
换热器的抽芯过程中,首先使用管板上定位吊耳将管束抽出一部分,待拉出的距离可以使用辅助机械后便可将管束抽出。
在抽芯的过程中需要注意几个方面:(1)定位吊耳应位于水平位置拉出,这样可以保证换热器的滑道位于受力位置(及垂直方向),承受换热器的重力,避免管束直接受力,同时避免折流板把壳体划伤。
(2)在吊装的过程中,也要保证定位吊耳的水平度,保证管束不垂直受压;吊装用钢绳要用专业的保护套保护,不至使管束受伤(特别是有涂层,可以防止涂层剥落),钢丝与管束接触部位一定要加以保护。
抽芯完成后,要放置在专用的垫具上,一般为具有与换热器吻合面的枕木,不得直接将换热器管束直接放置在平地上。
放置时,管板与管束的连接处不得受力,及管板应悬空,枕木放在管束下,最好滑道与枕木接触,直接受力。
二、换热器的清洗换热器清洗一般在专门的清洗场地进行,如时间紧迫需在装置内进行,应注意安全和场地卫生。
换热器的清洗分内壁清洗和外壁清洗两部分:(1)内壁清洗使用细管长枪,首先确保管束畅通,其次清除管内污垢、结焦等。
在清洗时,应正反两个方向冲洗同一根管,以保证清洗效果。
对结焦比较严重的管子,应使用较长的水枪冲洗。
冲洗的后管束应畅通,且水柱喷射均匀(内径未因结焦、污垢无而变小)。
(2)外壁清洗使用旋转多头水枪和长管水枪相结合。
无论管束按照哪种形式排列,总有一个平面可以贯通两侧的所有管束,清洗时应使用长管水枪清洗这个空间,并做正反两方面冲洗。
对于防冲板下管束的清洗比较困难,是一个死区,应多次清洗以保证效果。
在清洗过程中,应有吊机配合,使管束可以翻身清理,以便达到理想的效果。
(3)清洗效果的检查也主要分以上两个方面,外壁目测,特别是可以贯通的平面空间;管内则需要抽查,可选择“十字交叉”法选择抽查样本,这样可以比较全面的了解清洗的情况。
换热器培训课件完整版

板式换热器 结构紧凑、传热效率高、压力损失小
管壳式换热器 结构简单、制造成本低、清洗方便
螺旋板式换热器
传热效率高、结构紧凑、自清洗能力 强
热管式换热器
传热效率高、温差适应性强、结构灵 活
CHAPTER 04
换热器设计方法与优化策略
设计流程概述
进行初步设计
选择合适的换热器类型
根据设计需求,选择适合的换热 器类型,如板式换热器、管壳式 换热器等。
建立完善的运行维护档案, 记录换热器运行状况、维 修记录等信息,便于追溯 和管理。
定期更换换热器密封件、 垫片等易损件,确保密封 性能良好。
CHAPTER 07
换热器故障排除与维修保养 技巧
常见故障类型及原因分析
换热效率下降
可能由于结垢、堵塞或内部泄漏导致,影响 换热效果。
泄漏
包括法兰泄漏、管板泄漏等,可能由密封件 老化、紧固螺栓松动等原因引起。
发现泄漏时,及时更换密封件和紧固螺栓, 确保密封性能。
检查控制系统和热媒流量
发现温度异常时,检查控制系统和热媒流量 是否正常,及时进行调整和修复。
维修保养周期建议及操作指南
01
02
03
04
05
定期清洗和除垢
定期检查密封件和 定期检查流体流动 定期检查控制系统 注意
紧固螺栓
状态
和热媒…
根据换热器使用情况和结垢 程度,建议每半年或一年进 行一次清洗和除垢。
选择高性能材料,提高换热器的耐腐蚀性、 耐高温性等。
制造工艺优化
控制策略优化
改进制造工艺,提高生产效率和产品质量。
优化控制策略,实现换热器的智能控制和节 能运行。
CHAPTER 05
第5章 Hysys模拟换热过程

传热计算方程
Q U A Tm Tm FT f ( R, S ) TLM
Individual Heat Curve
加权模型(Weighted Model)
• 管程和壳程压降(Tubeside and Shellside Delta P) (指定或者由进出口物流压差获得) • UA (指定或计算) • 独立热曲线详细数据 (Individual Heat Curve Details)
Hysys换热器模型(Heat Exchanger Model)
• 换热器设计(终点) (Endpoint) • 换热器设计(加权) (Weighted) (理想逆流设计模型) • 稳态核算(Steady State Rating),Endpoint • 动态核算(Dynamic Rating) – 适用于基础(Basic)模型和详细(Detailed)模型 – 也可以应用在稳态模式下的换热器核算
进行外部循环迭代来更新压力曲线方法: dPdH 常数 dPdUA 常数 dPdA 常数 入口压力 出口压力
稳态核算(Steady State Rating)模型
• 终点(End Point)模型的扩展 • 它增加了核算计算功能 • 需提供详细的几何尺寸信息
• 常用来处理热曲线呈线性或接近线性的问题
四、管程与壳程的确定
(1) 不清洁或易结垢的物料应当流过易于清洗的一侧,对 于直管管束,一般通过管内,直管内易于清洗; (2) 需通过增大流速提高 h 的流体应选管程,因管程流 通截面积小于壳程,且易采用多程来提高流速; (3) 腐蚀性流体宜走管程,以免管束和壳体同时受腐蚀; (4) 压力高的流体宜选管程,以防止壳体受压; (5) 饱和蒸汽宜走壳程,冷凝液易于排出,其 h 与流速 无关; (6) 被冷却的流体一般走壳程,便于散热; (7) 粘度大、流量小的流体宜选壳程,因壳程的流道截面 和流向都在不断变化,在 Re>100 即可达到湍流。
换热器试压方案全

目录1概述 (1)1.1编制依据 (1)1.2工程概况 (1)1.3换热器明细表 (1)2试压准备工作 (5)3换热器抽芯 (5)4换热器清洗 (5)5试压要求及方法 (6)5.1 试压要求 (6)5.2 试压方法 (6)5.3换热器试压步骤 (7)6换热器回装、复位 (7)7施工进度计划 (8)8施工手段用料、设备 (8)9安全事项 (9)中国石油抚顺石化公司原油集中加工、炼油结构调整技术改造工程30万吨/年酮苯脱蜡装置换热器抽芯试压方案1概述1.1编制依据1.1.1 中国石油集团工程设计有限责任公司抚顺分公司《30×104t/a酮苯脱蜡装置基础设计》(讨论稿)。
1.1.2 抚顺石化公司石油一厂30×104t/a酮苯脱蜡装置施工蓝图。
1.1.3 我公司成功建设过石油一厂40万吨/年酮苯脱蜡装置安装工程及2005年石油二厂60万吨/年酮苯脱蜡脱油装置的施工工艺及经验。
1.1.4 抚顺石化分公司石油三厂50万吨/年重油催化装置拆迁施工经验。
1.1.5《钢制管壳式换热器》GB151-991.1.6《钢制压力容器》GB150-981.2工程概况本装置共有换热器70台,形式为管板式、浮头式和U形管式换热器三种,换热器全部需要抽芯检查,部分管束需要更换新的管束。
1.3换热器明细表表1设备明细第2页共9页第3页共9页第4页共9页2试压准备工作4.1 收集原设备监检报告,查看设备状况;4.2新的换热器管束应有管束出厂合格证明书4.2试压工机具、盲板制作准备4.3换热器封头拆除3换热器抽芯换热器的抽芯工作是在换热器拆除以后将换热器在抽芯场地集中摆放,对于高温处的螺栓应该提前涂抹松动剂,防止在松卸困难甚至卡死,将换热器管箱拆卸下以后,便可以进行抽芯工作。
拆管箱和抽芯过程中,应对管箱标好设备位号,相应设备螺栓拆除后用编织带收集并挂牌标识设备位号,以免设备配件相互混淆,给设备恢复带来困难。
另外应保存并记录标识好换热器密封件,为下一步密封件测量加工提供条件。
丹佛斯板式换热器介绍

接管位置灵活
H1
Q4
Q1
Q3
Q2
H4
H3
H2
Q1
Q4
Q6
Q2
Q5
Q3
H4
H6
H5
H3
后端板: 水侧 H1-H2 制冷剂 H3-H6 制冷剂 H5-H4
前端板: 水侧 Q1-Q2 制冷剂側 Q3-Q4
后端板: 水侧 H1-H2 制冷剂侧 H3-H4
前端版 水侧 Q1-Q2 制冷剂 QL
板型
大夹角
小夹角
H
L
M
通道类型
两大夹角组合
两小夹角组合
板片的夹角和波纹深度都会影响传热性能和压降.
大小夹角组合
制冷剂分配器
用于蒸发器上 可提高换热器性能,稳定过热度 B3-030, B3-052, B3-095, B3-113, B3-210 可带分配器
板式换热器中国工厂
Danfoss HEX 研发中心
Know-how, technology transfer, consultancy, training
Outsourcing of projects, concepts, prototyping
Exchange of personnel
丹佛斯板式换热器
完整的产品链
膨胀阀
压缩机
控制器
过滤器
阀门
视液镜
换热器
全球化生产
LPM公司 生产地:芬兰、波兰 产品 :钎焊/式可拆板式换热器 Gemina Termix 生产地:丹麦 产品 :钎焊式换热器 Schmidt Bretten 生产地:罗马尼亚 产品 :可拆板式换热器
全新产品研发平台
R&D—杭州
TEMA(列管式换热器制造商协会标准)规格的管壳式换热器设计原则

TEMA规格的管壳式换热器设计原则——摘引自《PERRY’S CHEMICAL ENGINEER’S HANDBOOK 1999》设计中的一般考虑流程的选择在选择一台换热器中两种流体的流程时,会采用某些通则。
管程的流体的腐蚀性较强,或是较脏、压力较高。
壳程则会是高粘度流体或某种气体。
当管壳程流体中的某一种要用到合金结构时,碳钢壳体加合金质壳程元件比之壳程流体接触部件全用合金加碳钢管箱的方案要较为节省费用。
清晰管子的内部较之清洗其外部要更为容易。
假如两侧流体中有表压超过2068KPa(300 Psig)的,较为节约的结构形式是将高压流体安排在管侧。
对于给定的压降,壳侧的传热系数较管侧的要高。
换热器的停运最通常的原因是结垢、腐蚀和磨蚀。
建造规则“压力容器建造规则,第一册”也就是《ASME锅炉及压力容器规范Section VIII , Division 1》, 用作换热器的建造规则时提供了最低标准。
一般此标准的最新版每3年出版发行一次。
期间的修改以附录形式每半年出一次。
在美国和加拿大的很多地方,遵循ASME 规则上的要求是强制性的。
最初这一系列规范并不是为换热器制造所准备的。
但现在已添加了固定管板式换热器上管板与壳体间的焊接接头的有关规定,并且还包含了一个非强制性的有关管子-管板接头的附件。
目前ASME 正在研究有关换热器的其他规定。
列管式换热器制造商协会标准, 第6版., 1978 (通常引称为TEMA 标准*), 用作在除套管式换热器而外的所有管壳式换热器的应用中对ASME规则的补充和说明。
TEMA “R级”设计就是“用于石油及相关加工应用的一般性苛刻要求。
按本标准制造的设备是设计目的在于在此类应用中严苛的保养和维修条件下的安全性、持久性。
”TEMA “C级”设计是“用于商用及通用加工用途的一般性适度要求。
”而TEMA“B级”是“用于化学加工用途”*译者注:这已经不是最新版的,现在已经出到1999年第8版3种建造标准的机械设计要求都是一样的。
换热器试压方案(4篇)

换热器试压方案一、浮头式换热器的概述浮头式换热器的一端管板是固定的。
与壳体刚性连接,另一端管板是活动的,与壳体之间并不相连。
活动管板一侧总称为浮头,浮头式换热器的管束可从壳体中抽出,故管外壁清洗方便,管束可在壳体中自由伸缩,所以无温差应力;但结构复杂、造价高,且浮头处若密封不严会造成两种流体混合。
浮头式换热器适用于冷热流体温差较大(一般冷流进口与热流进口温差可达110℃),介质易结垢需要清洗的场合。
二、浮头式换热器的总体结构三、浮头式换热器的特点1、浮头式换热器的优点(1)管束可以抽出,以方便清洗管、壳程。
(2)介质间温差不受限制。
(3)可在高温、高压下工作,一般温度小于等于450°,压力小于等于____mpa。
(4)可用于结垢比较严重的场合。
(5)可用于管程易腐蚀场合。
2、浮头式换热器的缺点(1)小浮头易发生内漏。
(2)金属材料耗量大,成本高____%。
(3)结构复杂。
三、浮头式换热器的应用浮头式换热器适用于壳体和管束之间壁温差较大或壳程介质易结垢的场合。
四、浮头式换热器的导流结构为使壳程进口段管束充分传热,浮头式换热器可采用内导流或外导流结构。
1、内导流浮头式换热器内导流筒换热器是在换热器的壳程筒体内设置了内导流筒使换热器的前或后端未加导流筒前难以利用换热的换热管得以充分利用,从而增大换热器的有效换热面积。
2、外导流浮头式换热器外导流式换热器是在原换热器的壳程筒体上增加一个放大筒节用以扩散壳程流体,并使流体从换热器壳程的两端进入壳程,从而避免了在换热器布管时考虑布管弓形的高,而使增加了同规格上换热器的布管数目并有效利用了换热器前后端的换热管从而增大了有效换热面积。
换热器试压方案(二)【关键词】换热器____【论文摘要】依据:《石油化工换热器设备施工及验收规范》sh3532-95《中低压化工设备施工与验收规范》hgj209-83《现场设备、工业管道焊接工程施工及验收规范》gb50236-98《石油化工施工安全规程》sh3505-99换热器设备装配图;业主提供的施工程序文件;一、依据:《石油化工换热器设备施工及验收规范》sh3532-95《中低压化工设备施工与验收规范》hgj209-83《现场设备、工业管道焊接工程施工及验收规范》gb50236-98《石油化工施工安全规程》sh3505-99换热器设备装配图;业主提供的施工程序文件;二、施工工艺程序:三、方法:1、施工准备:1-1、施工现场的“三通一平”已具备,设备基础已中交合格;1-2、施工方案已编制,并已审批;1-3、施工所需的机具、人员已经到位;1-4、所有用于测量的仪器已进行校核,并在使用合格周期内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
换热器制造工序过程卡
换热器是一种常见的热交换设备,用于将热量从一个流体传递到另一个流体。
换热器制造的工序过程卡包括以下几个主要步骤:
1.原材料准备:换热器的主要材料通常为金属(如钢、铜、铝等)和密封材料。
在制造过程中,需要准备这些材料,包括检查材料的质量和尺寸是否符合要求。
2.设计和加工:根据换热器的设计要求,制定相应的制造工艺流程。
这通常涉及到设备的尺寸、热传导性能、流体通道的设计等。
然后进行加工,包括切割、焊接、钻孔等工艺,将原材料制成相应的形状。
3.焊接:焊接是制造换热器过程中的重要工艺。
根据设计要求,将金属材料进行焊接,连接成一个整体。
焊接工艺包括选择合适的焊接电流和时间、焊接材料的选择、焊接接头的准备等。
4.清洗和除油:换热器制造过程中,金属材料通常会有一定程度的油污和杂质。
在下一步涂层和装配之前,需要对金属材料进行清洗和除油处理,以确保材料表面的干净和光滑。
5.涂层和防腐处理:在装配之前,换热器的金属表面需要进行涂层处理,以提高其耐腐蚀性能。
常见的涂层材料包括烤漆、喷漆、热浸镀等。
涂层能够提高材料的表面硬度、耐腐蚀性和耐高温性能。
6.装配和测试:根据设计要求,将焊接好的金属零部件进行装配。
装配工作包括热交换管、密封件、法兰连接等。
装配完成后,进行压力测试和泄漏测试,以确保换热器的性能符合设计要求。
7.填充介质:根据客户的需求和设备使用环境,填充合适的介质。
常
见的介质包括水、蒸汽、空气等。
填充介质后,进行再次测试,确保介质
流动和温度变化符合设计要求。
8.包装和出厂:最后一步是对换热器进行包装和出厂。
根据客户要求,用适当的材料进行包装,以保护换热器的表面。
然后进行最后的检查,确
保换热器的外观和性能符合要求,准备发货给客户。
总之,换热器制造的工序过程包括原材料准备、设计和加工、焊接、
清洗和除油、涂层和防腐处理、装配和测试、填充介质、包装和出厂等步骤。
每个步骤都需要严格控制和测试,以确保最终制造出的换热器具有良
好的质量和性能。