2019-2020年高考物理二轮复习专题02牛顿运动定律与直线运动教学案(含解析)
2020届高考物理二轮复习专题演练:牛顿运动定律与直线运动(鲁科版) Word版含答案

2022届高考物理二轮复习专题演练:牛顿运动定律与直线运动(鲁科版)一、单项选择题1.(2021·甘肃诊断)如图所示,A、B两物体叠放在一起,用手推住,让它们静靠在竖直墙边,然后释放,它们同时沿墙面对下滑,已知m A>m B,不计空气阻力,则物体B()A.只受重力一个力B.受到重力和一个摩擦力C.受到重力、一个弹力和一个摩擦力D.受到重力、一个摩擦力和两个弹力解析:选A.在竖直方向上A、B两物体都做自由落体运动,故B物体只受重力作用.2.(2021·高考新课标全国卷Ⅱ)一物块静止在粗糙的水平桌面上.从某时刻开头,物块受到一方向不变的水平拉力作用.假设物块与桌面间的最大静摩擦力等于滑动摩擦力.以a表示物块的加速度大小,F表示水平拉力的大小.能正确描述F与a之间关系的图象是()解析:选C.物块的受力如图所示,当F不大于最大静摩擦力时,物块仍处于静止状态,故其加速度为0;当F大于最大静摩擦力后,由牛顿其次定律得F-μF N=ma,即F=μF N+ma,F与a成线性关系.选项C正确.3.(2021·高考广东卷改编)如图,游乐场中,从高处A到水面B处有两条长度相同的光滑轨道.甲、乙两小孩沿不同轨道同时从A处自由滑向B处,下列说法正确的有()A.甲的切向加速度始终比乙的大B.甲、乙在同一高度的速度大小相等C.甲、乙在同一时刻总能到达同一高度D.乙比甲先到达B处解析:选B.由轨道倾斜度知甲的切向加速度先是大于乙的,后是小于乙的,A项错误.由机械能守恒定律可知,甲、乙在同一高度时速度大小相等,B项正确.开头时甲的加速度大于乙的加速度,故甲开头时下滑较快,C项错误.因开头时甲的平均加速度较大,其在整个过程中的平均速度大于乙的平均速度,所以甲比乙先到达B处,D项错误.4.(2021·郑州市高三其次次质量猜想)将一小球竖直向上抛出,小球到达最高点前的最终一秒和离开最高点后的第一秒时间内通过的路程分别为x1和x2,速度变化量的大小分别为Δv1和Δv2,假设小球所受空气阻力大小不变,则下列表述正确的是()A.x1>x2,Δv1<Δv2B.x1<x2,Δv1>Δv2C.x1<x2,Δv1<Δv2D.x1>x2,Δv1>Δv2解析:选D.因小球所受空气阻力大小不变,对小球受力分析可知,上升过程合力大于下落过程合力,上升过程加速度大于下落过程加速度,由x =12at2,Δv=at可知小球到达最高点前的最终一秒和离开最高点后的第一秒时间内,上升位移大于下落位移,上升过程速度变化量大于下降过程速度变化量.因此正确选项为D.5.(2021·高考浙江卷改编)如图所示,总质量为460 kg的热气球,从地面刚开头竖直上升时的加速度为0.5 m/s2,当热气球上升到180 m时,以5 m/s的速度向上匀速运动.若离开地面后热气球所受浮力保持不变.上升过程中热气球总质量不变,重力加速度g=10 m/s2.关于热气球,下列说法正确的是() A.所受浮力大小为4 600 NB.加速上升过程中所受空气阻力保持不变C.从地面开头上升10 s后的速度大小为5 m/sD.以5 m/s匀速上升时所受空气阻力大小为230 N。
牛顿运动定律与曲线运动(教学案)-2020年高考物理二轮复习精品资料Word版含解析

本专题解决的是物体(或带电体)在力的作用下的曲线运动的问题.高考对本专题的考查以运动的组合为线索,进而从力和能的角度进行命题,题目情景新,过程复杂,具有一定的综合性.考查的主要内容有:①曲线运动的条件和运动的合成与分解;②平抛运动规律;③圆周运动规律;④平抛运动与圆周运动的多过程组合问题;⑤应用万有引力定律解决天体运动问题;⑥带电粒子在电场中的类平抛运动问题;⑦带电粒子在磁场内的匀速圆周运动问题;⑧带电粒子在简单组合场内的运动问题等.用到的主要物理思想和方法有:运动的合成与分解思想、应用临界条件处理临界问题的方法、建立类平抛运动模型方法、等效代替的思想方法等.本专题的高频考点主要集中在万有引力定律的应用、行星、卫星的运行规律、天体质量的估算等方面,难度适中。
本专题在高考中还常考查到变轨问题、双星问题等,复习时注意抓住两条主线:一是万有引力等于向心力,二是重力等于向心力。
曲线运动是历年高考的必考内容,一般以选择题的形式出现,重点考查加速度、线速度、角速度、向心加速度等概念及其应用。
本部分知识经常与其他知识点如牛顿定律、动量、能量、机械振动、电场、磁场、电磁感应等知识综合出现在计算题中,近几年的考查更趋向于对考生分析问题、应用知识能力的考查。
一、曲线运动1.物体做曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动.2.曲线运动的轨迹:当做曲线运动的物体所受合外力为恒力时,其运动为匀变速曲线运动,运动轨迹为抛物线,如平抛运动、斜抛运动、带电粒子在匀强电场中的曲线运动.曲线运动的轨迹位于速度(轨迹上各点的切线)和合力的夹角之间,且运动轨迹总向合力一侧弯曲.二、抛体运动1.平抛运动(1)平抛运动是匀变速曲线运动(其加速度为重力加速度),可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,运动轨迹为抛物线.(2)物体做平抛运动时,运动时间由竖直高度决定,水平位移由初速度和竖直高度共同决定.(3)物体做平抛运动时,在任意相等时间间隔Δt内速度的改变量Δv大小相等、方向相同(Δv=Δv y=gΔt).(4)平抛运动的两个重要推论①做平抛运动的物体任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图1-3-1所示.由②做平抛运动的物体在任意时刻、任意位置处的瞬时速度与水平方向的夹角θ及位移与水平方向的夹角φ满足:tanθ=2tanφ.2.类平抛运动以一定的初速度将物体抛出,如果物体受的合力恒定且与初速度方向垂直,则物体所做的运动为类平抛运动,如以初速度v0垂直电场方向射入匀强电场中的带电粒子的运动.类平抛运动的性质及解题方法与平抛运动类似,也是用运动的分解法.三、圆周运动1.描述圆周运动的物理量注意:同一转动体上各点的角速度相等,皮带传动轮子边缘各点的线速度大小相等.2.向心力做圆周运动物体的向心力可以由重力、弹力、摩擦力等各种性质的力提供,也可以由各力的合力或某力的分力提供.物体做匀速圆周运动时,物体受到的合力全部提供向心力;物体做变速圆周运动时,物体的合力的方向不一定沿半径指向圆心,合力沿半径方向的分力提供向心力,合力沿切线方向的分力改变物体速度的大小.3.处理圆周运动的动力学问题的步骤(1)首先要明确研究对象;(2)对其受力分析,明确向心力的来源;(3)确定其运动轨道所在的平面、圆心的位置以及半径;(4)将牛顿第二定律应用于圆周运动,得到圆周运动中的动力学方程,有以下各种情况:解题时应根据已知条件合理选择方程形式. 四、开普勒行星运动定律1. 开普勒第一定律(轨道定律):所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
2020版高考物理二轮复习 重点讲练专题二 力和直线运动课件

A.启动时乘客受到车厢作用力的方向与车运动的方向相反 B.做匀加速运动时,第 5、6 节与第 6、7 节车厢间的作用 力之比为 3∶2 C.进站时从关闭发动机到停下来滑行的距离与关闭发动机 时的速度成正比 D.与改为 4 节动车带 4 节拖车的动车组最大速度之比为 1∶2
答案 BD 解析 列车启动时,乘客随车厢加速运动,加速度方向与车 的运动方向相同,故乘客受到车厢的作用力方向与车运动方向相 同,A 项错误;动车组运动的加速度 a=2F-8m8kmg=4Fm-kg, 则 对 6、7、8 节车厢的整体:f56=3ma+3kmg=0.75F;对于 7、8 节车厢的整体:f67=2ma+2kmg=0.5F;故 5、6 节车厢与 6、7
【答案】 BD 【解析】 设 f=kR,则由牛顿第二定律得 F 合=mg-f= ma,而 m=43πR3·ρ,故 a=g-43πRk3·ρ,由 m 甲>m 乙、ρ 甲 =ρ 乙可知 a 甲>a 乙,故 C 项错误;因甲、乙位移相同,由 v2=2ax 可知,v 甲>v 乙,B 项正确;由 x=12at2 可知,t 甲<t 乙,A 项错误; 由功的定义可知,W 克服=f·x,又 f 甲>f 乙,则 W 甲克服>W 乙克服,D 项正确.
高考分类调研
高考热点一:单个物体的匀变速直线运动
1.(2016·全国新课标Ⅲ)一质点做速度逐渐增大的匀加速直
线运动,在时间间隔 t 内位移为 s,动能变为原来的 9 倍.该质
点的加速度为( )
s
3s
A.t2
B.2t2
4s
8s
C. t2
D. t2
答案 A 解析 设初速度为 v1,末速度为 v2,根据题意可得 9·12mv12 =12mv22,解得 v2=3v1,根据 v=v0+at,可得 3v1=v1+at,解 得 v1=a2t,代入 s=v1t+12at2 可得 a=ts2,故 A 项正确.
2020届高考物理二轮复习专题教案:专题一力与运动第2课时力与直线运动 Word版含答案

第2课时 力与直线运动考点 匀变速直线运动规律的应用1.基本规律速度公式:v =v 0+at . 位移公式:x =v 0t +12at 2.速度和位移公式的推论:v 2-v 02=2ax . 中间时刻的瞬时速度:2t v =x t =v 0+v2.任意两个连续相等的时间内的位移之差是一个恒量,即Δx =x n +1-x n =aT 2. 2.解题思路建立物体运动的情景,画出物体运动示意图,并在图上标明相关位置和所涉及的物理量,明确哪些量已知,哪些量未知,然后根据运动学公式的特点恰当选择公式求解. 3.刹车问题末速度为零的匀减速直线运动问题常用逆向思维法,应特别注意刹车问题,要先判断车停下所用的时间,再选择合适的公式求解. 4.双向可逆类全过程加速度的大小和方向均不变,故求解时可对全过程列式,但需注意x 、v 、a 等矢量的正、负及物理意义. 5.平均速度法的应用在用运动学公式分析问题时,平均速度法常常能使解题过程简化.例1 (2019·湖南娄底市下学期质量检测)如图1所示水平导轨,A 、B 为弹性竖直挡板,相距L =4m .一小球自A 板处开始,以v 0=4m/s 的速度沿导轨向B 运动,它与A 、B 挡板碰撞后均以与碰前大小相等的速率反弹回来,且在导轨上做减速运动的加速度大小不变,为使小球停在AB 的中点,这个加速度的大小可能为( )图1A.47 m/s 2 B .0.5 m/s 2 C .1 m/s 2 D .1.5 m/s 2答案 A解析 物体停在AB 的中点,可知物体的路程s =nL +L2,n =0,1,2….由v 2-v 02=2as 得,|a |=v 022(nL +12L ),n =0,1,2….代入数据解得|a |=42n +1m/s 2.n =0,1,2…,将选项中加速度大小代入上式,可知只有A 项正确. 变式训练1.(多选)(2019·广东清远市期末质量检测)高铁进站近似做匀减速直线运动,依次经过A 、B 、C 三个位置,已知AB =BC ,测得AB 段的平均速度为30m/s ,BC 段的平均速度为20 m/s.根据这些信息可求得( ) A .高铁经过A 、B 、C 的速度 B .高铁在AB 段和BC 段运动的时间 C .高铁运动的加速度 D .高铁在AC 段的平均速度 答案 AD解析 设质点在A 、B 、C 三点的速度分别为v A ,v B ,v C ,根据AB 段的平均速度为30m/s ,可以得到:v A +v B2=30m/s ;根据BC 段的平均速度为20 m/s ,可以得到:v B +v C2=20m/s ;设AB=BC =x ,整个过程中的平均速度为:v =2xx 20m/s +x30m/s=24m/s ,所以有:v A +v C2=24 m/s ,联立解得:v A =34 m/s ,v B =26 m/s ,v C =14 m/s ,由于不知道AB 和BC 的具体值,则不能求解运动时间,因此无法求出其加速度的大小,故选项A 、D 正确,B 、C 错误.2.(2019·全国卷Ⅰ·18)如图2,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H .上升第一个H 4所用的时间为t 1,第四个H 4所用的时间为t 2.不计空气阻力,则t 2t 1满足( )图2A .1<t 2t 1<2 B .2<t 2t 1<3 C .3<t 2t 1<4 D .4<t 2t 1<5答案 C解析 本题应用逆向思维法求解,即运动员的竖直上抛运动可等同于从一定高度处开始的自由落体运动的逆向运动,所以第四个H4所用的时间为t 2=2×H4g ,第一个H4所用的时间为t 1=2Hg-2×34H g ,因此有t 2t 1=12-3=2+3,即3<t 2t 1<4,选项C 正确. 考点 直线运动图象的应用1.v -t 图象(1)图象意义:在v -t 图象中,图象上某点的切线斜率表示对应时刻的加速度,斜率的正负表示加速度的方向.(2)注意:加速度沿正方向不表示物体做加速运动,加速度和速度同向时物体做加速运动. 2.x -t 图象(1)图象意义:在x -t 图象上,图象上某点的切线斜率表示对应时刻的速度,斜率的正负表示速度的方向.(2)注意:在x -t 图象中,斜率的绝对值逐渐增大,则物体加速度与速度同向,物体做加速运动;反之,物体做减速运动. 3.基本思路(1)解读图象的坐标轴,理清横轴和纵轴代表的物理量和坐标点的意义. (2)解读图象的形状、斜率、截距和面积信息. 4.解题技巧(1)应用解析法和排除法,两者结合提高图象类选择题的解题准确率和速度. (2)分析转折点、两图线的交点、与坐标轴交点等特殊点和该点前后两段图线. (3)分析图象的形状变化、斜率变化、相关性等.例2 (2019·甘肃兰州市第一次诊断)如图3甲所示,质量为2kg 的物体在水平力F 作用下运动,t =0时刻开始计时,3s 末撤去F ,物体继续运动一段时间后停止,其v -t 图象的一部分如图乙所示,整个过程中阻力恒定,取g =10m/s 2,则下列说法正确的是( )图3A .水平力F 为3.2NB .水平力F 做功480JC .物体从t =0时刻开始到停止,运动的总位移为92mD .物体与水平面间的动摩擦因数为0.5 答案 B解析 撤去拉力后,由题图乙得,物体加速度的大小a =|Δv Δt |=20-125-3m/s 2=4 m/s 2.撤去拉力后,对物体受力分析,由牛顿第二定律可得,μmg =ma ,解得物体与水平面间的动摩擦因数μ=0.4,故D 项错误.由题图乙得,拉力作用时,物体做匀速直线运动,则F =μmg =0.4×2×10N =8N ,故A 项错误.拉力作用的3s 内物体的位移x 1=v 0t 1=20×3m=60m ;则水平力F 做功W =Fx 1=8×60J=480J ,故B 项正确.物体从减速到速度为零过程,v 02-0=2ax 2,解得物体从减速到停止运动的距离x 2=v 022a =2022×4m =50m .物体从t =0时刻开始到停止,运动的总位移x =x 1+x 2=60m +50m =110m .故C 项错误. 变式训练3.(2019·浙江绍兴市3月选考)某玩具汽车从t =0时刻出发,由静止开始沿直线行驶,其a -t 图象如图4所示,下列说法正确的是( )图4A.6s末的加速度比1s末的大B.1s末加速度方向与速度方向相同C.第4s内速度变化量大于零D.第6s内速度在不断变大答案 B解析由题图知6s末的加速度比1s末的小,选项A错误;0~1s内汽车从静止开始做变加速直线运动,加速度方向与速度方向相同,选项B正确;由a-t图象与t轴所围图形的“面积”表示速度的变化量,知第4s内速度变化量为零,第6s内速度在不断减小,选项C、D 错误.4.(2019·山东泰安市3月第一轮模拟)如图5,在光滑的斜面上,轻弹簧的下端固定在挡板上,上端放有物块Q,系统处于静止状态.现用一沿斜面向上的力F作用在Q上,使其沿斜面向上做匀加速直线运动,以x表示Q离开静止位置的位移,在弹簧恢复原长前,下列表示F和x之间关系的图象可能正确的是( )图5答案 A解析开始时mg sinθ=kx0;现用一沿斜面向上的力F作用在Q上,当Q离开静止位置的位移为x时,根据牛顿第二定律:F+k(x0-x)-mg sinθ=ma,解得F=kx+ma,故选A.考点牛顿运动定律的应用1.三大定律牛顿第一定律、牛顿第二定律、牛顿第三定律2.运动性质分析(1)a=0时,静止或匀速直线运动,此时合外力为0.(2)a =恒量(不等于0),且v 0和a 在同一条直线上时,物体做匀变速直线运动,此时合外力恒定.3.四种问题分析 (1)瞬时问题要注意绳、杆弹力和弹簧弹力的区别,绳和轻杆的弹力可以突变,而弹簧的弹力不能突变. (2)连接体问题要充分利用“加速度相等”这一条件或题中特定条件,交替使用整体法与隔离法. (3)超重和失重问题物体的超重、失重状态取决于加速度的方向,与速度方向无关. (4)两类动力学问题解题关键是运动分析、受力分析,充分利用加速度的“桥梁”作用.例3 如图6甲所示,光滑平台右侧与一长为L =10m 的水平木板相接,木板固定在地面上,现有一小滑块以初速度v 0=10m/s 滑上木板,恰好滑到木板右端停止.现抬高木板右端,如图乙所示,使木板与水平地面的夹角θ=37°,让滑块以相同大小的初速度滑上木板,不计滑块滑上木板时的能量损失,取g =10 m/s 2,sin37°=0.6,cos37°=0.8.求:图6(1)滑块与木板之间的动摩擦因数μ;(2)滑块从滑上倾斜木板到滑回木板底端所用的时间t . 答案 (1)0.5 (2)(1+5) s解析 (1)设滑块质量为m ,木板水平时滑块加速度大小为a ,则对滑块有μmg =ma ① 滑块恰好到木板右端停止0-v 02=-2aL ②解得μ=v 022gL=0.5③(2)当木板倾斜,设滑块上滑时的加速度大小为a 1,最大距离为s ,上滑的时间为t 1,有 μmg cos θ+mg sin θ=ma 1④ 0-v 02=-2a 1s ⑤ 0=v 0-a 1t 1⑥由④⑤⑥式,解得t 1=1s ,s =5m⑦设滑块下滑时的加速度大小为a 2,下滑的时间为t 2,有mg sin θ-μmg cos θ=ma 2⑧ s =12a 2t 22⑨由⑧⑨式解得t2=5s滑块从滑上倾斜木板到滑回木板底端所用的时间t=t1+t2=(1+5) s.变式训练5.(2019·浙江绍兴市3月选考)如图7所示,橡皮膜包住空心塑料管的底端,细线将橡皮膜固定密封,用手竖直握住塑料管保持静止状态,先将水从塑料管顶端倒入并灌至整管的三分之二处,然后在管顶处加一个带孔的瓶盖,此时橡皮膜凸出成半球状.现用力将塑料管向上加速提升一段距离,再减速上升直至速度为零.则( )图7A.加速上升时塑料管处于失重状态B.加速上升时橡皮膜底部进一步向下凸出C.减速上升时塑料管处于超重状态D.减速上升时塑料管内的水面将下降答案 B解析加速上升时,塑料管处于超重状态,水对橡皮膜的压力增大,橡皮膜的底部会进一步凸出;减速上升时,塑料管处于失重状态,水对橡皮膜的压力变小,橡皮膜凸出程度变小,水面将上升.6.(2019·湖北“荆、荆、襄、宜四地七校考试联盟”期末)如图8所示,光滑的水平地面上有两块材料完全相同的木块A、B,质量均为m,A、B之间用轻质细绳水平连接.现沿细绳所在直线施加一水平恒力F作用在A上,A、B一起开始做匀加速直线运动,在运动过程中把和木块A、B完全相同的木块C放在某一木块上面,系统仍加速运动,且始终没有相对滑动,则在放上C并达到稳定后,下列说法正确的是( )图8A .若C 放在A 上,绳上拉力不变B .若C 放在B 上,绳上拉力为F2C .若C 放在B 上,B 、C 间摩擦力为F3D .C 放在A 上比放在B 上运动时的加速度大 答案 C解析 F 拉A 使得整体运动,由牛顿第二定律:F =2ma , 对B 分析可知:F T =ma ,可得F T =F2.若C 放在A 上,三者一起加速,由整体法有F =3ma 1, 对B 由牛顿第二定律有:F T1=ma 1,联立可得F T1=F3,则绳上的拉力变小,故A 错误;若C 放在B 上,对整体F =3ma 2,对B 、C 有:F T2=2ma 2,对B 滑块F T2-F f =ma 2, 联立可得F T2=23F ,F f =F3,故B 错误,C 正确;由牛顿第二定律分析可得C 放在A 上时a 1=F 3m ,C 放在B 上时a 2=F3m ,两个加速度相同,故D 错误.考点 动力学方法分析“板—块”模型1.“板—块”模型的特点(1)一个转折——滑块与木板达到相同速度或者滑块从木板上滑下是受力和运动状态变化的转折点.(2)两个关联——转折前、后受力情况之间的关联;滑块、木板位移与板长之间的关联. (3)临界条件——加速度相同且两物体间的摩擦力为最大静摩擦力,分析此临界条件前后物体的运动状态是解题的关键. 2.分析多过程问题的基本方法应当将复杂的运动过程分解为几个子过程,就每个子过程进行求解,关键是分析每一个子过程的特征(包括受力和运动)并且要寻找各子过程之间的联系.例4 (2019·广东惠州市第二次调研)如图9,一质量M =1kg 的足够长薄木板正在水平地面上滑动,当其速度为v 0=5m/s 时将一质量m =1 kg 的小铁块(可视为质点)无初速度地轻放到木板的A 端;已知薄木板与小铁块间的动摩擦因数μ1=0.2,薄木板与地面间的动摩擦因数μ2=0.3,取g =10 m/s 2.求:图9(1)小铁块放到薄木板上瞬间铁块和木板的加速度大小a 1、a 2; (2)小铁块与薄木板的速度第一次相等时,二者的位移大小; (3)当小铁块速度刚好减小到零时,小铁块到A 端的距离. 答案 (1)2m/s 28 m/s 2(2)0.25m 1.5m (3)1.125m解析 (1)对m 由牛顿第二定律得:F f m =μ1mg =ma 1a 1=μ1mg m=2m/s 2对M 由牛顿第二定律得:F f m +F f M =Ma 2a 2=μ1mg +μ2(m +M )g M=8m/s 2(2)m 向右加速运动,M 向右减速运动,设经过时间t 二者速度相等且为v . 则对m :v =a 1t 对M :v =v 0-a 2t 解得t =0.5s ,v =1m/s二者速度第一次相等时m 的对地位移x m 1=12a 1t 2=0.25mM 的对地位移x M 1=v 0t -12a 2t 2=1.5m(3)μ1<μ2,则0.5s 后,m 在M 上会向右减速滑动,此时,m 减速时的加速度大小a m =μ1mg m=2m/s 2M 减速时的加速度大小 a M =μ2(m +M )g -μ1mg M=4m/s 2m 减速到0的时间t m =va m =0.5sM 减速到0的时间t M =va M=0.25s故小铁块速度减小到零时,木板早已停下,且不会再滑动.从速度为v 到速度减为零,木板的位移x M 2=v 22a M=0.125m小铁块的位移x m 2=v 22a m=0.25m所以小铁块离木板A 端的距离:d =x M 1+x M 2-(x m 1+x m 2)=1.125m.变式训练7.(多选)(2019·全国卷Ⅲ·20)如图10(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t =0时,木板开始受到水平外力F 的作用,在t =4s 时撤去外力.细绳对物块的拉力f 随时间t 变化的关系如图(b)所示,木板的速度v 与时间t 的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10m/s 2.由题给数据可以得出( )图10A .木板的质量为1kgB .2~4s 内,力F 的大小为0.4NC .0~2s 内,力F 的大小保持不变D .物块与木板之间的动摩擦因数为0.2 答案 AB解析 由题图(c)可知木板在0~2s 内处于静止状态,再结合题图(b)中细绳对物块的拉力f 在0~2s 内逐渐增大,可知物块受到木板的摩擦力逐渐增大,故可以判断木板受到的水平外力F 也逐渐增大,选项C 错误;由题图(c)可知木板在2~4s 内做匀加速运动,其加速度大小为a 1=0.4-04-2m/s 2=0.2 m/s 2,对木板进行受力分析,由牛顿第二定律可得F -F f =ma 1,在4~5s 内做匀减速运动,其加速度大小为a 2=0.4-0.25-4m/s 2=0.2 m/s 2,F f =ma 2,另外由于物块静止不动,同时结合题图(b)可知物块与木板之间的滑动摩擦力F f =0.2N ,解得m =1kg 、F =0.4N ,选项A 、B 正确;由于不知道物块的质量,所以不能求出物块与木板之间的动摩擦因数,选项D 错误.8.(2019·江西重点中学协作体第一次联考)如图11所示,一质量为m B =3kg ,长为L =8m 的薄木板B 放在水平面上,质量为m A =2kg 的物体A (可视为质点)在一电动机拉动下从木板左端以v 0=5m/s 的速度向右匀速运动.在物体A 带动下,木板从静止开始做匀加速直线运动,此时电动机输出功率P =40 W .已知木板与地面间的动摩擦因数μ=0.1,重力加速度g 取10 m/s 2,求:图11(1)木板B 运动的加速度大小; (2)物体A 滑离木板所用的时间. 答案 (1)1m/s 2(2)2s解析 (1)电动机对物体A 的拉力为F =P v 0物体A 匀速运动,木板B 对A 的摩擦力为F f =F 由牛顿第三定律,A 对B 的摩擦力F f ′=F f , 对木板根据牛顿第二定律有F f ′-μ(m A +m B )g =m B a 代入数据,联立解得a =1m/s 2(2)假设A 离开时,B 仍处于加速状态,由二者的位移关系有v 0t =L +12at 2代入数据解得t 1=2s, t 2=8s当t 2=8s 时,v B =at 2=8m/s ,v B >v 0,不合题意 当t 1=2s 时,v B =at 1=2m/s ,v B <v 0所以物体A 滑离木板所用的时间为2s .专题突破练1.(2019·广东清远市期末质量检测)近年来学校都非常重视足球运动.在某学校举行的颠球比赛中,小明在颠球过程中脚部几乎不动,如图1所示,图示时刻足球恰好竖直向上运动到最高点,估算足球刚被颠起时的初速度大小最接近( )图1A .6m/sB .3 m/sC .1m/sD .0.5 m/s答案 B解析 由题图可知,足球上升到的高度大约为0.7 m ,人的脚的上表面距离地面的高度约0.15m ;足球被颠起后做竖直上抛运动,设初速度为v ,上升的高度为h ,则:v 2=2gh ,所以:v =2gh =2×10×(0.7-0.15)m/s ≈3.3 m/s ,可知在四个选项中,最接近的是B 选项.2.(2019·福建三明市期末质量检测)一列火车沿直线轨道从静止出发由A 地驶向B 地,列车先做匀加速直线运动,加速度大小为a ,接着做匀减速直线运动,加速度大小为2a ,到达B 地时恰好静止,若A 、B 两地距离为s ,则火车从A 地到B 地所用时间t 为( ) A.3s 4aB.4s 3aC.3saD.3s 2a答案 C解析 设加速过程结束时的速度为v ,则v 22a +v 22·2a=s ,解得v =4as3,则整个过程中的平均速度为v =v 2=as3,则火车从A 地到B 地所用时间为t =s v=3sa,故选C.3.(2019·浙江金华十校高三期末)气悬球是近几年新兴的一项小球运动,深受人们喜爱.如图2所示,球桌台面上有无数个小孔,从小孔中喷出的气体使小球(圆形塑料片)浮离在台面上,小球受击打后在台面上快速运动.某次比赛中,当小球受击打后以速度v 0匀速直线运动至离对方球门L 处时,小孔突然停止喷气,小球恰能做匀减速直线运动到对方球门,则( )图2A .若小球以速度v 0运动到离对方球门0.5L 处小孔突然停止喷气,小球破门的速度为22v 0 B .若小球以速度v 0运动到离对方球门0.5L 处小孔突然停止喷气,小球破门的速度为v 02C .若小球以速度v 0运动到离对方球门L 处所受浮力突然减半,小球破门的速度为24v 0D .若小球以速度v 0运动到离对方球门L 处所受浮力突然减半,小球破门的速度为v 02答案 A解析 由题意知停止喷气时小球做匀减速运动,v 02=2aL ,若x =0.5L 时停止喷气,由v 02-v 12=2a ·0.5L ,得v 1=22v 0,故A 正确,B 错误;若浮力减半,则加速度大小a ′=a 2,由v 02-v 22=2a ′·L ,得v 2=22v 0,故C 、D 错误. 4.(2019·江西赣州市上学期期末)电梯顶上悬挂一根劲度系数为200N/m 的弹簧,弹簧的原长为20 cm ,在弹簧下端挂一个质量为0.4 kg 的砝码.当电梯运动时,测出弹簧长度变为23 cm ,g 取10 m/s 2,则电梯的运动状态及加速度大小为( ) A .匀加速上升,a =2.5m/s 2B .匀减速上升,a =2.5m/s 2C .匀加速上升,a =5m/s 2D .匀减速上升,a =5m/s 2 答案 C解析 由胡克定律可知,弹簧的弹力F =kx =200×(0.23-0.20) N =6N ,由牛顿第二定律知:F -mg =ma 解得:a =5m/s 2物体加速度方向向上,与电梯加速度相同,可能是加速上升,也可能是减速下降,故C 正确,A 、B 、D 错误.5.(2019·湖北恩施州2月教学质量检测)如图3甲所示,用一轻弹簧沿水平方向拉着物块在水平面上做加速运动,物块的加速度a 与弹簧的伸长量x 的关系如图乙所示(图中所标量已知),弹簧的形变始终在弹性限度内,弹簧的劲度系数为k ,重力加速度为g ,则物块的质量m 及物块与地面间的动摩擦因数μ为( )图3A .m =kcb ,μ=b g B .m =kc b ,μ=g b C .m =kb c,μ=b gD .m =kb c,μ=g b答案 A解析 对物块,根据牛顿第二定律:kx -μmg =ma ,解得a =k m x -μg ,结合题图乙可知,k m=b c ,-μg =-b ,解得m =kc b ,μ=bg,故选A. 6.(2019·江西南昌市一模)一质量为1kg 的小物块静止在光滑水平面上,t =0时刻给物块施加一个水平向右的拉力F ,其速度的二次方随位移变化的图象为经过点P (5,25)的直线,如图4所示,则( )图4A .小物块做匀速直线运动B .水平拉力F 的大小为2.5NC .5s 内小物块的位移为5mD .5s 末小物块的速度为25m/s 答案 B解析 由F =ma 及v 2=2ax 得v 2=2F m ·x ,故2F m =255,得F =2.5N小物块做匀加速运动的加速度大小为a =F m=2.5m/s 25s 末v =at =12.5m/s 5s 内x =12at 2=31.25m ,故B 正确,A 、C 、D 错误.7.(2019·山东菏泽市下学期第一次模拟)一小物块从倾角为α=30°的足够长的斜面底端以初速度v 0=10m/s 沿斜面向上运动(如图5所示),已知物块与斜面间的动摩擦因数μ=33,g 取10m/s 2,则物块在运动时间t =1.5s 时离斜面底端的距离为( )图5A .3.75mB .5mC .6.25mD .15m答案 B解析 小物块沿斜面向上运动时加速度大小为a =g sin α+μg cos α=10m/s 2,小物块运动到最高点的时间t =v 0a=1s<1.5s ,由于mg sin α=μmg cos α,小物块运动到最高点速度为零时即停止,故此时小物块离斜面底端距离为x =v 022a=5m ,选项B 正确.8.(2019·江苏无锡市上学期期末)如图6所示,水平传送带以速度v 0向右匀速运动,在传送带的右侧固定一弹性挡杆,在t =0时刻,将工件轻轻放在传送带的左端,当工件运动到弹性挡杆所在的位置时与挡杆发生碰撞,已知碰撞时间极短,不计碰撞过程的能量损失.则从工件开始运动到与挡杆第二次碰撞前的运动过程中,下列工件运动的v -t 图象可能的是( )图6答案 C解析 工件与弹性挡杆发生碰撞后,其速度的方向发生改变,应取负值,故A 、B 错误;工件与弹性挡杆发生碰撞前的加速过程中和工件与弹性挡杆碰撞后的减速过程中所受滑动摩擦力不变,所以两过程中加速度不变,故C 正确,D 错误.9.(2019·安徽皖江名校联盟摸底大联考)将两质量不同的物体P 、Q 放在倾角为θ的光滑斜面体上,如图7甲所示,在物体P 上施加沿斜面向上的恒力F ,使两物体沿斜面向上做匀加速直线运动;图乙为仅将图甲中的斜面体调整为水平,同样在P 上加水平恒力F ;图丙为两物体叠放在一起,在物体P 上施加一竖直向上的恒力F ,使二者向上加速运动.三种情况下两物体的加速度大小分别为a 甲、a 乙、a 丙,两物体间的作用力分别为F 甲、F 乙、F 丙.则下列说法正确的是( )图7A .a 乙最大,F 乙最大B .a 丙最大,F 丙最大C .a 甲=a 乙=a 丙,F 甲=F 乙=F 丙D .a 乙>a 甲>a 丙,F 甲=F 乙=F 丙答案 D解析 假设物体P 的质量为M ,物体Q 的质量为m .由牛顿第二定律,对图甲中的物体P 和Q 有:F -(M +m )g sin θ=(M +m )a 甲,对物体Q :F 甲-mg sin θ=ma 甲,解得:a 甲=F M +m-g sin θ,F 甲=Fm M +m ;同理对图乙,解得a 乙=F M +m ,F 乙=Fm M +m;同理对图丙,解得a 丙=FM +m-g 、F 丙=FmM +m;显然a 乙>a 甲>a 丙,F 甲=F 乙=F 丙,D 正确. 10.(多选)(2019·贵州省部分重点中学教学质量评测)如图8所示,滑块A 沿表面粗糙的固定斜面B 加速下滑.下列做法中,一定能使A 下滑时加速度减小的是( )图8A .在A 上放一物块B .在A 上施一竖直向下的力C .在A 上施一垂直斜面向下的力D .在A 上施一竖直向上且小于A 重力的力 答案 CD解析 设滑块A 与斜面B 之间的动摩擦因数为μ,斜面的倾角为θ,滑块A 沿表面粗糙的固定斜面B 加速下滑的加速度为a 1,则有:mg sin θ-μmg cos θ=ma 1,a 1=g sin θ-μg cos θ,在A 上放一物块,相当于增大A 的质量,对A 的加速度没有影响,故A 错误.在A 上施一竖直向下的力有:(F +mg )sin θ-μ(F +mg )cos θ=ma 2,a 2=g sin θ-μg cos θ+F sin θ-μF cos θm ,因为加速下滑有:μ<tan θ=sin θcos θ,即sin θ>μcos θ,F sin θ>μF cos θ,所以a 2>a 1,故B 错误.在A 上施一垂直斜面向下的力,同理分析有:mg sinθ-μmg cos θ-μF =ma 3,a 3=g sin θ-μg cos θ-μFm<a 1,故C 正确.在A 上施一竖直向上且小于A 重力的力,有:(mg -F )sin θ-μ(mg -F )cos θ=ma 4,a 4=g sin θ-μg cos θ+μF cos θ-F sin θm<a 1,故D 正确.11.(2019·浙江嘉丽3月联考)如图9所示,我国“辽宁号”航母的舰载机采用滑跃起飞方式,即飞机依靠自身发动机从静止开始加速至滑跃起飞,滑跃仰角为θ.其起飞跑道可视为由长度为l 1=1.6×102m 的水平跑道和长度为l 2=20m 的倾斜跑道两部分组成,水平跑道与倾斜跑道末端的高度差h =4m .已知质量m =2.0×104kg 的舰载机喷气发动机推力大小恒为F =1.2×105N ,方向与速度方向相同.若飞机起飞过程中受到的阻力大小恒为飞机重力的0.1倍,飞机质量视为不变并看成质点,重力加速度g 取10m/s 2,航母处于静止状态.图9(1)求飞机在水平跑道运动的时间; (2)求飞机在倾斜跑道上的加速度大小;(3)为了使飞机速度在倾斜跑道的末端达到4920m/s ,外界还需要在整个水平轨道加速阶段对飞机施加助推力,求助推力F 推的大小. 答案 (1)8s (2)3m/s 2(3)2.0×105N解析 (1)飞机在水平跑道上运动时,水平方向受到推力与阻力作用,设加速度大小为a 1、运动时间为t 1,有F -F f =ma 1 l 1=12a 1t 12解得:t 1=8s(2)飞机在倾斜跑道上运动时,沿倾斜跑道方向受到推力、阻力与重力沿倾斜跑道的分力作用,设沿倾斜跑道方向的加速度大小为a 2F -F f -mg sin θ=ma 2 sin θ=h l 2=15解得:a 2=3m/s 2(3)在水平轨道上:F 推+F -F f =mav 12=2al 1在倾斜跑道上:v 22-v 12=2a 2l 2 解得:F 推=2.0×105N.12.(2019·河北衡水中学高考模拟)如图10甲所示,地面上有一长为l =1m 、高为h =0.8m 、质量M =2kg 的木板,木板的右侧放置一个质量为m =1kg 的木块(可视为质点),已知木板与木块之间的动摩擦因数为μ1=0.4,木板与地面之间的动摩擦因数为μ2=0.6,初始时两者均静止.现对木板施加一水平向右的拉力F ,拉力F 随时间的变化如图乙所示,已知最大静摩擦力等于滑动摩擦力,取g =10m/s 2.求:图10(1)前2s 木板加速度的大小;(2)木块落地时距离木板左侧的水平距离Δs . 答案 (1)2m/s 2(2)1.68m解析 (1)木块在木板上滑行的最大加速度为a 1,则 μ1mg =ma 1 解得:a 1=4m/s 2保持木块与木板一起做匀加速运动的最大拉力F m =μ2(M +m )g +(M +m )a 1=30N.因F 1=24N<F m =30N ,故木块与木板一起做匀加速运动,由牛顿第二定律可得:F 1-μ2(M +m )g =(M +m )a解得:a =2m/s 2(2)2s 末木块与木板的速度为v ,由运动学知识可得:v =at 1=4m/s2s 后F 2=34N>F m =30N ,木块和木板发生相对滑动,木块加速度为a 1,木板加速度为a 2F 2-μ1mg -μ2(M +m )g =Ma 2经时间t 2二者分离,此时由运动学规律可得:vt 2+12a 2t 22-(vt 2+12a 1t 22)=l解得:a 2=6m/s 2,t 2=1s 此时木块的速度v 块=v +a 1t 2 木板的速度:v 板=v +a 2t 2木块与木板分离至滑落到地面的时间为t 3,由平抛运动知识可得:h =12gt 32在t 3时间内,木块在水平方向向前的位移为:s 块=v 块t 3木块与木板分离后,木板的加速度为a 3,由牛顿第二定律可得:F 2-μ2Mg =Ma 3 在t 3时间内,木板在水平方向向前的位移为:s 板=v 板t 3+12a 3t 32所以,木块落地时距离木板左侧:Δs =s 板-s 块联立以上式子解得:Δs=1.68m.。
2020高考物理二轮复习专题二力与直线运动教学案

【2019最新】精选高考物理二轮复习专题二力与直线运动教学案考情分析命题解读本专题的考点分为两大板块,一个是运动学部分,另一个为牛顿运动定律,其中,匀变速直线运动的规律及运动图象问题和牛顿运动定律及应用为高频考点。
从近三年命题情况看,命题特点为:(1)注重基础与迁移。
如匀变速直线运动的规律及非常规运动图象问题,行车安全问题等考查学生的理解能力。
难度属于中等。
(2)注重过程与方法。
如板块问题、多过程问题等,以选择题的形式考查学生的推理能力,以计算题的形式考查学生的分析综合能力。
难度属于偏难。
整体难度偏难,命题指数★★★★★,复习目标是达B冲A。
1.(2017·徐州××县中学高三第一次质检)一个做匀减速直线运动的物体,经过3 s速度刚好减为零。
若测得该物体在最后1 s内的位移是1 m,那么该物体在这3 s内的平均速度大小是( )A.1 m/sB.3 m/sC.5 m/sD.9 m/s解析采用逆向思维法,根据x=at2得,物体的加速度大小a== m/s2=2 m/s2,则物体的初速度v0=at′=23 m/s=6 m/s,物体在这3 s内的平均速度== m/s=3 m/s,故B项正确,A、C、D项错误。
答案B2.(2017·江苏清江中学月考)位于水平面上质量为m的物体,在大小为F、方向与水平面成θ角的推力作用下做加速运动,物体与水平面间的动摩擦因数为μ,则物体的加速度大小为( )图1A. B.Fcos θmC. D.Fcos θ-μ(mg+Fsin θ)m解析对物体受力分析如图所示,在水平方向: Fcos θ-f=ma,在竖直方向:FN-Fsin θ-mg=0,又f=μFN,以上联立解得a=,故D项正确。
答案D3.(2017·扬州模拟)图2甲是某人站在力传感器上做下蹲、起跳动作的示意图,中间的“·”表示人的重心。
图乙是根据传感器采集到的数据画出的力-时间图象。
高考物理二轮复习 第一部分 (专题突破+破译命题密码)专题二 牛顿运动定律与直线运动课件

③ ④ ⑤
⑥ ⑦
1.符号确定
在匀变速直线运动中,一般规定初速度v0的方向为正方向(但不
绝对,也可规定为负方向),凡与正方向相同的矢量为正值,相反的 矢量为负值,这样就把公式中的矢量运算转换成了代数运算。
2.应用技巧
(1)匀变速直线运动的基本公式涉及五个物理量v0、vt、x、a和t, 这五个物理量中最多只能有三个是独立的,但只要其中三个物理量 确定之后,另外两个就唯一确定了。 (2)物体做匀减速直线运动,减速为零后再反向运动,如果整个 过程加速度恒定,则可对整个过程直接应用矢量式。
3.将地面上静止的货物 竖直向上吊起,货物由地面运动至最 高点的过程中,v-t图象如图2-2所 示。以下判断正确的是 ( ) 图2-2
A.前3 s内货物处于超重状态
B.最后2 s内货物只受重力作用 C.前3 s内与最后2 s内货物的平均速度相同 D.第3 s末至第5 s末的过程中,货物的机械能守恒
解析:选 AC
Δv 由v-t图象可知前3 s内,a= =2 m/s2,货 Δt
物具有向上的加速度,故处于超重状态,选项A正确;最后2 s Δv 内加速度a′= =-3 m/s2,小于重力加速度,故吊绳拉力 Δt 1 不为零,选项B错误;根据 v = v=3 m/s可知选项C正确;第 2 3 s末至第5 s末的过程中,货物匀速上升,货物机械能增加, 选项D错误。
[解析] 设开始时甲的加速度为 a1,乙的加速度为 a2, 第一段时间 t 内 1 2 对甲:x1= a1t 2 v1=a1t ① ②
1 2 对乙:x2= a2t 2 v2=a2t 又 a2=2a1 第二段时间 t 内 1 对甲:x1′=v1t+ (2a1)t2 2 1a2 2 对乙:x2′=v2t+ t 22 x1+x1′ 5 取立①~⑦解得: = 。 x2+x2′ 7 [答案] 5∶7
(通用版)2020高考物理二轮复习专题教案:一力与运动第2课时力与直线运动教案

第2课时 力与直线运动考点匀变速直线运动规律的应用1.基本规律速度公式:v =v 0+at . 位移公式:x =v 0t +12at 2.速度和位移公式的推论:v 2-v 02=2ax . 中间时刻的瞬时速度:2t v =x t =v 0+v2.任意两个连续相等的时间内的位移之差是一个恒量,即Δx =x n +1-x n =aT 2. 2.解题思路建立物体运动的情景,画出物体运动示意图,并在图上标明相关位置和所涉及的物理量,明确哪些量已知,哪些量未知,然后根据运动学公式的特点恰当选择公式求解. 3.刹车问题末速度为零的匀减速直线运动问题常用逆向思维法,应特别注意刹车问题,要先判断车停下所用的时间,再选择合适的公式求解. 4.双向可逆类全过程加速度的大小和方向均不变,故求解时可对全过程列式,但需注意x 、v 、a 等矢量的正、负及物理意义. 5.平均速度法的应用在用运动学公式分析问题时,平均速度法常常能使解题过程简化.例1 (2019·湖南娄底市下学期质量检测)如图1所示水平导轨,A 、B 为弹性竖直挡板,相距L =4m .一小球自A 板处开始,以v 0=4m/s 的速度沿导轨向B 运动,它与A 、B 挡板碰撞后均以与碰前大小相等的速率反弹回来,且在导轨上做减速运动的加速度大小不变,为使小球停在AB 的中点,这个加速度的大小可能为( )图1A.47 m/s 2 B .0.5 m/s 2 C .1 m/s 2 D .1.5 m/s 2答案 A解析 物体停在AB 的中点,可知物体的路程s =nL +L2,n =0,1,2….由v 2-v 02=2as 得,|a |=v 022(nL +12L ),n =0,1,2….代入数据解得|a |=42n +1m/s 2.n =0,1,2…,将选项中加速度大小代入上式,可知只有A 项正确. 变式训练1.(多选)(2019·广东清远市期末质量检测)高铁进站近似做匀减速直线运动,依次经过A 、B 、C 三个位置,已知AB =BC ,测得AB 段的平均速度为30m/s ,BC 段的平均速度为20 m/s.根据这些信息可求得( ) A .高铁经过A 、B 、C 的速度 B .高铁在AB 段和BC 段运动的时间 C .高铁运动的加速度 D .高铁在AC 段的平均速度 答案 AD解析 设质点在A 、B 、C 三点的速度分别为v A ,v B ,v C ,根据AB 段的平均速度为30m/s ,可以得到:v A +v B2=30m/s ;根据BC 段的平均速度为20 m/s ,可以得到:v B +v C2=20m/s ;设AB=BC =x ,整个过程中的平均速度为:v =2xx 20m/s +x30m/s=24m/s ,所以有:v A +v C2=24 m/s ,联立解得:v A =34 m/s ,v B =26 m/s ,v C =14 m/s ,由于不知道AB 和BC 的具体值,则不能求解运动时间,因此无法求出其加速度的大小,故选项A 、D 正确,B 、C 错误.2.(2019·全国卷Ⅰ·18)如图2,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H .上升第一个H 4所用的时间为t 1,第四个H 4所用的时间为t 2.不计空气阻力,则t 2t 1满足()图2A .1<t 2t 1<2B .2<t 2t 1<3C .3<t 2t 1<4 D .4<t 2t 1<5答案 C解析 本题应用逆向思维法求解,即运动员的竖直上抛运动可等同于从一定高度处开始的自由落体运动的逆向运动,所以第四个H4所用的时间为t 2=2×H4g ,第一个H4所用的时间为t 1=2Hg-2×34H g ,因此有t 2t 1=12-3=2+3,即3<t 2t 1<4,选项C 正确. 考点直线运动图象的应用1.v -t 图象(1)图象意义:在v -t 图象中,图象上某点的切线斜率表示对应时刻的加速度,斜率的正负表示加速度的方向.(2)注意:加速度沿正方向不表示物体做加速运动,加速度和速度同向时物体做加速运动. 2.x -t 图象(1)图象意义:在x -t 图象上,图象上某点的切线斜率表示对应时刻的速度,斜率的正负表示速度的方向.(2)注意:在x -t 图象中,斜率的绝对值逐渐增大,则物体加速度与速度同向,物体做加速运动;反之,物体做减速运动. 3.基本思路(1)解读图象的坐标轴,理清横轴和纵轴代表的物理量和坐标点的意义. (2)解读图象的形状、斜率、截距和面积信息. 4.解题技巧(1)应用解析法和排除法,两者结合提高图象类选择题的解题准确率和速度. (2)分析转折点、两图线的交点、与坐标轴交点等特殊点和该点前后两段图线. (3)分析图象的形状变化、斜率变化、相关性等.例2 (2019·甘肃兰州市第一次诊断)如图3甲所示,质量为2kg 的物体在水平力F 作用下运动,t =0时刻开始计时,3s 末撤去F ,物体继续运动一段时间后停止,其v -t 图象的一部分如图乙所示,整个过程中阻力恒定,取g =10m/s 2,则下列说法正确的是( )图3A .水平力F 为3.2NB .水平力F 做功480JC .物体从t =0时刻开始到停止,运动的总位移为92mD .物体与水平面间的动摩擦因数为0.5 答案 B解析 撤去拉力后,由题图乙得,物体加速度的大小a =|Δv Δt |=20-125-3m/s 2=4 m/s 2.撤去拉力后,对物体受力分析,由牛顿第二定律可得,μmg =ma ,解得物体与水平面间的动摩擦因数μ=0.4,故D 项错误.由题图乙得,拉力作用时,物体做匀速直线运动,则F =μmg =0.4×2×10N =8N ,故A 项错误.拉力作用的3s 内物体的位移x 1=v 0t 1=20×3m=60m ;则水平力F 做功W =Fx 1=8×60J=480J ,故B 项正确.物体从减速到速度为零过程,v 02-0=2ax 2,解得物体从减速到停止运动的距离x 2=v 022a =2022×4m =50m .物体从t =0时刻开始到停止,运动的总位移x =x 1+x 2=60m +50m =110m .故C 项错误. 变式训练3.(2019·浙江绍兴市3月选考)某玩具汽车从t =0时刻出发,由静止开始沿直线行驶,其a -t 图象如图4所示,下列说法正确的是( )图4A .6s 末的加速度比1s 末的大B .1s 末加速度方向与速度方向相同C .第4s 内速度变化量大于零D .第6s 内速度在不断变大 答案 B解析 由题图知6s 末的加速度比1s 末的小,选项A 错误;0~1s 内汽车从静止开始做变加速直线运动,加速度方向与速度方向相同,选项B 正确;由a -t 图象与t 轴所围图形的“面积”表示速度的变化量,知第4s 内速度变化量为零,第6s 内速度在不断减小,选项C 、D 错误.4.(2019·山东泰安市3月第一轮模拟)如图5,在光滑的斜面上,轻弹簧的下端固定在挡板上,上端放有物块Q ,系统处于静止状态.现用一沿斜面向上的力F 作用在Q 上,使其沿斜面向上做匀加速直线运动,以x 表示Q 离开静止位置的位移,在弹簧恢复原长前,下列表示F和x之间关系的图象可能正确的是( )图5答案 A解析开始时mg sinθ=kx0;现用一沿斜面向上的力F作用在Q上,当Q离开静止位置的位移为x时,根据牛顿第二定律:F+k(x0-x)-mg sinθ=ma,解得F=kx+ma,故选A.考点牛顿运动定律的应用1.三大定律牛顿第一定律、牛顿第二定律、牛顿第三定律2.运动性质分析(1)a=0时,静止或匀速直线运动,此时合外力为0.(2)a=恒量(不等于0),且v0和a在同一条直线上时,物体做匀变速直线运动,此时合外力恒定.3.四种问题分析(1)瞬时问题要注意绳、杆弹力和弹簧弹力的区别,绳和轻杆的弹力可以突变,而弹簧的弹力不能突变.(2)连接体问题要充分利用“加速度相等”这一条件或题中特定条件,交替使用整体法与隔离法.(3)超重和失重问题物体的超重、失重状态取决于加速度的方向,与速度方向无关.(4)两类动力学问题解题关键是运动分析、受力分析,充分利用加速度的“桥梁”作用.例3如图6甲所示,光滑平台右侧与一长为L=10m的水平木板相接,木板固定在地面上,现有一小滑块以初速度v0=10m/s滑上木板,恰好滑到木板右端停止.现抬高木板右端,如图乙所示,使木板与水平地面的夹角θ=37°,让滑块以相同大小的初速度滑上木板,不计滑块滑上木板时的能量损失,取g=10 m/s2,sin37°=0.6,cos37°=0.8.求:。
高考物理二轮复习优质PPT直线运动和牛顿运动定律

【名校课堂】获奖P P T - 高考物理二轮复习课件:专题一直线运动 和牛顿 运动定 律(最 新版本 )推荐
【名师点睛】非常规图象要一审、二列、三判
【名校课堂】获奖P P T - 高考物理二轮复习课件:专题一直线运动 和牛顿 运动定 律(最 新版本 )推荐
【名校课堂】获奖P P T - 高考物理二轮复习课件:专题一直线运动 和牛顿 运动定 律(最 新版本 )推荐
【名校课堂】获奖P P T - 高考物理二轮复习课件:专题一直线运动 和牛顿 运动定 律(最 新版本 )推荐
【名校课堂】获奖P P T - 高考物理二轮复习课件:专题一直线运动 和牛顿 运动定 律(最 新版本 )推荐
(2)速度大者追速度小者:
【名校课堂】获奖P P T - 高考物理二轮复习课件:专题一直线运动 和牛顿 运动定 律(最 新版本 )推荐
1at2
2
整理得3at2-2v0t+2x=0
这是一个关于时间t的一元二次方程,当根的判别式
Δ=(-2v0)2-4·3a·2x=0时, 两车刚好不相撞,所以要使两车不相撞,A车的初速度v0应满足的条件是 v0≤ 6 a。x
【名校课堂】获奖P P T - 高考物理二轮复习课件:专题一直线运动 和牛顿 运动定 律(最 新版本 )推荐
【名校课堂】获奖P P T - 高考物理二轮复习课件:专题一直线运动 和牛顿 运动定 律(最 新版本 )推荐
【名校课堂】获奖P P T )推荐
【解析】两车不相撞的临界条件是,A车追上B车时其速度与B车相等。设A、B两车 从相距x到A车追上B车时,A车的位移为xA、末速度为vA、所用时间为t;B车的位移 为xB、末速度为vB,运动过程如图所示,现用三种方法解答如下:
【名校课堂】获奖P P T - 高考物理二轮复习课件:专题一直线运动 和牛顿 运动定 律(最 新版本 )推荐
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考物理二轮复习专题02牛顿运动定律与直线运动教学案(含解析)牛顿第二定律是高考中每年必考的热点内容,既会单独考查,又会与电磁学内容结合考查学生的综合处理问题的能力.近几年高考主要考查匀变速直线运动的公式、规律及运动图象的应用,题型多以选择题和计算题为主,题目新颖,与生活实际XXX密切.考查直线运动和力的关系时大多综合牛顿运动定律、受力分析、运动过程分析等内容. 牛顿定律是历年高考重点考查的内容之一。
对这部分内容的考查非常灵活,选择、实验、计算等题型均可以考查。
其中用整体法和隔离法处理问题,牛顿第二定律与静力学、运动学的综合问题,物体的平衡条件等都是高考热点;对牛顿第一、第三定律的考查经常以选择题或融合到计算题中的形式呈现。
另外,牛顿运动定律在实际中的应用很多,如弹簧问题、传送带问题、传感器问题、超重失重问题、同步卫星问题等等,应用非常广泛,尤其要注意以天体问题为背景的信息给予题,这类试题不仅能考查考生对知识的掌握程度,而且还能考查考生从材料、信息中获取要用信息的能力,因此备受命题专家的青睐。
一、匀变速直线运动的规律1.匀变速直线运动的公式2.匀变速直线运动的规律的应用技巧(1)任意相邻相等时间内的位移之差相等,即Δx=x2-x1=x3-x2=…=aT2,x m-x n=(m-n)aT2.(2)某段时间的中间时刻的瞬时速度等于该段时间内的平均速度,即v t/2=(3)对于初速度为零的匀变速直线运动,可尽量利用初速度为零的运动特点解题.如第n秒的位移等于前n秒的位移与前n-1秒的位移之差,即x′n=x n-x n-1=an2-a(n-1)2=a(2n-1).(4)逆向思维法:将末速度为零的匀减速直线运动转换成初速度为零的匀加速直线运动处理.末速度为零的匀减速直线运动,其逆运动为初速度为零的匀加速直线运动,两者加速度相同.如竖直上抛运动上升阶段的逆运动为自由落体运动,竖直上抛运动上升阶段的最后1 s内的位移与自由落体运动第1 s的位移大小相等.(5)加速度不变的匀减速直线运动涉及反向运动时(先减速后反向加速),可对全过程直接应用匀变速运动的规律解题.如求解初速度为19.6 m/s的竖直上抛运动中3 s末的速度,可由v t=v0-gt直接解得v t=-9.8 m/s,负号说明速度方向与初速度相反.3.图象问题(1)两种图象(2)v-t图象的特点①v-t图象上只能表示物体运动的两个方向,t轴上方代表的是“正方向”,t轴下方代表的是“负方向”,所以v-t图象只能描述物体做“直线运动”的情况,不能描述物体做“曲线运动” 的情况.②v-t图象的交点表示同一时刻物体的速度相等.③v-t图象不能确定物体的初始位置.(3)利用运动图象分析运动问题要注意以下几点①确定图象是v-t图象还是x-t图象.②明确图象与坐标轴交点的意义.③明确图象斜率的意义:v-t图象中图线的斜率或各点切线的斜率表示物体的加速度,斜率的大小表示加速度的大小,斜率的正负反映了加速度的方向;x-t图象中图线的斜率或各点切线的斜率表示物体的速度,斜率的大小表示速度的大小,斜率的正负反映了速度的方向.④明确图象与坐标轴所围的面积的意义.⑤明确两条图线交点的意义.二、牛顿第二定律的四性性质内容瞬时性力与加速度同时产生、同时消失、同时变化同体性在公式F=ma中,m、F、a都是同一研究对象在同一时刻对应的物理量矢量性加速度与合力方向相同当物体受几个力的作用时,每一个力分别产生的加速度只与此力有关,独立性与其他力无关;物体的加速度等于所有分力产生的加速度分量的矢量和三、超重与失重1.物体具有向上的加速度(或具有向上的加速度分量)时处于超重状态,此时物体重力的效果变大.2.物体具有向下的加速度(或具有向下的加速度分量)时处于失重状态,此时物体重力的效果变小;物体具有向下的加速度等于重力加速度时处于完全失重状态,此时物体重力的效果消失.注意:①重力的效果指物体对水平面的压力、对竖直悬绳的拉力以及浮力等;②物体处于超重或失重(含完全失重)状态时,物体的重力并不因此而变化.四、力F与直线运动的关系五、匀变速直线运动规律的应用匀变速直线运动问题,涉及的公式较多,求解方法较多,要注意分清物体的运动过程,选取简洁的公式和合理的方法分析求解,切忌乱套公式,一般情况是对任一运动过程寻找三个运动学的已知量,即知三求二,若已知量超过三个,要注意判断,如刹车类问题,若已知量不足三个,可进一步寻找该过程与另一过程有关系的量,或该物体与另一物体有关系的量,一般是在时间、位移、速度上有关系,然后联立关系式和运动学公式求解,且解题时一定要注意各物理量的正负.六、追及、相遇问题1.基本思路2.追及问题中的临界条件(1)速度大者减速(如匀减速直线运动)追速度小者(如匀速运动):①当两者速度相等时,若追者位移仍小于被追者位移,则永远追不上,此时两者间有最小距离.②若两者速度相等时,两者的位移也相等,则恰能追上,也是两者避免碰撞的临界条件.③若两者位移相等时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,其间速度相等时两者间距离有一个较大值.(2)速度小者加速(如初速度为零的匀加速直线运动)追速度大者(如匀速运动):①当两者速度相等时有最大距离.②当两者位移相等时,即后者追上前者.3.注意事项(1)追者和被追者速度相等是能追上、追不上或两者间距最大、最小的临界条件.(2)被追的物体做匀减速直线运动时,要判断追上时被追的物体是否已停止.七、动力学的两类基本问题1.已知物体的受力情况,确定物体的运动情况处理方法:已知物体的受力情况,可以求出物体的合外力,根据牛顿第二定律可以求出物体的加速度,再利用物体的初始条件(初位置和初速度),根据运动学公式就可以求出物体的位移和速度,也就是确定了物体的运动情况.2.已知物体的运动情况,确定物体的受力情况处理方法:已知物体的运动情况,由运动学公式求出加速度,再根据牛顿第二定律就可以确定物体所受的合外力,由此推断物体受力情况.八、动力学中的临界问题解答物理临界问题的关键是从题述信息中寻找出临界条件.许多临界问题题述中常用“恰好”、“最大”、“至少”、“恰好不相撞”、“恰好不脱离”……词语对临界状态给出暗示.也有些临界问题中不显含上述常见的“临界术语”,但审题时会发现某个物理量在变化过程中会发生突变,则该物理量突变时物体所处的状态即为临界状态.审题时,一定要抓住这些特定的词语,明确含义,挖掘内涵,找出临界条件.高频考点一运动图象问题例1. (多选)甲、乙两辆汽车在平直公路上做直线运动,t=0时刻两汽车同时经过公路旁的同一个路标.此后两车运动的速度-时间图象 (v-t图象)如图所示,则关于两车运动的说法中正确的是( )A.0~10 s时间内,甲、乙两车在逐渐靠近B.5~15 s时间内,甲、乙两车的位移大小相等C.t=10 s时两车的速度大小相等、方向相反D.t=20 s时两车在公路上相遇【变式探究】若货物随升降机运动的v-t图象如图所示(竖直向上为正),则货物受到升降机的支持力F与时间t关系的图象可能是( )解析:选B.根据v-t图象可知电梯的运动情况:加速下降→匀速下降→减速下降→加速上升→匀速上升→减速上升,根据牛顿第二定律F-mg=ma可判断支持力F的变化情况:失重→等于重力→超重→超重→等于重力→失重,故选项B正确.高频考点二动力学规律的应用例2、xx年1月9日,合肥新年车展在明珠广场举行,除了馆内的展示,本届展会还在外场举办了汽车特技表演,某展车表演时做匀变速直线运动的位移x与时间t的关系式为x=8t+3t2,x 与t的单位分别是m和s,则该汽车( )A.第1 s内的位移大小是8 mB.前2 s内的平均速度大小是28 m/sC.任意相邻1 s内的位移大小之差都是6 mD.任意1 s内的速度增量都是3 m/s答案 C【变式探究】为研究运动物体所受的空气阻力,某研究小组的同学找来一个倾角可调、斜面比较长且表面平整的斜面体和一个滑块,并在滑块上固定一个高度可升降的风帆,如图甲所示.他们让带有风帆的滑块从静止开始沿斜面下滑,下滑过程中帆面与滑块运动方向垂直.假设滑块和风帆总质量为m.滑块与斜面间的动摩擦因数为μ,风帆受到的空气阻力与风帆的运动速率成正比,即F f=kv.(1)写出滑块下滑过程中加速度的表达式;(2)求出滑块下滑的最大速度,并指出有哪些措施可以减小最大速度;(3)若m=2 kg,斜面倾角θ=30°,g取10 m/s2,滑块从静止下滑的速度图象如图乙所示,图中的斜线为t=0时v-t图线的切线,由此求出μ、k的值.(计算结果保留两位有效数字) 解析(1)由牛顿第二定律有:mg sin θ-μmg cos θ-kv=ma解得:a =g sin θ-μg cos θ-kv m(2)当a =0时速度最大,v m =mg sin θ-μcos θk减小最大速度的方法有:适当减小斜面倾角θ;风帆升起一些. (3)当v =0时,a =g sin θ-μg cos θ=3 m/s 2解得:μ=2315≈0.23,最大速度v m =2 m/s ,v m =mg sin θ-μcos θk=2 m/s解得:k =3.0 kg/s答案 (1)a =g sin θ-μg cos θ-kv m(2)mg sin θ-μcos θk适当减小斜面倾角θ(保证滑块能静止下滑);风帆升起一些(3)0.23 3.0 kg/s 高频考点三 连接体问题例3.(多选)如图所示,质量为m A 的滑块A 和质量为m B 的三角形滑块B 叠放在倾角为θ的斜面体上,B 的上表面水平.用水平向左的力F 推斜面体,使它们从静止开始以相同的加速度a 一起向左加速运动,由此可知( )A .B 对A 的摩擦力大小等于m A a B .斜面体与B 之间一定有摩擦力C .地面与斜面体之间一定有摩擦力D .B 对斜面体的压力可能等于(m A +m B )a 2+g 2【变式探究】(多选)如图所示的装置为在摩擦力不计的水平桌面上放一质量为m 乙=5 kg 的盒子乙,乙内放置一质量为m 丙=1 kg 的滑块丙,用一质量不计的细绳跨过光滑的定滑轮将一质量为m 甲=2 kg 的物块甲与乙相连接,其中连接乙的细绳与水平桌面平行.现由静止释放物块甲,在以后的运动过程中,盒子乙与滑块丙之间没有相对运动,假设整个运动过程中盒子始终没有离开水平桌面,重力加速度g =10 m/s 2.则( )A .细绳对盒子的拉力大小为20 NB .盒子的加速度大小为2.5 m/s 2C .盒子对滑块丙的摩擦力大小为2.5 ND .定滑轮受到细绳的作用力为30 N解析:选BC.假设绳子拉力为F T ,根据牛顿第二定律,对甲,有m 甲g -F T =m 甲a ;对乙和丙组成的整体,有F T =(m 乙+m 丙)a ,联立解得F T =15 N ,a =2.5 m/s 2,A 错误,B 正确;对滑块丙受力分析,受重力、支持力和静摩擦力作用,根据牛顿第二定律,有F f =m 丙a =1×2.5 N=2.5 N ,C 正确;绳子的张力为15 N ,由于滑轮两侧绳子垂直,根据平行四边形定则,其对滑轮的作用力为15 2 N ,所以D 错误.1.xx·浙江卷] 如图13所示为一种常见的身高体重测量仪.测量仪顶部向下发射波速为v 的超声波,超声波经反射后返回,被测量仪接收,测量仪记录发射和接收的时间间隔.质量为M 0的测重台置于压力传感器上,传感器输出电压与作用在其上的压力成正比.当测重台没有站人时,测量仪记录的时间间隔为t 0,输出电压为U 0,某同学站上测重台,测量仪记录的时间间隔为t ,输出电压为U ,则该同学的身高和质量分别为( )图13A .v (t 0-t ),M 0U 0U B.12v (t 0-t ),M 0U 0U C .v (t 0-t ),M 0U 0(U -U 0)D.12v (t 0-t ),M 0U 0(U -U 0)2.xx·全国卷Ⅱ] 两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量.两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.若它们下落相同的距离,则( )A .甲球用的时间比乙球长B .甲球末速度的大小大于乙球末速度的大小C .甲球加速度的大小小于乙球加速度的大小D .甲球克服阻力做的功大于乙球克服阻力做的功【答案】BD 【解析】 设f =kR ,则由牛顿第二定律得F 合=mg -f =ma ,而m =43πR 3·ρ,故a =g -k43πR 2·ρ,由m 甲>m 乙、ρ甲=ρ乙可知a 甲>a 乙,故C 错误;因甲、乙位移相同,由v 2=2ax可知,v 甲>v 乙,B 正确;由x =12at 2可知,t 甲<t 乙,A 错误;由功的定义可知,W 克服=f ·x ,又f 甲>f乙,则W 甲克服>W 乙克服,D 正确.3. xx·全国卷Ⅲ] 一质点做速度逐渐增大的匀加速直线运动,在时间间隔t 内位移为s ,动能变为原来的9倍.该质点的加速度为( )A.s t 2B.3s 2t2 C.4s t 2 D.8s t24.xx·四川卷] 避险车道是避免恶性交通事故的重要设施,由制动坡床和防撞设施等组成,如图竖直平面内,制动坡床视为与水平面夹角为θ的斜面.一辆长12 m的载有货物的货车因刹车失灵从干道驶入制动坡床,当车速为23 m/s时,车尾位于制动坡床的底端,货物开始在车厢内向车头滑动,当货物在车厢内滑动了4 m时,车头距制动坡床顶端38 m,再过一段时间,货车停止.已知货车质量是货物质量的4倍,货物与车厢间的动摩擦因数为0.4;货车在制动坡床上运动受到的坡床阻力大小为货车和货物总重的0.44倍.货物与货车分别视为小滑块和平板,取cos θ=1,sin θ=0.1,g=10 m/s2.求:(1)货物在车厢内滑动时加速度的大小和方向;(2)制动坡床的长度.图1【答案】(1)5 m/s2,方向沿制动坡床向下(2)98 m【解析】 (1)设货物的质量为m,货物在车厢内滑动过程中,货物与车厢间的动摩擦因数μ=0.4,受摩擦力大小为f,加速度大小为a1,则f+mg sin θ=ma1f=μmg cos θ联立以上二式并代入数据得a1=5 m/s2a1的方向沿制动坡床向下.5.xx·全国卷Ⅰ] 甲、乙两车在平直公路上同向行驶,其v t 图像如图1所示.已知两车在t =3 s 时并排行驶,则( )图1A .在t =1 s 时,甲车在乙车后B .在t =0时,甲车在乙车前7.5 mC .两车另一次并排行驶的时刻是t =2 sD .甲、乙车两次并排行驶的位置之间沿公路方向的距离为40 m【答案】 BD 【解析】在t =3 s 时,两车并排,由图可得在1~3 s 两车发生的位移大小相等,说明在t =1 s 时,两车并排,由图像可得前1 s 乙车位移大于甲车位移,且位移差Δx =x 2-x 1=5+102×1 m=7.5 m ,在t =0时,甲车在乙车前7.5 m ,选项A 、C 错误,选项B 正确;在1~3 s 两车的平均速度v =v 1+v 22=20 m/s ,各自的位移x =v 1+v 22t =40 m ,选项D 正确. 6.xx·天津卷](2)某同学利用图示装置研究小车的匀变速直线运动.①实验中,必要的措施是________.图1A .细线必须与长木板平行B .先接通电源再释放小车C .小车的质量远大于钩码的质量D .平衡小车与长木板间的摩擦力②他实验时将打点计时器接到频率为50 Hz 的交流电源上,得到一条纸带,打出的部分计数点如图1所示(每相邻两个计数点间还有4个点,图中未画出).s 1=3.59 cm ,s 2=4.41 cm ,s 3=5.19 cm ,s 4=5.97 cm ,s 5=6.78 cm ,s 6=7.64 cm ,则小车的加速度a =________m/s 2(要求充分利用测量的数据),打点计时器在打B 点时小车的速度v B =________m/s.(结果均保留两位有效数字) 图1【答案】 ①AB ②0.80 0.40②两点的时间间隔为0.1 s ,由逐差法可以得出a =s 6+s 5+s 4-s 3-s 2-s 19T 2=0.80 m/s 2,打点计时器在打B 点时小车的速度v B =s 1+s 22T=0.40 m/s. 7.xx·江苏卷] 小球从一定高度处由静止下落,与地面碰撞后回到原高度再次下落,重复上述运动,取小球的落地点为原点建立坐标系,竖直向上为正方向,下列速度v 和位置x 的关系图像中,能描述该过程的是( )图1【答案】A 【解析】 由于取小球的落地点为原点建立坐标系,竖直向上为正方向,位置总是大于零且最远只能到刚下落处,不会无限增加,选项C 、D 错误;小球与地面碰撞后做竖直上抛运动,此时位移的数值就代表小球的位置x ,加速度a =-g ,根据运动学公式v 2-v 20=2ax 得v 2=v 20-2gx ,这里v 0为做竖直上抛运动的初速度,是定值,故v x 图像是抛物线,故选项B 错误,选项A 正确.8.xx·全国卷Ⅰ] 一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则( )A .质点速度的方向总是与该恒力的方向相同B .质点速度的方向不可能总是与该恒力的方向垂直C .质点加速度的方向总是与该恒力的方向相同D .质点单位时间内速率的变化量总是不变9. xx·全国卷Ⅱ] 两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量.两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.若它们下落相同的距离,则( )A .甲球用的时间比乙球长B .甲球末速度的大小大于乙球末速度的大小C .甲球加速度的大小小于乙球加速度的大小D .甲球克服阻力做的功大于乙球克服阻力做的功【答案】BD 【解析】 设f =kR ,则由牛顿第二定律得F 合=mg -f =ma ,而m =43πR 3·ρ,故a =g -k43πR 2·ρ,由m 甲>m 乙、ρ甲=ρ乙可知a 甲>a 乙,故C 错误;因甲、乙位移相同,由v 2=2ax 可知,v 甲>v 乙,B 正确;由x =12at 2可知,t 甲<t 乙,A 错误;由功的定义可知,W 克服=f ·x ,又f 甲>f 乙,则W 甲克服>W 乙克服,D 正确.10.xx·全国卷Ⅱ] 如图1,小球套在光滑的竖直杆上,轻弹簧一端固定于O 点,另一端与小球相连.现将小球从M 点由静止释放,它在下降的过程中经过了N 点.已知在M 、N 两点处,弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2.在小球从M 点运动到N 点的过程中( )图1A .弹力对小球先做正功后做负功B .有两个时刻小球的加速度等于重力加速度C .弹簧长度最短时,弹力对小球做功的功率为零D .小球到达N 点时的动能等于其在M 、N 两点的重力势能差11. xx·全国卷Ⅲ] 如图1所示,在竖直平面内有由14圆弧AB 和12圆弧BC 组成的光滑固定轨道,两者在最低点B 平滑连接.AB 弧的半径为R ,BC 弧的半径为R 2.一小球在A 点正上方与A 相距R4处由静止开始自由下落,经A 点沿圆弧轨道运动.(1)求小球在B 、A 两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C 点.图1【答案】(1)5 (2)能。