哈工程传热学数值计算大作业

合集下载

哈工程传热大作业(企业管理)

哈工程传热大作业(企业管理)

传热学大作业班级:20121515 学号:2012151531 姓名:张永宽第一题:如图所示,一个无限长矩形柱体,其横截面的边长分别为L 1和L 2,常物性。

该问题可视为二维稳态导热问题,边界条件如图中所示,其中L1=0.6m,L 2=0.4m,T w 1=60℃,T w 2=20℃,λ=200W /(m·K )。

(1) 编写程序求解二维导热方程。

(2) 绘制x =L1/2和y =L 2/2处的温度场,并与解析解进行比较。

已知矩形内的温度场的解析解为()()()()1211w2w1sh sh sin ,L L L y L x t t y x t πππ+=。

(1)根据课本164页公式(b )Tm ,n=(Tm +1,n+T m—1,n +Tm,n+1+Tm ,n-1)/4;取步长为1cm 。

编出以下程序迭代求解内部个点温度。

a=zeros(41,61); %生成41*60的矩阵. k=0:60; a(41,:)=20*s in(pi.*k/60);%矩形上边温度满足Tw2=sin (pi*x /L 1)。

a =a+60; %使四周都为给定的边界条件。

for x =1:10000%迭代10000次(估计能满足要求精度)。

for i=2:40for j =2:60 a(i ,j)=(a (i —1,j)+a (i,j-1)+a (i+1,j)+a (i,j+1))/4; %内部每一个点都为周围四个点温度和的四分之一。

en d e nd endmes h(a )t itle(’第一题(张永宽作请勿抄袭)’,’Fonts ize ',18) x label('x 轴张永宽作请勿抄袭,单位cm ','Fontsi ze',14) ylabe l(’y 轴,单位cm ’,'F ontsize',14) zlabel('t 轴,单位℃','Fon tsize ’,14) 迭代一万次后个点温度数据:迭代法温度分布图:x 轴张永宽作请勿抄袭,单位cmy 轴,单位cmt 轴,单位℃(2)Y=L2/2时的温度曲线即把第一问中第21行数据画出图即可.x 轴,单位cmt 轴,单位℃Y =L2/2处的温度误差,即用第一问中行列式第21行与解析式算出结果做差。

数值传热_数值传热学大作业3gg

数值传热_数值传热学大作业3gg

=
1 2)
(1 +
) φC
)
= φC
0

) φC

1 2
1 2

) φC
≤1
其它范围
)) φf = 2φC
MUSCL:
=
1 4
+
) φC
=1 )
= φC
0

) φC

1 4
1 4

) φC

3 4
3 4

) φC

1
其它范围
) φf
=
3 2
) φC
OSHER: = 1 )
= φC
0

) φC

2 3
五、心得体会
通过此次大作业,我们认识到大家合作的重要性,同时也锻炼了我们共同处
理问题的能力。此次作业中遇到了很困惑的一个问题,就是一开始采用规正变量 后得不到收敛解,原因是计算规正变量时分母会出现为 0 的情况,一开始的做法 是当分母为 0 时在分母上加上一个很小的数,这样做的话或导致分数值很大,导 致最终不收敛。最后我们的做法是,当分母为 0 时,所计算的边界值采用一阶迎 风形式。从这次亲身体会,我们认识到在得到离散的格式之后,不要盲目的去算, 而是应该判断其特点,然后再进行程序的编写,并且,在编程过程中要熟知语句 的用法,这样不仅会节省很多时间,而且容易发现错误。同时,我们学会了解决 问题的一些基本思想,并可以应用这些基本思想解决其它学科中所遇到的问题。
+ w
− φW
)
− ue (
f
+ e
− φP ))∆y
+
(vs (

哈工大传热学作业答案-推荐下载

哈工大传热学作业答案-推荐下载
一维非稳态导热计算 4-15、一直径为 1cm,长 4cm 的钢制圆柱形肋片,初始温度 为 25℃,其后,肋基温度突然升高到 200℃,同时温度为
25℃的气流横向掠过该肋片,肋端及两侧的表面传热系数均
为 100 W /(m2 .K ) 。试将该肋片等分成两段(见附图),并
用有限差分法显式格式计算从开始加热时刻起相邻 4 个时刻 上的温度分布(以稳定性条件所允许的时间间隔计算依据)。
4h cd

t

k
1 2
t
k
25
25
55.80
73.64
86.70
0.5
,于是有:
1 3
3
25
25
32.70
42.63
52.57
25
25
55.09
72.54
85.30
4
25
25
32.53
42.23
51.94
气间的表面传热系数为 350 W /(m2 .K ) ,外壳材料的最高允许温度为 1500℃。试用数值法
116.98
125.51
4-16、一厚为 2.54cm 的钢板,初始温度为 650℃,后置于水中淬火,其表面温度突然下 降为 93.5℃并保持不变。试用数值方法计算中心温度下降到 450℃所需的时间。已知
a 1.16 105 m2 / s 。建议将平板 8 等分,取 9 个节点,并把数值计算的结果与按海斯
a x2
1.333105 8.89877 0.022
4h
0.2966

cd

4 100 8.89877 32.258105 0.01

0.1103

哈工程-数值计算软件作业

哈工程-数值计算软件作业

数值计算软件作业1、利用mathematica 求下列函数的极限。

⑴求极限12)3131(lim +-+∞→-x x x 。

⑵求极限)ln (lim x x x x ++∞→。

⑶求极限x xx cot ln lim0→。

2、判别函数42()sin(1)f x x x x =+-在区间[-2, 2]上的单调性, 并给出单调区间。

3、求函数2369128)(xx x x f --+=的最大值、最小值、并画出函数的图形。

4、求曲线104--=x x y 与2062++=x x y 所围成图形的面积,并画出图形。

5、求解下列微分方程的数值解,并画出解函数的图形。

0)1(22=+'-+''y y y y ,1)0(,0)0(='=y y6、计算矩阵4124120235200117⎛⎫⎪⎪⎪⎪⎝⎭的行列式值、逆矩阵、特征值、特征向量、特征多项式。

7、以向量),1,1,1,1(1--=α),1,1,1,0(2-=α),1,1,0,0(3-=α)1,0,0,0(4=α为基,求向量)1,1,1,1(=β的坐标表达式。

8、绘制曲面222221, , 1x y z z x y x y z ++==+++=相交的空间图形。

9、咖啡馆配制两种饮料,甲种饮料每杯含奶粉9克、咖啡4克、糖3克,乙种饮料每杯含奶粉4克、咖啡5克、糖10克.已知每天原料的使用限额为奶粉3600克、咖啡2000克、糖3000克.如果甲种饮料每杯能获利0.7元,乙种饮料每杯能获利1.2元,每天在原料的使用限额内饮料能全部售出,每天应配制两种饮料各多少杯能获利最大?10、圆盘上有如下图所示的二十个数,请找出哪四个相邻数之和为最大,并指出它们的起始位置及最大和的值。

11、编写程序,求出能同时被2、3、5、7整除后余1的正整数,在1到10000以内的整数中有多少个?12、一副扑克牌有各种花色的牌各13张(不包括大小王),假设4个人玩牌,试编写程序,实现发牌的过程,使每家手里都有13张牌。

哈工大传热学大作业--传热学的新领域

哈工大传热学大作业--传热学的新领域

3.机械加工以及金属加工的传热学应用
①金属切削刀具的散热问题与刀具的强度决定了刀的使用寿命和被加工表面的质 量与加工精度。金属切削加工时,材料弹性和塑形变形做的功以及前后刀面 与工件表面的摩擦做功产生的热量都需要通过切屑、工件、刀具和周围介质 散失到环境中,而切削刃的磨损情况与散热的快慢最为密切。当工件材料或 者刀具材料的导热系数大时,切削区散热良好,刀具的磨损减轻,使用寿命 较长,反之,刀具因温度过高发生组织性能转变,磨损加剧,因而需要使用 不同的切削液来加快散热,延长刀具寿命。 ②刀具的散热影响了切削用量的选择,进而影响加工表面的质量,通过对刀具切 削区温度场建立传热模型进行分析,可以更合理的设计刀具结构和选择切削 量,从而提高零件的加工精度,这方面在超精密加工中显得尤为重要。
11
那么:基于对流方式的节能途径是: • 加大换热温差 • 可明显提高换热效率,但实际操作有一定难度。 主要要考虑有哪些场合涉及流体加热或冷却。 • 提高流体流速,增加紊流程度 • 注意控制流体与受热(冷却)面的相对运动方 向 • 设计合理的有利于流体运动的截面形状 • 例如炉膛形状,不仅影响散热面积,而且影响 换热效率, • 设法增大换热面积 肋片、翅片、排管… 炉膛内工件的合理堆放…
6.节能的传热学途径 (基于导热、对流、辐射)
• 总体概述:传热学是研究热量传递规律的一门科学, 它在解决许多工程问题中得到了非常广泛的应用。在研 究节能问题时,通过传热学寻找合适的途径是最根本的 措施 • 在研究节能中的传热学问题时,一般可以分成两种类 型: • 一类是强化传热过程的问题。比如,如何使工件快速 而均匀地达到加热要求,即尽可能地提高热效率,减少 能源的浪费。 • 另一类就是力求削弱传热,比如:各种加热炉的热量 尽可能少地向外界传递或散失,其他各类保温措施也都 属于此类。从节能观点来看,就是减少能量的无谓支出。

哈工程传热大作业

哈工程传热大作业

传热学大作业班级:20121515 学号:2012151531 :永宽第一题:如图所示,一个无限长矩形柱体,其横截面的边长分别为L 1和L 2,常物性。

该问题可视为二维稳态导热问题,边界条件如图中所示,其中L 1=0.6m ,L 2=0.4m ,T w1=60℃,T w2=20℃,λ=200W/(m·K)。

(1) 编写程序求解二维导热方程。

(2) 绘制x =L 1/2和y =L 2/2处的温度场,并与解析解进行比较。

已知矩形的温度场的解析解为()()()()1211w2w1sh sh sin ,L L L y L x t t y x t πππ+=。

(1)根据课本164页公式(b )Tm ,n=(Tm+1,n+Tm-1,n+Tm,n+1+Tm,n-1)/4;取步长为1cm 。

编出以下程序迭代求解部个点温度。

a=zeros(41,61); %生成41*60的矩阵。

k=0:60;a(41,:)=20*sin(pi.*k/60);%矩形上边温度满足Tw2=sin(pi*x/L1). a=a+60; %使四周都为给定的边界条件。

for x=1:10000%迭代10000次(估计能满足要求精度)。

for i=2:40 for j=2:60a(i,j)=(a(i-1,j)+a(i,j-1)+a(i+1,j)+a(i,j+1))/4; %部每一个点都为周围四个点温度和的四分之一。

end end end mesh(a)title('第一题(永宽作请勿抄袭)','Fontsize',18) xlabel('x 轴永宽作请勿抄袭,单位cm','Fontsize',14) ylabel('y 轴,单位cm','Fontsize',14) zlabel('t 轴,单位℃','Fontsize',14) 迭代一万次后个点温度数据:迭代法温度分布图:(2)Y=L2/2时的温度曲线即把第一问中第21行数据画出图即可。

计算传热学大作业

计算传热学大作业

计算传热学作业1、 一块厚度为2h=200mm 的钢板,放入T f =1000℃的炉子中加热,两表面换热系数h=174W/(m 2.℃),钢板的导热系数k=34.8 W/(m. ℃),热扩散率a=5.55×10-6m 2/s,初始温度T i =20℃. 求温度场的数值解;分别用显示、C-N 、隐式 解: 1、数学模型该问题属于典型的一维非稳态导热问题。

由于钢板两面对称受热,板内温度分布必以其中心截面为对称面。

因此,只要研究厚度为δ的一半钢板即可。

将x 轴的原点置于板的中心截面上。

这一半钢板的非稳态导热的数学描述为2、计算区域离散化:该一维非稳态导热问题可当做二维问题处理,有时间坐标τ和空间坐标x 。

采用区域离散方法A ,将空间区域等分为m 个子区域,得到m+1个节点。

如下图所示,纵坐标为时间,从一个时到另一个时层的间隔即时间步长为∆t ,每个时层都会对下一时层产生影响。

空间与时间网格交点(i ,k ),代表了时空区域的一个节点,其温度为,离散方法如下图。

综合考虑计算效率同时保证数值计算格式的稳定性,本文取空间步长∆x =0.01m ,时间步长∆t =5s ,对半平板空间的离散共得到11个节点。

x TaT 22∂∂=∂∂τ==τT T 00==∂∂x xT δλ=-=∂∂-x T T h xT f )(图 时间-空间区域离散化3、离散方程组对于一维非稳态方程,扩散项采用中心差分,非稳态项取时间向前差分。

扩散项根据时层采用不同的处理方法,得到了三种格式的离散方程组,即显式、隐式、C-N 格式,等式左右分属不同的时层。

(1) 显示差分格式: 内部节点:()]][[]][1[]][[2]][1[]1][[2j i T j i T j i T j i T xt a j i T +-+*-+∆∆*=+左边界:]][0[21]][1[2]1][0[22j T x t a j T xt a j T ⎪⎭⎫⎝⎛∆∆**-+∆∆**-=+ 右边界:()f T j T x k t a h j T x t a j T xt a j T -∆*∆***+⎪⎭⎫ ⎝⎛∆∆**-+∆∆**-=+]][10[2]][10[21]][9[2]1][10[22(2) 隐式差分格式: 内部节点:]][[]1][1[]1][[21]][1[222j i T j i T x t a j i T x t a j i T x t a -=⎪⎪⎭⎫ ⎝⎛+-∆∆*++⎪⎭⎫⎝⎛∆∆**+-+∆∆* 左边界:]][0[]1][0[)21(]1][1[222j T j T xt a j T xt a -=+∆∆**+-+∆∆**右边界:]][10[2]1][9[)2]1][10[)21(2j T xk t h a j T xt a j T xk t h a +∆*∆***=+∆∆**++∆*∆***+(3)C-N 差分格式:内部节点:()]][1[]][[2]][1[2]][[]1][1[]1][[21]1][1[22222j i T j i T j i T x t a j i T j i T x t a j i T x t a j i T x t a -+-+∆*∆*--=⎪⎪⎭⎫ ⎝⎛+-∆∆*++⎪⎭⎫⎝⎛∆∆**+-++∆*∆*左边界:]][1[]][0[)1(]1][1[)]1][0[)1(222j T j T xt a j T xt a j T xt a -∆∆*--=+∆∆*++∆∆*--右边界:fT xk t h a j T xt a j T xt a xk t h a j T xt a j T xt a xk t h a ∆*∆***-∆∆*-∆∆*+∆*∆**--=+∆∆*++∆∆*-∆*∆**--2]][9[]][10[)1(]1][9[)]1][10[)1(22224、计算结果源程序代码: 显式:#include<stdio.h>#include<time.h> #include<cstdlib> #include<math.h> #include<stdlib.h> #include <process.h> double T[11][5000]; main()int i,j;double k;/*µ¼ÈÈϵÊý*/double h;/*»»ÈÈϵÊý*/double a;/*ÈÈÀ©É¢ÂÊ*/double x1,t1;/*x1±íʾλÖò½³¤£¬ti±íʾʱ¼ä²½³¤*/ double T0;/*T0±íʾ³õʼζÈ*/double Tf;/*Tf±íʾ¯ÎÂ*/double p,q;h=174;k=34.8;a=0.00000555;T0=20;Tf=1000;x1=0.01;t1=5;/*T[199][j]=(T[198][j]+h*x1*Tf/k)/(1+h*x1/k);*/for(i=0;i<=10;i++) T[i][0]=T0;for(j=0;j<4999;j++){ T[0][j+1]=2*a*t1*(T[1][j]-T[0][j])/(x1*x1)+T[0][j];for(i=1;i<10;i++){p=a*(T[i+1][j]-2*T[i][j]+T[i-1][j])/(x1*x1);/*q=(T[i][j+1]-T[i][j])/t1;q=p;*/T[i][j+1]=p*t1+T[i][j];}T[10][j+1]=2*h*a*t1*(Tf-T[10][j])/(x1*k)+2*a*t1*(T[9][j]-T[10][j])/(x1*x1)+T[10][j];}for(i=0;i<=10;i++){printf("%f",T[i][4999]);/*´òÓ¡Êä³ö*/printf("\n");}system("pause");}隐式:#include<stdio.h>#include<time.h>#include<cstdlib>#include<math.h>#include<stdlib.h>#include <process.h>double T[11][5000];main(){int i,j;double k;/*µ¼ÈÈϵÊý*/double h;/*»»ÈÈϵÊý*/double a;/*ÈÈÀ©É¢ÂÊ*/double x1,t1;/*x1±íʾλÖò½³¤£¬t1±íʾʱ¼ä²½³¤*/ double T0;/*T0±íʾ³õʼζÈ*/double Tf;/*Tf±íʾ¯ÎÂ*/double A[11],B[11],C[11],D[11],P[11],Q[11];h=174;k=34.8;a=0.00000555;T0=20;Tf=1000;x1=0.01;t1=5;for(i=0;i<=10;i++)T[i][0]=T0;for(j=1;j<=4999;j++){for(i=1;i<=9;i++) A[i]=a*t1/(x1*x1);A[0]=0;A[10]=2*a*t1/(x1*x1);for(i=0;i<=9;i++)B[i]=-(1+2*a*t1/(x1*x1));B[0]=-(1+2*a*t1/(x1*x1));B[10]=-(1+2*a*t1*h/(k*x1))-2*a*t1/(x1*x1);for(i=1;i<=9;i++)C[i]=a*t1/(x1*x1);C[0]=2*a*t1/(x1*x1);C[10]=0;for(i=0;i<=9;i++)D[i]=-T[i][j-1];D[10]=-2*a*t1*h*Tf/(k*x1)-T[10][j-1];for(i=1;i<=10;i++){A[i] = A[i] / B[i-1];B[i] = B[i] - C[i-1] * A[i];D[i] = D[i] - A[i] * D[i-1];}T[10][j] = D[10] / B[10];for(i=9;i>=0;i--)T[i][j] = (D[i] - C[i] * T[i+1][j]) / B[i];}for(i=0;i<=9;i++){printf("%f",T[i][4999]);/*´òÓ¡Êä³ö*/printf("\n");}system("pause");}C-N:#include<stdio.h>#include<time.h>#include<cstdlib>#include<math.h>#include<stdlib.h>#include <process.h>double T[11][5000];main(){int i,j;double k;/*µ¼ÈÈϵÊý*/double h;/*»»ÈÈϵÊý*/double a;/*ÈÈÀ©É¢ÂÊ*/double x1,t1;/*x1±íʾλÖò½³¤£¬t1±íʾʱ¼ä²½³¤*/double T0;/*T0±íʾ³õʼζÈ*/double Tf;/*Tf±íʾ¯ÎÂ*/double A[11],B[11],C[11],D[11],P[11],Q[11];h=174;k=34.8;a=0.00000555;T0=20;Tf=1000;x1=0.01;t1=5;for(i=0;i<=10;i++)T[i][0]=T0;for(j=1;j<=4999;j++){for(i=1;i<=9;i++) A[i]=a*t1/(2*x1*x1);A[0]=0;A[10]=a*t1/(x1*x1);for(i=0;i<=9;i++)B[i]=-(1+a*t1/(x1*x1));B[0]=-(1+a*t1/(x1*x1));B[10]=-(1+a*t1*h/(k*x1))-a*t1/(x1*x1);for(i=1;i<=9;i++)C[i]=a*t1/(2*x1*x1);C[0]=a*t1/(x1*x1);C[10]=0;for(i=1;i<=9;i++)D[i]=-T[i][j-1]-(a*t1/(2*x1*x1))*(T[i+1][j-1]-2*T[i][j-1]+T[i-1][j-1]);D[0]=(-1+a*t1/(x1*x1))*T[0][j-1]-(a*t1/(x1*x1))*T[1][j-1];D[10]=(-a*t1*h/(k*x1)-a*t1*h/(k*x1))*Tf+(-1+a*t1*h/(k*x1)+a*t1/(x1*x1))*T[10][j-1]-a*t1*T[9][j-1]/(x1*x1);for(i=1;i<=10;i++){A[i] = A[i] / B[i-1];B[i] = B[i] - C[i-1] * A[i];D[i] = D[i] - A[i] * D[i-1];}T[10][j] = D[10] / B[10];for(i=9;i>=0;i--)T[i][j] = (D[i] - C[i] * T[i+1][j]) / B[i];}for(i=0;i<=9;i++){printf("%f",T[i][4999]);/*´òÓ¡Êä³ö*/printf("\n");}system("pause");}。

传热学数值计算大作业

传热学数值计算大作业

数值计算大作业一、用数值方法求解尺度为100mm×100mm 的二维矩形物体的稳态导热问题。

物体的导热系数λ为1.0w/m·K。

边界条件分别为: 1、上壁恒热流q=1000w/m2; 2、下壁温度t1=100℃; 3、右侧壁温度t2=0℃; 4、左侧壁与流体对流换热,流体温度tf=0℃,表面传热系数 h 分别为1w/m2·K、10 w/m2·K、100w/m2·K 和1000 w/m2·K;要求:1、写出问题的数学描述;2、写出内部节点和边界节点的差分方程;3、给出求解方法;4、编写计算程序(自选程序语言);5、画出4个工况下的温度分布图及左、右、下三个边界的热流密度分布图;6、就一个工况下(自选)对不同网格数下的计算结果进行讨论;7、就一个工况下(自选)分别采用高斯迭代、高斯——赛德尔迭代及松弛法(亚松弛和超松弛)求解的收敛性(cpu 时间,迭代次数)进行讨论;8、对4个不同表面传热系数的计算结果进行分析和讨论。

9、自选一种商业软件(fluent 、ansys 等)对问题进行分析,并与自己编程计算结果进行比较验证(一个工况)。

(自选项)1、写出问题的数学描述 设H=0.1m微分方程 22220t tx y∂∂+=∂∂x=0,0<y<H :()f th t t xλ∂-=-∂ 定解条件 x=H ,0<y<H :t=t 2 y=0,0<x<H :t=t1t 1t 2h ;t fq=1000 w/m 2y=H ,0<x<H :tq yλ∂-=∂ 2、写出内部节点和边界节点的差分方程 内部节点:()()1,,1,,1,,122220m n m n m nm n m n m n t t t t t t x y -+-+-+-++=∆∆左边界: (),1,,1,1,,,022m n m n m n m nm n m n f m n t t t t t t x x h y t t y y y xλλλ-++---∆∆∆-+++∆=∆∆∆右边界: t m,n =t 2上边界: 1,,1,,,1,022m n m n m n m nm n m n t t t t t t y y q x x x x yλλλ-+----∆∆∆+++∆=∆∆∆ 下边界: t m,n =t 13、求解过程利用matlab 编写程序进行求解,先在matlab 中列出各物理量,然后列出内部节点和边界节点的差分方程,用高斯-赛德尔迭代法计算之后用matlab 画图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传热学二维稳态导热问题的数值解法杨达文2011151419赵树明2011151427杨文晓2011151421吴鸿毅2011151416第一题:a=linspace(0,0.6,121);t1=[60+20*sin(pi*a/0.6)];t2=repmat(60,[80 121]);s=[t1;t2]; %构造矩阵for k=1:10000000 %理论最大迭代次数,想多大就设置多大S=s;for j=2:120for i=2:80S(i,j)=0.25*(S(i-1,j)+S(i+1,j)+S(i,j-1)+S(i,j+1));endendif norm(S-s)<0.0001break; %如果符合精度要求,提前结束迭代elses=S;endendS %输出数值解数值解数据量太大,这里就不打印出来,只画出温度分布。

画出温度分布:figure(1)xx=linspace(0,0.6,121);yy=linspace(0.4,0,81);[x,y]=meshgrid(xx,yy);surf(x,y,S)axis([0 0.6 0 0.4 60 80])grid onxlabel('L1')ylabel('L2')zlabel('t(温度)').60.66666777778L 1L 2t (温度)A0=[S(:,61)];for k=1:81B1(k)=A0(81-k+1);endB1 %x=L1/2时y方向的温度A1=[S(41,:)] %y=L2/2时x方向的温度x=0:0.005:0.6;y=0:0.005:0.4;A2=60+20*sin(pi*x/0.6)*((exp(pi*0.2/0.6)-exp(-pi*0.2/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6) )/2) %计算y=L2/2时x方向的解析温度B2=60+20*sin(pi*0.3/0.6)*((exp(pi*y/0.6)-exp(-pi*y/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6))/ 2) %计算x=L1/2时y方向的解析温度figure(2)subplot(2,2,1);plot(x,A1,'g-.',x,A2,'k:x'); %画出x=L1/2时y方向的温度场、画出x=L1/2时y方向的解析温度场曲线xlabel('L1');ylabel('t温度');title('y=L2/2');legend('数值解','解析解');subplot(2,2,2);plot(x,A1-A2); %画出具体温度场与解析温度场的差值曲线xlabel('L1');ylabel('差值');title('y=L2/2时,比较=数值解-解析解');subplot(2,2,3);plot(y,B1,'g-.',y,B2,'k:x'); %画出y=L2/2时x方向的温度场、画出y=L2/2时x方向的解析温度场曲线xlabel('L2');ylabel('t温度');title('x=L1/2');legend('数值解','解析解');subplot(2,2,4);plot(y,B1-B2); %画出具体温度场与解析温度场的差值曲线xlabel('L2');ylabel('差值');title('x=L1/2时,比较=数值解-解析解');y=L2/2时x方向的温度:60 60.1635347276130 60.3269574318083 60.4901561107239 60.653018915996160.8154342294146 60.9772907394204 61.1384775173935 61.298884093677961.4584005332920 61.6169175112734 61.7743263876045 61.930519281669662.0853891461909 62.2388298405943 62.3907362037523 62.541004126057762.6895306207746 62.8362138946214 62.9809534175351 63.123649991570263.2642058188844 63.4025245687647 63.5385114436490 63.672073244095163.8031184326565 63.9315571966177 64.0573015095482 64.180265191631864.3003639687311 64.4175155301449 64.5316395850212 64.642657917384664.7504944397430 64.8550752452343 64.9563286582797 65.054185283707565.1485780543131 65.2394422768254 65.3267156762441 65.410338438521565.4902532515567 65.5664053444751 65.6387425251668 65.707215216057165.7717764880854 65.8323820928694 65.8889904930310 65.941562890665265.9900632539310 66.0344583417471 66.0747177265744 66.110813815270166.1427218680003 66.1704200151959 66.1938892725421 66.213113553990066.2280796827826 66.2387774004857 66.2451993740203 66.247341200688866.2452014111934 66.2387814706441 66.2280857775556 66.213121660833566.1938993747528 66.1704320919304 66.1427358942990 66.110829762085766.0747355608048 66.0344780262737 65.9900847476605 65.941586148577365.8890154662295 65.8324087286383 65.7718047299493 65.707245003846265.6387737950858 65.5664380291767 65.4902872802189 65.410373736929465.3267521668755 65.2394798789402 65.1486166840471 65.054224854168964.9563690796505 64.8551164248743 64.7505362822981 64.642700324897664.5316824570463 64.4175587638655 64.3004074590802 64.180308831415964.0573451895733 63.9316008058186 63.8031618582281 63.672116371626463.5385541572596 63.4025667512431 63.2642473518283 63.123690755529062.9809932921539 62.8362527587866 62.6895683527611 62.541040603677462.3907713045038 62.2388634418130 62.0854211252013 61.930549515936761.7743547548873 61.6169438897778 61.4584248018242 61.298906131798361.1384972055701 60.9773079591820 60.8154488635041 60.653030848523060.4901652273162 60.3269636197632 60.1635378760476 60x=L1/2时y方向的温度:60 60.1308958471008 60.2618814819943 60.3930468323419 60.524481948785060.6562770664196 60.7885226663977 60.9213095376979 61.054728839108661.1888721614654 61.3238315901874 61.4596997681540 61.596569958966661.7345361106384 61.8736929197574 62.0141358961654 62.155961428198162.2992668485325 62.4441505006859 62.5907118062120 62.739051332642462.8892708622179 63.0414734614594 63.1957635516239 63.352246980097063.5110310927684 63.6722248074423 63.8359386883315 64.002285021688564.1713778926236 64.3433332631650 64.5182690516120 64.696305213238964.8775638224022 65.0621691561100 65.2502477791090 65.441928630549065.6373431122839 65.8366251788694 66.0399114293203 66.247341200688866.4590566635297 66.6752029193167 66.8959280998773 67.121383468913967.3517235256817 67.5871061108928 67.8276925149213 68.073647588380968.3251398551535 68.5823416279436 68.8454291264398 69.114582598162569.3899864420822 69.6718293350911 69.9603043614169 70.255609145064670.5579459853794 70.8675219958221 71.1845492460516 71.509244907413471.8418314019312 72.1825365549057 72.5315937512233 72.889242095483173.2557265760494 73.6312982331452 74.0162143310978 74.410738534857774.8151410909089 75.2296990126956 75.6546962706925 76.090423987246276.5371806363247 76.9952722483076 77.4650126199600 77.946723529732178.4407349585321 78.9473853161230 79.4670216732992 8066666666L 1t 温度y =L 2/2--1.--0.-3L 1差值y =L 2/2时,比较=数值解-解析解66778L 2t 温度x =L 1/200.050.10.150.20.250.30.350.4--1.--0.-3L 2差值x =L 1/2时,比较=数值解-解析解。

相关文档
最新文档