高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

合集下载

高三数学不等式解法15个典型例题

高三数学不等式解法15个典型例题

高三数学不等式解法15个典型例题典型例题一例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x分析:当分式不等式化为)0(0)()(≤<或x g x f时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

全国高三高中数学专题试卷带答案解析

全国高三高中数学专题试卷带答案解析

全国高三高中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、解答题1.如图,在侧棱垂直底面的四棱柱ABCD A 1B 1C 1D 1中,AD ∥BC,AD ⊥AB,AB=,AD=2,BC=4,AA 1=2,E 是DD 1的中点,F 是平面B 1C 1E 与直线AA 1的交点.(1)证明:①EF ∥A 1D 1;②BA 1⊥平面B 1C 1EF.(2)求BC 1与平面B 1C 1EF 所成的角的正弦值.2.如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF 都是正三角形.(1)证明直线BC ∥EF;(2)求棱锥F OBED 的体积.3.如图,在四棱锥P ABCD 中,PD ⊥平面ABCD,AB ∥DC,AB ⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.(1)当正视方向与向量的方向相同时,画出四棱锥P ABCD 的正视图(要求标出尺寸,并写出演算过程);(2)若M 为PA 的中点,求证:DM ∥平面PBC;(3)求三棱锥D PBC 的体积.4.如图,四棱锥P ABCD 中,AB ⊥AC,AB ⊥PA,AB ∥CD,AB=2CD,E,F,G,M,N 分别为PB,AB,BC,PD,PC 的中点(1)求证:CE ∥平面PAD;(2)求证:平面EFG ⊥平面EMN.5.如图,在三棱锥S ABC 中,平面SAB ⊥平面SBC,AB ⊥BC,AS=AB.过A 作AF ⊥SB,垂足为F,点E,G 分别是棱SA,SC 的中点.求证:(1)平面EFG ∥平面ABC;(2)BC ⊥SA.6.如图,在四棱锥P ABCD 中,底面是边长为2的菱形,∠BAD=120°,且PA ⊥平面ABCD,PA=2,M 、N 分别为PB 、PD 的中点.(1)证明:MN ∥平面ABCD;(2)过点A 作AQ ⊥PC,垂足为点Q,求二面角A MN Q 的平面角的余弦值.7.如图,直三棱柱ABC A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)8.如图,几何体E ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.9.如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE.10.如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点.(1)求证:BF∥平面A′DE;(2)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值.11.如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP.(2)求证:四边形DEFG为矩形.(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.12.如图,四棱锥S ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P AC D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由. 13.如图五面体中,四边形ABCD是矩形,DA⊥平面ABEF,AB∥EF,AB=EF=2,AF=BE=2,P、Q、M分别为AE、BD 、EF 的中点.(1)求证:PQ ∥平面BCE;(2)求证:AM ⊥平面ADF. 14.如图所示,四棱锥E ABCD 中,EA=EB,AB ∥CD,AB ⊥BC,AB=2CD.(1)求证:AB ⊥ED;(2)线段EA 上是否存在点F,使DF ∥平面BCE?若存在,求出;若不存在,说明理由.15.一个多面体的直观图和三视图如图所示,其中M,N 分别是AB,AC 的中点,G 是DF 上的一动点.(1)求该多面体的体积与表面积;(2)求证:GN ⊥AC;(3)当FG=GD 时,在棱AD 上确定一点P,使得GP ∥平面FMC,并给出证明.16.如图所示,四边形ABCD 中,AB ⊥AD,AD ∥BC,AD=6,BC=4,AB=2,点E 、F 分别在BC 、AD 上,EF ∥AB.现将四边形ABEF 沿EF 折起,使平面ABEF ⊥平面EFDC,设AD 中点为P.(1)当E 为BC 中点时,求证:CP ∥平面ABEF;(2)设BE=x,问当x 为何值时,三棱锥A CDF 的体积有最大值?并求出这个最大值.17.如图所示,已知三棱柱ABC A 1B 1C 1,(1)若M 、N 分别是AB,A 1C 的中点,求证:MN ∥平面BCC 1B 1;(2)若三棱柱ABC A 1B 1C 1的各棱长均为2,∠B 1BA=∠B 1BC=60°,P 为线段B 1B 上的动点,当PA+PC 最小时,求证:B 1B ⊥平面APC.18.如图所示,四棱锥P ABCD 的底面为正方形,侧棱PA ⊥底面ABCD,且PA=AD=2,E,F,H 分别是线段PA,PD,AB的中点.(1)求证:PB ∥平面EFH;(2)求证:PD ⊥平面AHF.19.如图所示,在底面为直角梯形的四棱锥P ABCD 中,AD ∥BC,PD ⊥平面ABCD,AD=1,AB=,BC=4.(1)求证:BD ⊥PC;(2)求直线AB 与平面PDC 所成的角;(3)设点E 在棱PC 上,=λ,若DE ∥平面PAB,求λ的值.全国高三高中数学专题试卷答案及解析一、解答题1.如图,在侧棱垂直底面的四棱柱ABCD A 1B 1C 1D 1中,AD ∥BC,AD ⊥AB,AB=,AD=2,BC=4,AA 1=2,E 是DD 1的中点,F 是平面B 1C 1E 与直线AA 1的交点.(1)证明:①EF ∥A 1D 1;②BA 1⊥平面B 1C 1EF.(2)求BC 1与平面B 1C 1EF 所成的角的正弦值.【答案】(1)见解析 (2) 【解析】(1)证明:①因为C 1B 1∥A 1D 1,C 1B 1⊄平面ADD 1A 1,所以C 1B 1∥平面A 1D 1DA.又因为平面B 1C 1EF∩平面A 1D 1DA=EF,所以C 1B 1∥EF,所以A 1D 1∥EF. ②因为BB 1⊥平面A 1B 1C 1D 1,所以BB 1⊥B 1C 1.又因为B 1C 1⊥B 1A 1,所以B 1C 1⊥平面ABB 1A 1,所以B 1C 1⊥BA 1.在矩形ABB 1A 1中,F 是AA 1的中点,tan ∠A 1B 1F=tan ∠AA 1B=,即∠A 1B 1F=∠AA 1B,故BA 1⊥B 1F.所以BA 1⊥平面B 1C 1EF.(2)解:设BA 1与B 1F 交点为H,连接C 1H.由(1)知BA 1⊥平面B 1C 1EF,所以∠BC 1H 是BC 1与平面B 1C 1EF 所成的角.在矩形AA 1B 1B 中,AB=,AA 1=2,得BH=.在Rt △BHC 1中,BC 1=2,BH=,得sin ∠BC 1H==.所以BC 1与平面B 1C 1EF 所成角的正弦值是.2.如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF 都是正三角形.(1)证明直线BC ∥EF;(2)求棱锥F OBED 的体积.【答案】(1)见解析 (2)【解析】(1)证明:如图所示,设G 是线段DA 延长线与线段EB 延长线的交点.由于△OAB 与△ODE 都是正三角形,且OD=2,所以OBDE,OG=OD=2.同理,设G′是线段DA 延长线与线段FC 延长线的交点,有OCDF,OG′=OD=2. 又由于G 和G′都在线段DA 的延长线上,所以G 与G′重合.在△GED 和△GFD 中,由OB DE 和OC DF, 可知B 、C 分别是GE 和GF 的中点,所以BC 是△GEF 的中位线,故BC ∥EF.(2)解:由OB=1,OE=2,∠EOB=60°,知S △OBE =,而△OED 是边长为2的正三角形,故S △OED =.所以S 四边形OBED =S △OBE +S △OED =.过点F 作FQ ⊥AD,交AD 于点Q,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F OBED 的高,且FQ=,所以=FQ·S 四边形OBED =. 3.如图,在四棱锥P ABCD 中,PD ⊥平面ABCD,AB ∥DC,AB ⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.(1)当正视方向与向量的方向相同时,画出四棱锥P ABCD 的正视图(要求标出尺寸,并写出演算过程);(2)若M 为PA 的中点,求证:DM ∥平面PBC;(3)求三棱锥D PBC 的体积.【答案】(1)见解析 (2)见解析 (3)8【解析】解:(1)在梯形ABCD中,过点C作CE⊥AB,垂足为E.由已知得,四边形ADCE为矩形,AE=CD=3,在Rt△BEC中,由BC=5,CE=4,依勾股定理得BE=3,从而AB=6.又由PD⊥平面ABCD,得PD⊥AD,从而在Rt△PDA中,由AD=4,∠PAD=60°,得PD=4.正视图如图所示.(2)取PB中点N,连接MN,CN.在△PAB中,∵M是PA中点,∴MN∥AB,MN=AB=3,又CD∥AB,CD=3,∴MN∥CD,MN=CD,∴四边形MNCD为平行四边形,∴DM∥CN.又DM平面PBC,CN⊂平面PBC,∴DM∥平面PBC.·PD,(3)==S△DBC=6,PD=4,又S△DBC所以=8.4.如图,四棱锥P ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点(1)求证:CE∥平面PAD;(2)求证:平面EFG⊥平面EMN.【答案】(1)见解析(2)见解析【解析】证明:(1)取PA的中点H,连接EH,DH.因为E为PB的中点,所以EH∥AB,EH=AB.又AB∥CD,CD=AB,所以EH∥CD,EH=CD.因此四边形DCEH是平行四边形.所以CE∥DH.又DH⊂平面PAD,CE⊄平面PAD,因此CE∥平面PAD.(2)因为E,F分别为PB,AB的中点,所以EF∥PA.又AB⊥PA,所以AB⊥EF,同理可证AB⊥FG.又EF∩FG=F,EF⊂平面EFG,FG⊂平面EFG,因此AB⊥平面EFG.又M,N分别为PD,PC的中点,所以MN∥CD,又AB∥CD,所以MN∥AB,因此MN⊥平面EFG,又MN⊂平面EMN,所以平面EFG⊥平面EMN.5.如图,在三棱锥S ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.【答案】(1)见解析(2)见解析【解析】证明:(1)因为AS=AB,AF⊥SB,垂足为F,所以F是SB的中点.又因为E是SA的中点,所以EF∥AB.因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E,所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC,且交线为SB,又AF⊂平面SAB,AF⊥SB,所以AF⊥平面SBC.因为BC⊂平面SBC,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A,AF⊂平面SAB,AB⊂平面SAB,所以BC⊥平面SAB.因为SA⊂平面SAB,所以BC⊥SA.6.如图,在四棱锥P ABCD中,底面是边长为2的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2,M、N分别为PB、PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A MN Q的平面角的余弦值.【答案】(1)见解析(2)【解析】(1)证明:连接BD,因为M、N分别是PB、PD的中点,所以MN是△PBD的中位线,所以MN∥BD. 又因为MN⊄平面ABCD,BD⊂平面ABCD,所以MN∥平面ABCD.(2)解: 如图所示,在菱形ABCD中,∠BAD=120°,得AC=AB=BC=CD=DA,BD=AB.又因为PA⊥平面ABCD,所以PA⊥AB,PA⊥AC,PA⊥AD.所以PB=PC=PD.所以△PBC≌△PDC.而M、N分别是PB、PD的中点,所以MQ=NQ,且AM=PB=PD=AN.取线段MN的中点E,连接AE,EQ,则AE⊥MN,QE⊥MN,所以∠AEQ为二面角A MN Q的平面角.由AB=2,PA=2,故在△AMN中,AM=AN=3,MN=BD=3,得AE=.在直角△PAC中,AQ⊥PC,得AQ=2,QC=2,PQ=4,在△PBC中,cos∠BPC==,得MQ==.在等腰△MQN中,MQ=NQ=,MN=3,得QE==.在△AEQ中,AE=,QE=,AQ=2,得cos∠AEQ==.所以二面角A MN Q的平面角的余弦值为.7.如图,直三棱柱ABC A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)【答案】(1)见解析(2)【解析】(1)证明:法一连接AB′,AC′,如图所示,由已知∠BAC=90°,AB=AC,三棱柱ABC A′B′C′为直三棱柱,所以M为AB′的中点.又因为N为B′C′的中点,所以MN∥AC′.又MN⊄平面A′ACC′,AC′⊂平面A′ACC′,所以MN∥平面A′ACC′.法二取A′B′的中点P,连接MP,NP,AB′,如图所示,因为M,N分别为AB′与B′C′的中点,所以MP∥AA′,PN∥A′C′.所以MP∥平面A′ACC′,PN∥平面A′ACC′.又MP∩NP=P,所以平面MPN∥平面A′ACC′.而MN⊂平面MPN,所以MN∥平面A′ACC′.(2)解:连接BN,如图所示,由题意知A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC.又A′N=B′C′=1,故====.8.如图,几何体E ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.【答案】(1)见解析(2)见解析【解析】证明:(1)如图所示,取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD.又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO.又O为BD的中点,所以BE=DE.(2)法一如图所示,取AB的中点N,连接DM,DN,MN.因为M是AE的中点,所以MN∥BE.又MN平面BEC,BE⊂平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形,所以∠BDN=30°.又CB=CD,∠BCD=120°,因此∠CBD=30°.所以DN∥BC.又DN平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,所以平面DMN∥平面BEC.又DM⊂平面DMN,所以DM∥平面BEC.法二如图所示,延长AD,BC交于点F,连接EF.因为CB=CD,∠BCD=120°,所以∠CBD=30°.因为△ABD为正三角形,所以∠BAD=60°,∠ABC=90°,因此∠AFB=30°,所以AB=AF.又AB=AD,所以D为线段AF的中点,连接DM,由点M是线段AE的中点,得DM∥EF.又DM平面BEC,EF⊂平面BEC,所以DM∥平面BEC.9.如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE.【答案】(1)见解析(2)见解析【解析】证明:(1)设AC与BD交于点G.因为EF∥AG,且EF=1,AG=AC=1,所以四边形AGEF为平行四边形.所以AF∥EG.因为EG⊂平面BDE,AF⊄平面BDE,所以AF∥平面BDE.(2)连接FG.因为EF∥CG,EF=CG=1,且CE=1,所以四边形CEFG为菱形.所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又因为平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF.所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.10.如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点.(1)求证:BF∥平面A′DE;(2)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值.【答案】(1)见解析(2)【解析】(1)证明:如图所示,取A′D的中点G,连接GF,GE,由条件易知FG∥CD,FG=CD,BE∥CD,BE=CD,所以FG∥BE,FG=BE,故四边形BEGF为平行四边形,所以BF∥EG.因为EG⊂平面A′DE,BF⊄平面A′DE,所以BF∥平面A′DE.(2)解:在平行四边形ABCD中,设BC=a,则AB=CD=2a,AD=AE=EB=a.连接CE,因为∠ABC=120°,在△BCE中,可得CE= a.在△ADE中,可得DE=a.在△CDE中,因为CD2=CE2+DE2,所以CE⊥DE.在正三角形A′DE中,M为DE的中点,所以A′M⊥DE.由平面A′DE⊥平面BCD,可知A′M⊥平面BCD,所以A′M⊥CE.取A′E的中点N,连接NM,NF,则NF∥CE.则NF⊥DE,NF⊥A′M.因为DE交A′M于点M,所以NF⊥平面A′DE,则∠FMN为直线FM与平面A′DE所成的角.在Rt△FMN中,NF=a,MN=a,FM=a,则cos∠FMN=,所以直线FM与平面A′DE所成角的余弦值为.11.如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP.(2)求证:四边形DEFG为矩形.(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.【答案】(1)见解析(2)见解析(3)存在,理由见解析【解析】证明:(1)因为D,E分别为AP,AC的中点,所以DE∥PC.又因为DE⊄平面BCP,所以DE∥平面BCP .(2)因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF,所以四边形DEFG为平行四边形.又因为PC⊥AB,所以DE⊥DG,所以四边形DEFG为矩形.(3)解:存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点.由(2)知,DF∩EG=Q,且QD=QE=QF=QG=EG.分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN.与(2)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN=EG,所以Q为满足条件的点.12.如图,四棱锥S ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P AC D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.【答案】(1)见解析(2)30°(3)存在,2∶1【解析】(1)证明:连接BD,设AC交BD于O,由题意知SO⊥AC.在正方形ABCD中,AC⊥BD,所以AC⊥平面SBD,得AC⊥SD.解:(2)设正方形边长为a,则SD=a,又OD=a,所以∠SDO=60°,连接OP,由(1)知AC⊥平面SBD,所以AC⊥OP,且AC⊥OD,所以∠POD是二面角P AC D的平面角.由SD⊥平面PAC,知SD⊥OP,所以∠POD=30°,即二面角P AC D的大小为30°.(3)在棱SC上存在一点E,使BE∥平面PAC.由(2)可得PD=a,故可在SP上取一点N,使PN=PD.过N作PC的平行线与SC的交点即为E.连接BN,在△BDN中,知BN∥PO.又由于NE∥PC,故平面BEN∥平面PAC,得BE∥平面PAC.由于SN∶NP=2∶1,故SE∶EC=2∶1.13.如图五面体中,四边形ABCD是矩形,DA⊥平面ABEF,AB∥EF,AB=EF=2,AF=BE=2,P、Q、M分别为AE、BD、EF的中点.(1)求证:PQ∥平面BCE;(2)求证:AM⊥平面ADF.【答案】(1)见解析(2)见解析【解析】证明:(1)法一连接AC,∵四边形ABCD是矩形,∴AC与BD交于点Q.在△ACE中,Q为AC中点,P为AE中点,∴PQ∥CE.又PQ⊄平面BCE,CE⊂平面BCE,∴PQ∥平面BCE.法二取AB的中点G,连接PG,QG,如图所示,∵Q、G分别为BD、BA的中点,∴QG∥AD.又∵AD∥BC,∴QG∥BC,∵QG⊄平面BCE,BC⊂平面BCE,∴QG∥平面BCE.同理可证,PG∥平面BCE.又PG∩QG=G,∴平面PQG∥平面BCE,∴PQ∥平面BCE.(2)∵M为EF中点,∴EM=MF=EF=AB=2,又AB∥EF,∴四边形ABEM是平行四边形,∴AM=BE=2.在△AFM中,AF=AM=2,MF=2,∴AM⊥AF.又DA⊥平面ABEF,AM⊂平面ABEF,∴DA⊥AM.∵DA∩AF=A,∴AM⊥平面ADF.14.如图所示,四棱锥E ABCD中,EA=EB,AB∥CD,AB⊥BC,AB=2CD.(1)求证:AB⊥ED;(2)线段EA上是否存在点F,使DF∥平面BCE?若存在,求出;若不存在,说明理由.【答案】(1)见解析(2)存在,【解析】(1)证明:取AB中点O,连接EO,DO,∵EA=EB,∴EO⊥AB,∵AB∥CD,AB=2CD,∴BO CD.又因为AB⊥BC,所以四边形OBCD为矩形,所以AB⊥DO.因为EO∩DO=O,所以AB⊥平面EOD.所以AB⊥ED.(2)解:存在满足条件的点F,=,即F为EA中点时,有DF∥平面BCE.证明如下:取EB中点G,连接CG,FG.因为F为EA中点,所以FG AB,因为AB∥CD,CD=AB,所以FG∥CD.所以四边形CDFG是平行四边形,所以DF∥CG.因为DF⊄平面BCE,CG⊂平面BCE,所以DF∥平面BCE.15.一个多面体的直观图和三视图如图所示,其中M,N分别是AB,AC的中点,G是DF上的一动点.(1)求该多面体的体积与表面积;(2)求证:GN⊥AC;(3)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC,并给出证明.【答案】(1)(3+)a2(2)见解析(3)见解析【解析】解:(1)由题中图可知该多面体为直三棱柱,在△ADF中,AD⊥DF,DF=AD=DC=a,所以该多面体的体积为a3,表面积为a2×2+a2+a2+a2=(3+)a2.(2)连接DB,FN,由四边形ABCD为正方形,且N为AC的中点知B,N,D三点共线,且AC⊥DN.又∵FD⊥AD,FD⊥CD,AD∩CD=D,∴FD⊥平面ABCD.∵AC⊂平面ABCD,∴FD⊥AC.又DN∩FD=D,∴AC ⊥平面FDN,又GN ⊂平面FDN,∴GN ⊥AC.(3)点P 与点A 重合时,GP ∥平面FMC.取FC 的中点H,连接GH,GA,MH.∵G 是DF 的中点,∴GHCD. 又M 是AB 的中点,∴AM CD.∴GH ∥AM 且GH=AM, ∴四边形GHMA 是平行四边形. ∴GA ∥MH. ∵MH ⊂平面FMC,GA ⊄平面FMC, ∴GA ∥平面FMC,即当点P 与点A 重合时,GP ∥平面FMC.16.如图所示,四边形ABCD 中,AB ⊥AD,AD ∥BC,AD=6,BC=4,AB=2,点E 、F 分别在BC 、AD 上,EF ∥AB.现将四边形ABEF 沿EF 折起,使平面ABEF ⊥平面EFDC,设AD 中点为P.(1)当E 为BC 中点时,求证:CP ∥平面ABEF;(2)设BE=x,问当x 为何值时,三棱锥A CDF 的体积有最大值?并求出这个最大值.【答案】(1)见解析 (2)当x=3时,有最大值,最大值为3 【解析】(1)证明:取AF 的中点Q,连接QE 、QP,则QP DF, 又DF=4,EC=2,且DF ∥EC,所以QP EC,即四边形PQEC 为平行四边形,所以CP ∥EQ,又EQ ⊂平面ABEF,CP ⊄平面ABEF,故CP ∥平面ABEF.(2)解:因为平面ABEF ⊥平面EFDC,平面ABEF∩平面EFDC=EF,又AF ⊥EF,所以AF ⊥平面EFDC.由已知BE=x,所以AF=x(0<x≤4),FD=6-x.故=··2·(6-x)·x=(6x-x 2)=[-(x-3)2+9]=-(x-3)2+3,∴当x=3时,有最大值,最大值为3.17.如图所示,已知三棱柱ABC A 1B 1C 1,(1)若M 、N 分别是AB,A 1C 的中点,求证:MN ∥平面BCC 1B 1;(2)若三棱柱ABC A 1B 1C 1的各棱长均为2,∠B 1BA=∠B 1BC=60°,P 为线段B 1B 上的动点,当PA+PC 最小时,求证:B 1B ⊥平面APC.【答案】(1)见解析 (2)见解析【解析】证明:(1)连接AC 1,BC 1,则AN=NC 1,因为AM=MB,所以MN ∥BC 1.又BC 1⊂平面BCC 1B 1,MN ⊄平面BCC 1B 1,所以MN ∥平面BCC 1B 1.(2)将平面A 1B 1BA 展开到与平面C 1B 1BC 共面,A 到A′的位置,此时A′BCB 1为菱形,可知PA+PC=PA′+PC,A′C 即为PA+PC 的最小值,此时BB 1⊥A′C, ∴BB 1⊥PA′,BB 1⊥PC,即BB 1⊥PA,BB 1⊥PC, ∴BB 1⊥平面PAC.18.如图所示,四棱锥P ABCD 的底面为正方形,侧棱PA ⊥底面ABCD,且PA=AD=2,E,F,H 分别是线段PA,PD,AB 的中点.(1)求证:PB ∥平面EFH;(2)求证:PD ⊥平面AHF.【答案】(1)见解析 (2)见解析【解析】证明:(1)∵E 、H 分别是PA 、AB 的中点,∴EH ∥PB.又EH ⊂平面EFH,PB ⊄平面EFH,∴PB ∥平面EFH.(2)∵PA ⊥平面ABCD, ∴PA ⊥AB.又∵AB ⊥AD,PA∩AD=A,∴AB ⊥底面PAD.又∵PD ⊂平面PAD,∴AB ⊥PD.Rt △PAD 中,PA=AD=2,F 为PD 的中点, ∴AF ⊥PD.又∵AF∩AB=A,AF ⊂平面AHF,AB ⊂平面AHF,∴PD ⊥平面AHF.19.如图所示,在底面为直角梯形的四棱锥P ABCD 中,AD ∥BC,PD ⊥平面ABCD,AD=1,AB=,BC=4.(1)求证:BD ⊥PC;(2)求直线AB 与平面PDC 所成的角;(3)设点E在棱PC上,=λ,若DE∥平面PAB,求λ的值.【答案】(1)见解析(2)60°(3)【解析】(1)证明:由题意知,AB⊥AD,AD=1,AB=,∴BD=2,BC=4,∴DC=2,则BC2=DB2+DC2,∴BD⊥DC,∵PD⊥平面ABCD,∴BD⊥PD,而PD∩CD=D,∴BD⊥平面PDC.∵PC在平面PDC内,∴BD⊥PC.解:(2)如图所示,过D作DF∥AB交BC于F,过点F作FG⊥CD交CD于G.∵PD⊥平面ABCD,∴平面PDC⊥平面ABCD,∴FG⊥平面PDC,∴∠FDG为直线AB与平面PDC所成的角.在Rt△DFC中,∠DFC=90°,DF=,CF=3,∴tan∠FDG=,∴∠FDG=60°.∴直线AB与平面PDC所成角为60°.(3)连接EF,∵DF∥AB,∴DF∥平面PAB.∵DE∥平面PAB,∴平面DEF∥平面PAB,∴EF∥AB,如图所示,∵AD=1,BC=4,BF=1,∴==,∴=,即λ=.。

高三数学练习题含答案

高三数学练习题含答案

高三数学练习题含答案1. 题目:已知函数$f(x)=2x^2-3x+5$,求函数$f(x)$的最小值及对应的$x$值。

解析:函数$f(x)$是一个二次函数,其对应的抛物线开口朝上。

根据二次函数的性质,最小值出现在抛物线的顶点处。

首先,我们需要找到抛物线的顶点。

对于二次函数$ax^2+bx+c$,其中$a>0$,顶点的横坐标可以通过公式$x=-\frac{b}{2a}$来计算。

根据题目中给出的函数$f(x)=2x^2-3x+5$,可以得到$a=2$,$b=-3$。

代入公式,得到$x=-\frac{-3}{2(2)}=\frac{3}{4}$。

接下来,我们将$x=\frac{3}{4}$代入函数$f(x)$中,计算最小值。

即$f\left(\frac{3}{4}\right)=2\left(\frac{3}{4}\right)^2-3\left(\frac{3}{4}\right)+5=\frac{39}{8}$。

因此,函数$f(x)$的最小值为$\frac{39}{8}$,对应的$x$值为$\frac{3}{4}$。

2. 题目:已知等差数列$\{a_n\}$的公差为$d$,前三项依次为$a_1=3$,$a_2=6$,$a_3=9$。

求等差数列的通项公式。

解析:等差数列的通项公式可以表示为$a_n=a_1+(n-1)d$。

我们可以利用已知的前三项来确定公差$d$。

根据题目中给出的前三项$a_1=3$,$a_2=6$,$a_3=9$,我们可以得到以下方程组:$a_2=a_1+d$,即$6=3+d$;$a_3=a_1+2d$,即$9=3+2d$。

解方程组,可以得到$d=3$。

将$d=3$代入通项公式$a_n=a_1+(n-1)d$中,得到$a_n=3+(n-1)3=3n$。

因此,等差数列$\{a_n\}$的通项公式为$a_n=3n$。

3. 题目:已知等比数列$\{b_n\}$的首项为$b_1=2$,公比为$r$,前三项的乘积为$64$。

全国高三高中数学专题试卷带答案解析

全国高三高中数学专题试卷带答案解析

全国高三高中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.已知命题“如果x⊥y,y∥z,则x⊥z”是假命题,那么字母x,y,z在空间所表示的几何图形可能是() A.全是直线B.全是平面C.x,z是直线,y是平面D.x,y是平面,z是直线2.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l3.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行4.设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β5.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的有()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n6.将图(1)中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四面体ABCD(如图(2)),则在空间四面体ABCD中,AD与BC的位置关系是()A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直二、填空题1.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的________条件.2.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:①PA∥平面MOB;②MO∥平面PAC;③OC⊥平面PAC;④平面PAC⊥平面PBC.其中正确的命题是________(填上所有正确命题的序号).3.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ∈AB 1,N ∈BC 1,且AM =BN ≠,有以下四个结论:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④MN 与A 1C 1是异面直线.其中正确命题的序号是________.(注:把你认为正确命题的序号都填上)三、解答题1.已知四棱锥P -ABCD 中,底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD =2EC .(1)求证:BE ∥平面PDA ;(2)若N 为线段PB 的中点,求证:NE ⊥平面PDB .2.如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG ∥平面ABC ;(2)BC ⊥SA .3.如图,点C 是以AB 为直径的圆上的一点,直角梯形BCDE 所在平面与圆O 所在平面垂直,且DE ∥BC ,DC ⊥BC ,DE =BC .(1)证明:EO ∥平面ACD ;(2)证明:平面ACD ⊥平面BCDE .全国高三高中数学专题试卷答案及解析一、选择题1.已知命题“如果x ⊥y ,y ∥z ,则x ⊥z ”是假命题,那么字母x ,y ,z 在空间所表示的几何图形可能是( )A .全是直线B .全是平面C .x ,z 是直线,y 是平面D .x ,y 是平面,z 是直线【答案】D【解析】当x 、y 、z 是A 、B 、C 中的几何图形时,命题“如果x ⊥y ,y ∥z ,则x ⊥z ”是真命题,故选D.2.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l【答案】D【解析】根据所给的已知条件作图,如图所示.由图可知α与β相交,且交线平行于l,故选D3.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行【答案】C【解析】若c与a,b都不相交,则c与a,b都平行,根据公理4,知a∥b,与a,b异面矛盾.故选C.4.设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β【答案】C【解析】选项A中也可以l∥β,选项B中也可以l∥β,选项D中也可以l⊂β,l∥β或l与β斜交.5.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的有()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n【答案】D【解析】若m∥α,n∥α,m,n可以平行,可以相交,也可以异面,故①不正确;若α⊥γ,β⊥γ,α,β可以相交,故②不正确;若m∥α,m∥β,α,β可以相交,故③不正确;若m⊥α,n⊥α,则m∥n,④正确.故选D.6.将图(1)中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四面体ABCD(如图(2)),则在空间四面体ABCD中,AD与BC的位置关系是()A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直【答案】C【解析】在题图(1)中的等腰直角三角形ABC中,斜边上的中线AD就是斜边上的高,则AD⊥BC,翻折后如题图(2),AD与BC变成异面直线,而原线段BC变成两条线段BD、CD,这两条线段与AD垂直,即AD⊥BD,AD⊥CD,BD∩CD=D,故AD⊥平面BCD,所以AD⊥BC.故选C.二、填空题1.已知E ,F ,G ,H 是空间四点,命题甲:E ,F ,G ,H 四点不共面,命题乙:直线EF 和GH 不相交,则甲是乙成立的________条件.【答案】充分不必要【解析】E ,F ,G ,H 四点不共面时,EF ,GH 一定不相交,否则,由于两条相交直线共面,则E ,F ,G ,H 四点共面,与已知矛盾,故甲可以推出乙;反之,EF ,GH 不相交,含有EF ,GH 平行和异面两种情况,当EF ,GH 平行时,E ,F ,G ,H 四点共面,故乙不能推出甲.即甲是乙的充分不必要条件.2.如图,AB 为圆O 的直径,点C 在圆周上(异于点A ,B ),直线PA 垂直于圆O 所在的平面,点M 为线段PB 的中点.有以下四个命题:①PA ∥平面MOB ;②MO ∥平面PAC ;③OC ⊥平面PAC ;④平面PAC ⊥平面PBC .其中正确的命题是________(填上所有正确命题的序号).【答案】②④【解析】①错误,PA ⊂平面MOB ;②正确;③错误,否则,有OC ⊥AC ,这与BC ⊥AC 矛盾;④正确,因为BC ⊥平面PAC .3.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ∈AB 1,N ∈BC 1,且AM =BN ≠,有以下四个结论:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④MN 与A 1C 1是异面直线.其中正确命题的序号是________.(注:把你认为正确命题的序号都填上)【答案】①③【解析】过N 作NP ⊥BB 1于点P ,连接MP ,可证AA 1⊥平面MNP ,得AA 1⊥MN ,①正确;过M ,N 分别作MR ⊥A 1B 1,NS ⊥B 1C 1于点R ,S ,则当M 不是AB 1的中点,N 不是BC 1的中点时,直线A 1C 1与直线RS 相交;当M ,N 分别是AB 1,BC 1的中点时,A 1C 1∥RS ,所以A 1C 1与MN 可以异面,也可以平行,故②④错误;由①正确知,AA 1⊥平面MNP ,而AA 1⊥平面A 1B 1C 1D 1,所以平面MNP ∥平面A 1B 1C 1D 1,故③正确.三、解答题1.已知四棱锥P -ABCD 中,底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD =2EC .(1)求证:BE ∥平面PDA ;(2)若N 为线段PB 的中点,求证:NE ⊥平面PDB .【答案】(1)见解析(2)见解析【解析】(1)∵EC ∥PD ,PD ⊂平面PDA ,EC ⊄平面PDA ,∴EC ∥平面PDA ,同理可得BC ∥平面PDA .∵EC ⊂平面EBC ,BC ⊂平面BEC 且EC ∩BC =C , ∴平面BEC ∥平面PDA .又∵BE ⊂平面BEC ,∴BE ∥平面PDA .(2)连接AC ,交BD 于点F ,连接NF ,∵F 为BD 的中点,∴NF∥PD且NF=PD,又EC∥PD且EC=PD,∴NF∥EC且NF=EC.∴四边形NFCE为平行四边形,∴NE∥FC,∵PD⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PD,又DB⊥AC,PD∩BD=D,∴AC⊥平面PDB,∴NE⊥平面PDB.2.如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.【答案】(1)见解析(2)见解析【解析】(1)因为AS=AB,AF⊥SB,垂足为F,所以F是SB的中点.又因为E是SA的中点,所以EF∥AB.因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E,所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC,且交线为SB,又AF⊂平面SAB,AF⊥SB,所以AF⊥平面SBC.因为BC⊂平面SBC,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A,AF⊂平面SAB,AB⊂平面SAB,所以BC⊥平面SAB.因为SA⊂平面SAB,所以BC⊥SA.3.如图,点C是以AB为直径的圆上的一点,直角梯形BCDE所在平面与圆O所在平面垂直,且DE∥BC,DC⊥BC,DE=BC.(1)证明:EO∥平面ACD;(2)证明:平面ACD⊥平面BCDE.【答案】(1)见解析(2)见解析【解析】(1)如图,取BC的中点M,连结OM、ME.在△ABC中,O为AB的中点,M为BC的中点,∴OM∥AC,在直角梯形BCDE中,DE∥BC,且DE=BC=CM,∴四边形MCDE为平行四边形,∴EM∥DC,∴面EMO∥面ACD,又∵EO⊂面EMO,∴EO∥面ACD.(2)∵C在以AB为直径的圆上,∴AC⊥BC,又∵面BCDE⊥面ABC,面BCDE∩面ABC=BC,∴AC⊥面BCDE,又∵AC⊂面ACD,∴面ACD⊥面BCDE.。

2020年高考数学 大题专项练习 数列 一(15题含答案解析)

2020年高考数学 大题专项练习 数列 一(15题含答案解析)

2020年高考数学大题专项练习数列一(15题含答案解析)高中高中数学题号一总分得分一、解答题1.已知数列的前项和为,,,求.2.设等差数列{a n}满足,,(1)求{a n}的通项公式;(2)设{a n}的前项和为,求满足成立的值。

3.设数列A:, ,… (N≥2)。

如果对小于n(2≤n≤N)的每个正整数k都有<,则称n是数列A的一个“G时刻”。

记“G(A)是数列A 的所有“G时刻”组成的集合。

(1)对数列A:-2,2,-1,1,3,写出G(A)的所有元素;(2)证明:若数列A中存在使得>,则G(A)≠;(3)证明:若数列A满足-≤1(n=2,3, …,N),则G(A)的元素个数不小于 -。

4.设数列的前项和为,且.(1) 求的值,并用表示;(2) 求数列的通项公式;(3) 设,求证:.5.已知在数列{a n }中,a 1=1,a n a n +1=n .(12)(1)求证:数列{a 2n }与{a 2n -1}都是等比数列;(2)若数列{a n }的前2n 项的和为T 2n ,令b n =(3-T 2n )·n·(n +1),求数列{b n }的最大项. 6.单调递增数列{a n }的前项和为,且满足.(1)求数列{a n }的通项公式;(2)数列{b n }满足,求数列{b n }的前项和7.已知等差数列的前n 项和为,且.(1)求数列的通项公式;(2)求证:.8.已知为等差数列,前n 项和为,是首项为2的等比数列,且公比大于0,,,.(Ⅰ)求和的通项公式;(Ⅱ)求数列的前n项和.9.已知数列的前项和为,,且满足(1)求及通项公式;(2)若,求数列的前项和.10.各项均为正数的数列{a n}的前n项和为S n,已知点(a n,a n+1)(n∈N*)在函数的图象上,且.(1)求数列{a n}的通项公式及前n项和S n;(2)已知数列{b n}满足b n=4﹣n,设其前n项和为T n,若存在正整数k,使不等式T n >k有解,且(n∈N*)恒成立,求k的值.11.在等差数列中,,,(1)求数列的通项公式;(2)求数列的前项和.12.在数列{a n}中,,(1)写出这个数列的前4项,并猜想这个数列的通项公式;(2)证明这个数列的通项公式.13.数列{a n}的前项和为.(1)求{a n}的通项公式;(2)设,求数列{b n}的前项和.为等差数列的前n项和,且记,其中表示不超过14.x的最大整数,如.(I)求;(II)求数列的前1 000项和.15.已知数列的前n项和S n=3n2+8n,是等差数列,且(Ⅰ)求数列的通项公式;(Ⅱ)令求数列的前n项和T n.2020年高考数学大题专项练习数列五(15题含答案解析)答案解析一、解答题1.答案为:2.3.解:4.5.解:(1)证明:由题意可得a 1a 2=,则a 2=.1212又a n a n +1=n ,a n +1a n +2=n +1,∴=.(12)(12)an +2an 12∴数列{a 2n -1}是以1为首项,为公比的等比数列;12数列{a 2n }是以为首项,为公比的等比数列.1212(2)T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=+=3-3·n .1-(12)n 1-1212[1-(12)n ]1-12(12)∴b n =3n(n +1)n ,b n +1=3(n +1)(n +2)n +1,∴=,(12)(12)bn +1bn n +22n∴b 1<b 2=b 3,b 3>b 4>…>b n >…,∴数列{b n }的最大项为b 2=b 3=.926.7.8.(1)..(2).9.10.11.12.13.(1);(2)数列的前项或前项的和最大;(3).14.解:15.。

全国高三高中数学专题试卷带答案解析

全国高三高中数学专题试卷带答案解析

全国高三高中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.已知两条直线a,b与两个平面α,β,b⊥α,则下列命题中正确的是().①若a∥α,则a⊥b;②若a⊥b,则a∥α;③若b⊥β,则α∥β;④若α⊥β,则b∥β.A.①③B.②④C.①④D.②③2.已知α,β,γ是三个不重合的平面,a,b是两条不重合的直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,那么a∥b”为真命题,则可以在横线处填入的条件是().A.①或②B.②或③C.①或③D.只有②3.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是().A.α⊥β,且m⊂αB.m∥n,且n⊥βC.α⊥β,且m∥αD.m⊥n,且n∥β4.已知两条不同的直线m,n和两个不同的平面α,β,给出下列四个命题:①若m∥α,n∥β,且α∥β,则m∥n;②若m∥α,n⊥β,且α⊥β,则m∥n;③若m⊥α,n∥β,且α∥β,则m⊥n;④若m⊥α,n⊥β,且α⊥β,则m⊥n.其中正确的个数有().A.1B.2C.3D.45.如图所示,在四边形A-BCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥ABCD中,下列命题正确的是().A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC二、填空题1.设α和β为两个不重合的平面,给出下列四个命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l与α内的一条直线平行,则l和α平行;③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;④直线l与α垂直的充分必要条件是l与α内的两条直线垂直.其中为真命题的是________(写出所有真命题的序号).2.下列四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出直线AB∥平面MNP的图形的序号是________(写出所有符合要求的图形序号).3.如图,在长方形ABCD 中,AB =2,BC =1,E 为DC 的中点,F 为线段EC 上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.三、解答题1.如图,正方形ABCD 和三角形ACE 所在的平面互相垂直,EF ∥BD ,AB =EF .(1)求证:BF ∥平面ACE ;(2)求证:BF ⊥BD .2.如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,点O 是对角线AC 与BD 的交点,M 是PD 的中点,AB =2,∠BAD =60°.(1)求证:OM ∥平面PAB ;(2)求证:平面PBD ⊥平面PAC ;(3)当四棱锥P-ABCD 的体积等于时,求PB 的长.3.如图,在四棱台ABCD-A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD 是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC 1∥平面A 1BD .全国高三高中数学专题试卷答案及解析一、选择题1.已知两条直线a,b与两个平面α,β,b⊥α,则下列命题中正确的是().①若a∥α,则a⊥b;②若a⊥b,则a∥α;③若b⊥β,则α∥β;④若α⊥β,则b∥β.A.①③B.②④C.①④D.②③【答案】A【解析】过直线a作平面γ使α∩γ=c,则a∥c,再根据b⊥α可得b⊥c,从而b⊥a,命题①是真命题;下面考虑命题③,由b⊥α,b⊥β,可得α∥β,命题③为真命题.故正确选项为A.2.已知α,β,γ是三个不重合的平面,a,b是两条不重合的直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,那么a∥b”为真命题,则可以在横线处填入的条件是().A.①或②B.②或③C.①或③D.只有②【答案】C【解析】由定理“一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行”可得,横线处可填入条件①或③,结合各选项知,选C.3.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是().A.α⊥β,且m⊂αB.m∥n,且n⊥βC.α⊥β,且m∥αD.m⊥n,且n∥β【答案】B【解析】根据定理、性质、结论逐个判断.因为α⊥β,m⊂α⇒m,β的位置关系不确定,可能平行、相交、m在β面内,故A错误;由线面垂直的性质定理可知B正确;若α⊥β,m∥α,则m,β的位置关系也不确定,故C错误;若m⊥n,n∥β,则m,β的位置关系也不确定,故D错误.4.已知两条不同的直线m,n和两个不同的平面α,β,给出下列四个命题:①若m∥α,n∥β,且α∥β,则m∥n;②若m∥α,n⊥β,且α⊥β,则m∥n;③若m⊥α,n∥β,且α∥β,则m⊥n;④若m⊥α,n⊥β,且α⊥β,则m⊥n.其中正确的个数有().A.1B.2C.3D.4【答案】B【解析】①中m,n可能异面或相交,故不正确;②因为m∥α,n⊥β且α⊥β成立时,m,n两直线的关系可能是相交、平行、异面,故不正确;③因为m⊥α,α∥β可得出m⊥β,再由n∥β可得出m⊥n,故正确;④分别垂直于两个垂直平面的两条直线一定垂直,正确.故选B.5.如图所示,在四边形A-BCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥ABCD中,下列命题正确的是().A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC【答案】D【解析】在平面图形中CD⊥BD,折起后仍有CD⊥BD,由于平面ABD⊥平面BCD,故CD⊥平面ABD,CD⊥AB.又AB⊥AD,故AB⊥平面ADC.所以平面ABC⊥平面ADC.D选项正确.二、填空题1.设α和β为两个不重合的平面,给出下列四个命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l与α内的一条直线平行,则l和α平行;③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;④直线l与α垂直的充分必要条件是l与α内的两条直线垂直.其中为真命题的是________(写出所有真命题的序号).【答案】①②【解析】由①知α内两条相交直线分别平行于平面β,则两条相交直线确定的平面α平行于平面β,故①为真命题;由线面平行的判定定理知,②为真命题;对于③,如图,α∩β=l,a⊂α,a⊥l,但不一定有α⊥β,故③为假命题;对于④,直线l与平面α垂直的充分必要条件是l与α内的两条相交直线垂直,故④为假命题.综上所述,真命题的序号为①②.2.下列四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出直线AB∥平面MNP的图形的序号是________(写出所有符合要求的图形序号).【答案】①③【解析】对于①,注意到该正方体的面中过直线AB的侧面与平面MNP平行,因此直线AB平行于平面MNP;对于②,注意到直线AB和过点A的一个与平面MNP平行的平面相交,因此直线AB与平面MNP相交;对于③,注意到此时直线AB与平面MNP内的一条直线MP平行,且直线AB位于平面MNP外,因此直线AB与平面MNP平行;对于④,易知此时AB与平面MNP相交.综上所述,能得出直线AB平行于平面MNP的图形的序号是①③.3.如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC上一动点.现将△AFD沿AF折起,使平面ABD⊥平面ABC.在平面ABD内过点D作DK⊥AB,K为垂足.设AK=t,则t的取值范围是________.【答案】【解析】如图,过D作DG⊥AF,垂足为G,连接GK,∵平面ABD⊥平面ABC,DK⊥AB,∴DK⊥平面ABC,∴DK⊥AF.又DG⊥AF,∴AF⊥平面DKG,∴AF⊥GK.容易得到,当F运动到E点时,K为AB的中点,t=AK==1;当F运动到C点时,在Rt△ADF中,易得AF=,且AG=,GF=,又易知Rt△AGK∽Rt△ABF,则,又AB=2,AK=t,则t=.∴t的取值范围是.三、解答题1.如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.(1)求证:BF∥平面ACE;(2)求证:BF⊥BD.【答案】见解析【解析】(1)设AC与BD交于O点,连接EO.在正方形ABCD中,BO=AB,又因为AB=EF,∴BO=EF,又因为EF∥BD,∴四边形EFBO是平行四边形,∴BF∥EO,又∵BF⊄平面ACE,EO⊂平面ACE,∴BF∥平面ACE.(2)在正方形ABCD中,AC⊥BD,又因为正方形ABCD和三角形ACE所在的平面互相垂直,BD⊂平面ABCD,平面ABCD∩平面ACE=AC,∴BD⊥平面ACE,∵EO⊂平面ACE,∴BD⊥EO,∵EO∥BF,∴BF⊥BD.2.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P-ABCD的体积等于时,求PB的长.【答案】【解析】(1)证明∵在△PBD中,O,M分别是BD,PD的中点,∴OM是△PBD的中位线,∴OM∥PB.∵OM⊄平面PAB,PB⊂平面PAB,∴OM∥平面PAB.(2)证明∵底面ABCD是菱形,∴BD⊥AC.∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD.又AC⊂平面PAC,PA⊂平面PAC,AC∩PA=A,∴BD⊥平面PAC.∵BD⊂平面PBD,∴平面PBD⊥平面PAC.(3)解∵底面ABCD是菱形,AB=2,∠BAD=60°,∴S=2××AB×AD×sin 60°=2×2×=2.菱形ABCD∵四棱锥P-ABCD的高为PA,∴×2×PA=,解得PA=.又∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA ⊥AB .在Rt △PAB 中,PB = ==.3.如图,在四棱台ABCD-A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD 是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC 1∥平面A 1BD .【答案】见解析【解析】(1)法一因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,所以D 1D ⊥BD .在△ABD 中,由余弦定理,得BD 2=AD 2+AB 2-2AD ·AB cos ∠BAD .又因为AB =2AD ,∠BAD =60°,所以BD 2=3AD 2.所以AD 2+BD 2=AB 2,因此AD ⊥BD .又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A 1.又AA 1⊂平面ADD 1A 1,所以AA 1⊥BD .法二因为DD 1⊥平面ABCD ,且BD ⊂平面ABCD ,所以BD ⊥D 1D .如图1,取AB 的中点G ,连接DG .图1在△ABD 中,由AB =2AD ,得AG =AD .又∠BAD =60°,所以△ADG 为等边三角形,所以GD =GB ,故∠DBG =∠GDB .又∠AGD =60°,所以∠GDB =30°,所以∠ADB =∠ADG +∠GDB =60°+30°=90°,所以BD ⊥AD .又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A 1.又AA 1⊂平面ADD 1A 1,所以AA 1⊥BD .(2)如图2,连接AC ,A 1C 1.设AC ∩BD 于点E ,图2连接EA 1.因为四边形ABCD 为平行四边形,所以EC =AC .由棱台的定义及AB =2AD =2A 1B 1知,A 1C 1∥EC 且A 1C 1=EC ,所以四边形A 1ECC 1为平行四边形,因此CC 1∥EA 1.又因为EA 1⊂平面A 1BD ,CC 1⊄平面A 1BD ,所以CC 1∥平面A 1BD .。

高考数学 真题分类汇编:专题(15)复数(理科)及答案

高考数学 真题分类汇编:专题(15)复数(理科)及答案

专题十五 复数1.【20xx 高考新课标2,理2】若a 为实数且(2)(2)4ai a i i +-=-,则a =( )A .1-B .0C .1D .2【答案】B【解析】由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B .【考点定位】复数的运算.【名师点睛】本题考查复数的运算,要利用复数相等列方程求解,属于基础题.2.【20xx 高考四川,理2】设i 是虚数单位,则复数32i i-( ) (A )-i (B )-3i (C )i. (D )3i【答案】C【解析】32222i i i i i i i i-=--=-+=,选C. 【考点定位】复数的基本运算.【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.3.【20xx 高考广东,理2】若复数()32z i i =- ( i 是虚数单位 ),则z =( )A .32i -B .32i +C .23i +D .23i -【答案】D .【解析】因为()3223z i i i =-=+,所以z =23i -,故选D .【考点定位】复数的基本运算,共轭复数的概念.【名师点睛】本题主要考查复数的乘法运算,共轭复数的概念和运算求解能力,属于容易题;复数的乘法运算应该是简单易解,但学生容易忘记和混淆共轭复数的概念,z a bi =+的共轭复数为z a bi =-.4.【20xx 高考新课标1,理1】设复数z 满足11z z+-=i ,则|z|=( )(A )1 (B (C (D )2【答案】A【解析】由11z i z +=-得,11i z i -+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 【考点定位】本题主要考查复数的运算和复数的模等.【名师点睛】本题将方程思想与复数的运算和复数的模结合起来考查,试题设计思路新颖,本题解题思路为利用方程思想和复数的运算法则求出复数z ,再利用复数的模公式求出|z|,本题属于基础题,注意运算的准确性.5.【20xx 高考北京,理1】复数()i 2i -=( )A .12i +B .12i -C .12i -+D .12i --【答案】A考点定位:本题考查复数运算,运用复数的乘法运算方法进行计算,注意21i =-.【名师点睛】本题考查复数的乘法运算,本题属于基础题,数的概念的扩充部分主要知识点有:复数的概念、分类,复数的几何意义、复数的运算,特别是复数的乘法与除法运算,运算时注意21i =-,注意运算的准确性,近几年高考主要考查复数的乘法、除法,求复数的模、复数的虚部、复数在复平面内对应的点的位置等.6.【20xx 高考湖北,理1】 i 为虚数单位,607i 的共轭复数....为( ) A .i B .i - C .1 D .1-【答案】A【解析】i i i i -=⋅=⨯31514607,所以607i 的共轭复数....为i ,选A . 【考点定位】共轭复数.【名师点睛】复数中,i 是虚数单位,24142434111()n n n n i i i i i i i n +++=-==-=-=∈Z ;,,,7.【20xx 高考山东,理2】若复数z 满足1z i i=-,其中i 为虚数为单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+【答案】A 【解析】因为1z i i=-,所以,()11z i i i =-=+ ,所以,1z i =- 故选:A. 【考点定位】复数的概念与运算.【名师点睛】本题考查复数的概念和运算,采用复数的乘法和共轭复数的概念进行化简求解. 本题属于基础题,注意运算的准确性.8.【20xx 高考安徽,理1】设i 是虚数单位,则复数21i i-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限【答案】B 【解析】由题意22(1)2211(1)(1)2i i i i i i i i +-+===-+--+,其对应的点坐标为(1,1)-,位于第二象限,故选B.【考点定位】1.复数的运算;2.复数的几何意义.【名师点睛】复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数分母实数化(分母乘以自己的共轭复数),这也历年考查的重点;另外,复数z a bi =+在复平面内一一对应的点为(,)Z a b .9.【20xx 高考重庆,理11】设复数a +bi (a ,b ∈R ),则(a +bi )(a -bi )=________.【答案】3【解析】由a +得=,即223a b +=,所以22()()3a bi a bi a b +-=+=.【考点定位】复数的运算.【名师点晴】复数的考查核心是代数形式的四则运算,即使是概念的考查也需要相应的运算支持.本题首先根据复数模的定义得a +,复数相乘可根据平方差公式求得()()a bi a bi +-22()a bi =-22a b =+,也可根据共轭复数的性质得()()a bi a bi +-22a b =+.10.【20xx 高考天津,理9】i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .【答案】2-【解析】()()()12212i a i a a i -+=++-是纯虚数,所以20a +=,即2a =-.【考点定位】复数相关概念与复数的运算.【名师点睛】本题主要考查复数相关概念与复数的运算.先进行复数的乘法运算,再利用纯虚数的概念可求结果,是容易题.11.【20xx 江苏高考,3】设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.【解析】22|||34|5||5||z i z z =+=⇒=⇒=【考点定位】复数的模【名师点晴】在处理复数相等的问题时,一般将问题中涉及的两个复数均化成一般形式,利用复数相等的充要条件“实部相等,虚部相等”进行求解.本题涉及复数的模,利用复数模的性质求解就比较简便:2211121222||||||||||||.||z z z z z z z z z z ==⋅=,, 12.【20xx 高考湖南,理1】已知()211i i z -=+(i 为虚数单位),则复数z =( ) A.1i + B.1i - C.1i -+ D.1i --【答案】D.【考点定位】复数的计算.【名师点睛】本题主要考查了复数的概念与基本运算,属于容易题,意在考查学生对复数代数形式四则运算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数的乘法则是按多项式的乘法法则进行处理.13.【20xx 高考上海,理2】若复数z 满足31z z i +=+,其中i 为虚数单位,则z = .【答案】1142i +【解析】设(,)z a bi a b R =+∈,则113()1412142a bi a bi i a b z i ++-=+⇒==⇒=+且 【考点定位】复数相等,共轭复数【名师点睛】研究复数问题一般将其设为(,)z a bi a b R =+∈形式,利用复数相等充要条件:实部与实部,虚部与虚部分别对应相等,将复数相等问题转化为实数问题:解对应方程组问题.复数问题实数化转化过程中,需明确概念,如(,)z a bi a b R =+∈的共轭复数为(,)z a bi a b R =-∈,复数加法为实部与实部,虚部与虚部分别对应相加.【20xx 高考上海,理15】设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】B【解析】若1z 、2z 皆是实数,则12z z -一定不是虚数,因此当12z z -是虚数时,则“1z 、2z 中至少有一个数是虚数”成立,即必要性成立;当1z 、2z 中至少有一个数是虚数,12z z -不一定是虚数,如12z z i ==,即充分性不成立,选B.【考点定位】复数概念,充要关系【名师点睛】形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.判断概念必须从其定义出发,不可想当然.。

高三数学复习附加题专项训练15套有答案

高三数学复习附加题专项训练15套有答案

ABC •••2013届高三数学复习附加题专项训练(一)烟雾满山飘 制作上传选修4-2:矩阵与变换二阶矩阵M 对应的变换将点(1,1)-与(2,1)-分别变换为点(1,1)--与(0,2)-,设直线l 在变换M 作用下得到了直线:24m x y -=,求直线l 的方程答案:直线l 的方程为40x +=选修4-4:坐标系与参数方程在极坐标系中,已知圆sin a ρθ=(0a >)与直线()cos 1ρθπ+=4相切,求实数a 的值.答案:解得4a =+【必做题】22. 如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.求APB ∆的重心G 的轨迹方程.答案:重心G 的轨迹方程为:221(34)20,(42)3x y x y x x --+-==-+即.23. 如图所示,某城市有南北街道和东西街道各2n +条,一邮递员从该城市西北角的邮局A 出发,送信到东南角B 地,要求所走路程最短.求该邮递员途径C 地的概率()f n 答案: 概率[]2212222(1)!(2)!1()2(!)(22)!21n n n n C n n n f n C n n n ++++==⋅=++。

(第4题)BACA 1B 1C 12013届高三数学一轮复习附加题专项训练(二)1设A=1212⎤⎥⎢⎢⎢⎣,则6A的逆矩阵是 。

答案:逆矩阵为 1 00 -1-⎡⎤⎢⎥⎣⎦。

选修4-4:坐标系与参数方程已知点),(y x P 在椭圆1121622=+y x 上,试求y x z 32-=的最大值. 答案: 10z 的最大值是【必做题】22.如图,在三棱柱111ABC A B C -中,AB AC ⊥,顶点1A 在底面ABC 上的射影恰为点B ,且12AB AC A B ===.(1)求棱1AA 与BC 所成的角的大小;(2)在棱11B C 上确定一点P ,使AP =1P AB A --的平面角的余弦值.答案(1)1AA 与棱BC 所成的角是π3.(2)二面角1P ABA --.23. 已知抛物线24y x =的焦点为F ,直线l 过点(4,0)M .(1)若点F 到直线l l 的斜率;(4分)(2)设,A B 为抛物线上两点,且AB 不与x 轴垂直,若线段AB 的垂直平分线恰过点M ,求证:线段AB 中点的横坐标为定值.(6分)答案: (1)直线l 的斜率为(2)线段AB 中点的横坐标为定值2.2013届高三数学一轮复习附加题专项训练(三)选修4-2:矩阵与变换若点(2,2)A 在矩阵cos sin sin cos M αααα-⎡⎤=⎢⎥⎣⎦对应变换的作用下得到的点为(2,2)B -,求矩阵M 的逆矩阵答案: 10110-⎡⎤=⎢⎥-⎣⎦M . 选修4-4:坐标系与参数方程在极坐标系中,求经过三点O (0,0),A (2,2π),B (4π)的圆的极坐标方程.解答: )4ρθπ=-.【必做题】 第22题口袋中有3个白球,4个红球,每次从口袋中任取一球,如果取到红球,那么继续取球,如果取到白球,就停止取球,记取球的次数为X . (I )若取到红球再放回,求X 不大于2的概率;(II )若取出的红球不放回,求X 的概率分布与数学期望.解答:(Ⅰ) ∴33(1)(2)49P P X P X ==+==;∴32631()12345277353535E X =⨯+⨯+⨯+⨯+⨯= 第23题已知1()ln(1)(1)nf x a x x =+--,其中*n N ∈,a 为常数, (1)当2n =时,求函数()f x 的极值;(2)当1a =时,证明:对任意的正整数n ,当2x ≥时,()1f x x ≤-.答案:(1) 2n =时,当0a >时,()f x 在1x =+处取得极小值2(1(1ln )2a f a+=+;当0a ≤时, ()f x 无极值. (2)略2013届高三数学一轮复习附加题专项训练(四)选修4-2:矩阵与变换.已知矩阵1101,20201⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A B ,若矩阵AB 对应的变换把直线l :20x y +-=变为直线'l ,求直线'l 的方程.答案:直线l '的方程为480x y +-=选修4-4:坐标系与参数方程求直线12,12x t y t =+⎧⎨=-⎩(t 为参数)被圆3cos ,3sin x y αα=⎧⎨=⎩(α为参数)截得的弦长.答案:弦长为【必做题】 第22题假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5,记此时教室里敞开的窗户个数为X . (Ⅰ)求X 的分布列;(Ⅱ)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y ,求Y 的分布列.答案:(Ⅰ)X 的分布列为(Ⅱ)Y 的分布列为第23题已知2()1f x x x =+-,()ln g x =若对任意12x >,都有()()f x g x ≤,试求a 的取值范围.答案: a 的取值范围是[,)e +∞.2013届高三数学一轮复习附加题专项训练(五)1选修4-2:矩阵与变换设A=,则A 6= 答案:66cos -sin 0 14466-1 0sin cos 44ππππ⎡⎤⎢⎥⎡⎤=⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦选修4-4:坐标系与参数方程椭圆2211612x y +=上找一点,使这一点到直线2120x y --=的距离的最小值. 答案:当 53πθ=时,min d =,此时所求点为(2,3)-【必做题】第22题 已知斜三棱柱111ABC A B C -,90BCA ∠=o,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥. (I )求证:1AC ⊥平面1A BC ; (II )求1CC 到平面1A AB 的距离; 答案:(I )略(II )1||||AC n d n ⋅==u u u u r rr 7. 第23题设数列{}n a 满足*1112,().n n na a a n N a +==+∈ (1)证明:n a 对*n N ∈恒成立; (2)令*)n b n N =∈,判断n b 与1n b +的大小,并说明理由.23题提供答案 证明: (1)111111(0)(0,1)12,22,{}(2,)12111k k n n kk kk k y x x x xa a a a a n a a nn k nk a a a ++=+>∈∈∞==+≥≥+∞===>>==>=+=+>=是减函数,x (1,+)为增函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、函数与导数(1)2、三角函数与解三角形3、函数与导数(2)4、立体几何5、数列(1)6、应用题7、解析几何8、数列(2)9、矩阵与变换10、坐标系与参数方程11、空间向量与立体几何12、曲线与方程、抛物线13、计数原理与二项式分布14、随机变量及其概率分布15、数学归纳法高考压轴大题突破练(一)函数与导数(1)1.已知函数f (x )=a e x x+x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值;(2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由.解 (1)∵f ′(x )=a e x (x -1)+x 2x 2, ∴f ′(1)=1,f (1)=a e +1.∴函数f (x )在(1,f (1))处的切线方程为y -(a e +1)=x -1,又直线过点(0,-1),∴-1-(a e +1)=-1,解得a =-1e. (2)若a <0,f ′(x )=a e x (x -1)+x 2x 2, 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值.方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0),则⎩⎪⎨⎪⎧ x 0>1,f (x 0)>0,f ′(x 0)=0,则00000200201,e 0,e (1)0,x x x a x x a x x x ⎛ > +> -+ = ⎝①②③ 由③得0e x a =-x 20x 0-1,代入②得-x 0x 0-1+x 0>0, 结合①可解得x 0>2,再由f (x 0)=0e x a x +x 0>0,得a >-020e x x , 设h (x )=-x 2e x ,则h ′(x )=x (x -2)e x, 当x >2时,h ′(x )>0,即h (x )是增函数,∴a >h (x 0)>h (2)=-4e 2.又a <0,故当极大值为正数时,a ∈⎝⎛⎭⎫-4e 2,0, 从而不存在负整数a 满足条件.方法二 当x ∈(1,+∞)时,令H (x )=a e x (x -1)+x 2,则H ′(x )=(a e x +2)x ,∵x ∈(1,+∞),∴e x ∈(e ,+∞),∵a 为负整数,∴a ≤-1,∴a e x ≤a e ≤-e ,∴a e x +2<0,∴H ′(x )<0,∴H (x )在(1,+∞)上单调递减.又H (1)=1>0,H (2)=a e 2+4≤-e 2+4<0,∴∃x 0∈(1,2),使得H (x 0)=0,且当1<x <x 0时,H (x )>0,即f ′(x )>0;当x >x 0时,H (x )<0,即f ′(x )<0.∴f (x )在x 0处取得极大值f (x 0)=0e x a x +x 0.(*) 又H (x 0)=0e x a (x 0-1)+x 20=0, ∴00e x a x =-x 0x 0-1,代入(*)得f (x 0)=-x 0x 0-1+x 0=x 0(x 0-2)x 0-1<0, ∴不存在负整数a 满足条件.2.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ). (1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且∃x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围.解 (1)∵函数f (x )=ax 3-3x 2+1,∴f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a, ∵a >0,∴x 1<x 2,当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的极大值为f (0)=1,极小值为f ⎝⎛⎭⎫2a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∵∃x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在[1,2]上有解,即不等式2a ≤1x 3+3x在[1,2]上有解, 设y =1x 3+3x =3x 2+1x3(x ∈[1,2]), ∵y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立, ∴y =1x 3+3x在[1,2]上单调递减, ∴当x =1时,y =1x 3+3x的最大值为4, ∴2a ≤4,即a ≤2.高考中档大题规范练(一)三角函数与解三角形1.(2017·江苏宿迁中学质检)已知函数f (x )=sin 2x +23sin x cos x +sin ⎝⎛⎭⎫x +π4sin ⎝⎛⎭⎫x -π4,x ∈R . (1)求f (x )的最小正周期和值域;(2)若x =x 0⎝⎛⎭⎫0≤x 0≤π2为f (x )的一个零点,求sin 2x 0的值. 解 (1)易得f (x )=sin 2x +3sin 2x +12(sin 2x -cos 2x ) =1-cos 2x 2+3sin 2x -12cos 2x =3sin 2x -cos 2x +12=2sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为π,值域为⎣⎡⎦⎤-32,52. (2)由f (x 0)=2sin ⎝⎛⎭⎫2x 0-π6+12=0,得 sin ⎝⎛⎭⎫2x 0-π6=-14<0,又由0≤x 0≤π2,得-π6≤2x 0-π6≤5π6, 所以-π6≤2x 0-π6<0,故cos ⎝⎛⎭⎫2x 0-π6=154, 此时sin 2x 0=sin ⎣⎡⎦⎤⎝⎛⎭⎫2x 0-π6+π6 =sin ⎝⎛⎭⎫2x 0-π6cos π6+cos ⎝⎛⎭⎫2x 0-π6sin π6=-14×32+154×12=15-38. 2.(2017·江苏南通四模)已知向量m =⎝⎛⎭⎫sin x 2,1,n =⎝⎛⎭⎫1,3cos x 2,函数f (x )=m ·n . (1)求函数f (x )的最小正周期;(2)若f ⎝⎛⎭⎫α-2π3=23,求f ⎝⎛⎭⎫2α+π3的值. 解 (1)f (x )=m ·n =sin x 2+3cos x 2=2⎝⎛⎭⎫12sin x 2+32cos x 2 =2⎝⎛⎭⎫sin x 2cos π3+cos x 2sin π3 =2sin ⎝⎛⎭⎫x 2+π3,所以函数f (x )的最小正周期为T =2π12=4π. (2)由f ⎝⎛⎭⎫α-2π3=23,得2sin α2=23,即sin α2=13. 所以f ⎝⎛⎭⎫2α+π3=2sin ⎝⎛⎭⎫α+π2=2cos α =2⎝⎛⎭⎫1-2sin 2α2=149. 3.(2017·江苏南师大考前模拟)已知△ABC 为锐角三角形,向量m =⎝⎛⎭⎫cos ⎝⎛⎭⎫A +π3,sin ⎝⎛⎭⎫A +π3,n =(cos B ,sin B ),并且m ⊥n .(1)求A -B ; (2)若cos B =35,AC =8,求BC 的长. 解 (1)因为m ⊥n ,所以m ·n =cos ⎝⎛⎭⎫A +π3cos B +sin ⎝⎛⎭⎫A +π3sin B=cos ⎝⎛⎭⎫A +π3-B =0. 因为0<A ,B <π2,所以-π6<A +π3-B <5π6, 所以A +π3-B =π2,即A -B =π6. (2)因为cos B =35,B ∈⎝⎛⎭⎫0,π2,所以sin B =45, 所以sin A =sin ⎝⎛⎭⎫B +π6=sin B cos π6+cos B sin π6=45×32+35×12=43+310, 由正弦定理可得BC =sin A sin B×AC =43+3. 4.(2017·江苏镇江三模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(a -c )(sin A +sin C )=(b -3c )sin B .(1)求角A ;(2)若f (x )=cos 2(x +A )-sin 2(x -A ),求f (x )的单调递增区间.解 (1)由(a -c )(sin A +sin C )=(b -3c )sin B 及正弦定理,得(a -c )(a +c )=(b -3c )b ,即a 2=b 2+c 2-3bc . 由余弦定理,得cos A =32, 因为0<A <π,所以A =π6. (2)f (x )=cos 2(x +A )-sin 2(x -A )=cos 2⎝⎛⎭⎫x +π6-sin 2⎝⎛⎭⎫x -π6 =1+cos ⎝⎛⎭⎫2x +π32-1-cos ⎝⎛⎭⎫2x -π32=12cos 2x , 令π+2k π≤2x ≤2π+2k π,k ∈Z ,得π2+k π≤x ≤π+k π,k ∈Z . 则f (x )的单调增区间为⎣⎡⎦⎤π2+k π,π+k π,k ∈Z .(二)函数与导数(2)1.设函数f (x )=2(a +1)x (a ∈R ),g (x )=ln x +bx (b ∈R ),直线y =x +1是曲线y =f (x )的一条切线.(1)求a 的值;(2)若函数y =f (x )-g (x )有两个极值点x 1,x 2.①试求b 的取值范围;②证明:g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 解 (1)设直线y =x +1与函数y =f (x )的图象相切于点(x 0,y 0),则y 0=x 0+1,y 0=2(a +1)x 0,a +1x 0=1,解得a =0. (2)记h (x )=f (x )-g (x ),则h (x )=2x -ln x -bx .①函数y =f (x )-g (x )有两个极值点的必要条件是h ′(x )有两个正零点.h ′(x )=1x -1x-b =-bx +x -1x , 令h ′(x )=0,得bx -x +1=0(x >0).令x =t ,则t >0.问题转化为bt 2-t +1=0有两个不等的正实根t 1,t 2,等价于⎩⎪⎨⎪⎧ Δ=1-4b >0,t 1t 2=1b >0,t 1+t 2=1b >0,解得0<b <14. 当0<b <14时,设h ′(x )=0的两正根为x 1,x 2,且x 1<x 2, 则h ′(x )=-bx +x -1x =-b (x -x 1)(x -x 2)x =-b (x -x 1)(x -x 2)x (x +x 1)(x +x 2). 当x ∈(0,x 1)时,h ′(x )<0;当x ∈(x 1,x 2)时,h ′(x )>0;当x ∈(x 2,+∞)时,h ′(x )<0. 所以x 1,x 2是h (x )=f (x )-g (x )的极值点,∴b 的取值范围是⎝⎛⎭⎫0,14. ②由①知x 1x 2=x 1+x 2=1b.可得g (x 1)+g (x 2)=-2ln b +1b -2,f (x 1)+f (x 2)=2b, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)=12-b ln b -b . 记k (b )=12-b ln b -b ⎝⎛⎭⎫0<b <14, 则k ′(b )=-ln b -2,令k ′(b )=0,得b =1e 2∈⎝⎛⎭⎫0,14, 且当b ∈⎝⎛⎭⎫0,1e 2时,k ′(b )>0,k (b )单调递增; 当b ∈⎝⎛⎭⎫1e 2,14时,k ′(b )<0,k (b )单调递减,且当b =1e 2时,k (b )取最大值1e 2+12, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 2.设函数f (x )=2ax +b x+c ln x . (1)当b =0,c =1时,讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处的切线为y =3x +3a -6且函数f (x )有两个极值点x 1,x 2,x 1<x 2. ①求a 的取值范围;②求f (x 2)的取值范围.解 (1)f (x )=2ax +b x+c ln x ,x >0, f ′(x )=2a -b x 2+c x =2ax 2+cx -b x 2. 当b =0,c =1时,f ′(x )=2ax +1x. 当a ≥0时,由x >0,得f ′(x )=2ax +1x>0恒成立, 所以函数f (x )在(0,+∞)上单调递增.当a <0时,令f ′(x )=2ax +1x >0,解得x <-12a; 令f ′(x )=2ax +1x <0,解得x >-12a, 所以,函数f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. 综上所述,①当a ≥0时,函数f (x )在(0,+∞)上单调递增;②当a <0时,函数f (x )在⎝⎛⎭⎫0,-12a上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)①函数f (x )在x =1处的切线为y =3x +3a -6,所以f (1)=2a +b =3a -3,f ′(1)=2a +c -b =3,所以b =a -3,c =-a ,f ′(x )=2a -b x 2+c x =2ax 2-ax +3-a x 2, 函数f (x )有两个极值点x 1,x 2,x 1<x 2,则方程2ax 2-ax +3-a =0有两个大于0的解,⎩⎨⎧ Δ=(-a )2-8a (3-a )>0,a 2a >0,3-a 2a >0,解得83<a <3. 所以a 的取值范围是⎝⎛⎭⎫83,3.②2ax 22-ax 2+3-a =0,x 2=a +9a 2-24a 4a =14⎝⎛⎭⎫1+ 9-24a , 由83<a <3,得x 2∈⎝⎛⎭⎫14,12, 由2ax 22-ax 2+3-a =0,得a =-32x 22-x 2-1. f (x 2)=2ax 2+a -3x 2-a ln x 2 =a ⎝⎛⎭⎫2x 2+1x 2-ln x 2-3x 2=-32x 2+1x 2-ln x 22x 22-x 2-1-3x 2. 设φ(t )=-32t +1t -ln t 2t 2-t -1-3t ,t ∈⎝⎛⎭⎫14,12, φ′(t )=-3⎝⎛⎭⎫2-1t 2-1t (2t 2-t -1)-⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t2 =-31t 2(2t 2-t -1)2+3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t 2=3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2. 当t ∈⎝⎛⎭⎫14,12时,2t +1t-ln t >0,4t -1>0,φ′(t )>0,所以φ(t )在⎝⎛⎭⎫14,12上单调递增,φ(t )∈⎝⎛⎭⎫163ln 2,3+3ln 2, 所以f (x 2)的取值范围是⎝⎛⎭⎫163ln 2,3+3ln 2. (二)立体几何1.(2017·江苏扬州调研)如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,CD ∥AB ,AB =2CD ,AC 交BD 于O ,锐角△P AD 所在平面⊥底面ABCD ,P A ⊥BD ,点Q 在侧棱PC 上,且PQ =2QC .求证:(1)P A ∥平面QBD ;(2)BD ⊥AD .证明 (1)如图,连结OQ ,因为AB∥CD,AB=2CD,所以AO=2OC.又PQ=2QC,所以P A∥OQ.又OQ⊂平面QBD,P A⊄平面QBD,所以P A∥平面QBD.(2)在平面P AD内过P作PH⊥AD于点H,因为侧面P AD⊥底面ABCD,平面P AD∩平面ABCD=AD,PH⊂平面P AD,所以PH⊥平面ABCD.又BD⊂平面ABCD,所以PH⊥BD.又P A⊥BD,P A∩PH=P,所以BD⊥平面P AD.又AD⊂平面P AD,所以BD⊥AD.2.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AC与BD交于点O,PC⊥底面ABCD,E为PB上一点,G为PO的中点.(1)若PD∥平面ACE,求证:E为PB的中点;(2)若AB=2PC,求证:CG⊥平面PBD.证明(1)连结OE,由四边形ABCD是正方形知,O为BD的中点,因为PD∥平面ACE,PD⊂平面PBD,平面PBD∩平面ACE=OE,所以PD∥OE.因为O为BD的中点,所以E为PB的中点.(2)在四棱锥P-ABCD中,AB=2PC,因为四边形ABCD是正方形,所以OC=22AB,所以PC=OC.因为G为PO的中点,所以CG⊥PO.又因为PC⊥底面ABCD,BD⊂底面ABCD,所以PC⊥BD.而四边形ABCD是正方形,所以AC⊥BD,因为AC,PC⊂平面P AC,AC∩PC=C,所以BD⊥平面P AC,因为CG⊂平面P AC,所以BD⊥CG.因为PO,BD⊂平面PBD,PO∩BD=O,所以CG⊥平面PBD.3.(2017·江苏怀仁中学模拟)如图,在四棱锥E-ABCD中,△ABD为正三角形,EB=ED,CB=CD.(1)求证:EC⊥BD;(2)若AB⊥BC,M,N分别为线段AE,AB的中点,求证:平面DMN∥平面BCE.证明(1)取BD的中点O,连结EO,CO.∵CD=CB,EB=ED,∴CO⊥BD,EO⊥BD.又CO∩EO=O,CO,EO⊂平面EOC,∴BD⊥平面EOC.又EC⊂平面EOC,∴BD⊥EC.(2)∵N是AB的中点,△ABD为正三角形,∴DN⊥AB,∵BC⊥AB,∴DN∥BC.又BC⊂平面BCE,DN⊄平面BCE,∴DN∥平面BCE.∵M为AE的中点,N为AB的中点,∴MN∥BE,又MN⊄平面BCE,BE⊂平面BCE,∴MN∥平面BCE.∵MN∩DN=N,∴平面DMN∥平面BCE.4.(2017·江苏楚水中学质检)如图,在三棱锥P-ABC中,点E,F分别是棱PC,AC的中点.(1)求证:P A∥平面BEF;(2)若平面P AB⊥平面ABC,PB⊥BC,求证:BC⊥P A.证明(1)在△P AC中,E,F分别是棱PC,AC的中点,所以P A∥EF.又P A⊄平面BEF,EF⊂平面BEF,所以P A∥平面BEF.(2)在平面P AB内过点P作PD⊥AB,垂足为D.因为平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,PD ⊂平面P AB ,所以PD ⊥平面ABC , 因为BC ⊂平面ABC ,所以PD ⊥BC ,又PB ⊥BC ,PD ∩PB =P ,PD ⊂平面P AB ,PB ⊂平面P AB ,所以BC ⊥平面P AB , 又P A ⊂平面P AB ,所以BC ⊥P A .(三)数 列(1)1.已知数列{a n }的前n 项和为S n ,且S n +a n =4,n ∈N *. (1)求数列{a n }的通项公式;(2)已知c n =2n +3(n ∈N *),记d n =c n +log C a n (C >0且C ≠1),是否存在这样的常数C ,使得数列{d n }是常数列,若存在,求出C 的值;若不存在,请说明理由.(3)若数列{b n },对于任意的正整数n ,均有b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=⎝⎛⎭⎫12n -n +22成立,求证:数列{b n }是等差数列. (1)解 a 1=4-a 1,所以a 1=2,由S n +a n =4,得当n ≥2时,S n -1+a n -1=4, 两式相减,得2a n =a n -1,所以a n a n -1=12,数列{a n }是以2为首项,公比为12的等比数列,所以a n =22-n (n ∈N *). (2)解 由于数列{d n }是常数列, d n =c n +log C a n =2n +3+(2-n )log C 2 =2n +3+2log C 2-n log C 2=(2-log C 2)n +3+2log C 2为常数, 则2-log C 2=0, 解得C =2,此时d n =7.(3)证明 b 1a n +b 2a n -1+b 3a n -2+…+b n a 1 =⎝⎛⎭⎫12n -n +22,①当n =1时,b 1a 1=12-32=-1,其中a 1=2,所以b 1=-12.当n ≥2时,b 1a n -1+b 2a n -2+b 3a n -3+…+b n -1a 1=⎝⎛⎭⎫12n -1-n +12,② ②式两边同时乘以12,得b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2=⎝⎛⎭⎫12n -n +14,③ 由①-③,得b n a 1=-n -34,所以b n =-n 8-38(n ∈N *,n ≥2),且b n +1-b n =-18,又b 1=-12=-18-38,所以数列{b n }是以-12为首项,公差为-18的等差数列.2.在数列{a n }中,已知a 1=13,a n +1=13a n -23n +1,n ∈N *,设S n 为{a n }的前n 项和.(1)求证:数列{3n a n }是等差数列; (2)求S n ;(3)是否存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列?若存在,求出p ,q ,r 的值;若不存在,说明理由.(1)证明 因为a n +1=13a n -23n +1,所以3n +1a n +1-3n a n =-2. 又因为a 1=13,所以31·a 1=1,所以{3n a n }是首项为1,公差为-2的等差数列. (2)解 由(1)知3n a n =1+(n -1)·(-2)=3-2n ,所以a n =(3-2n )⎝⎛⎭⎫13n,所以S n =1·⎝⎛⎭⎫131+(-1)·⎝⎛⎭⎫132+(-3)·⎝⎛⎭⎫133+…+(3-2n )·⎝⎛⎭⎫13n , 所以13S n =1·⎝⎛⎭⎫132+(-1)·⎝⎛⎭⎫133+…+(5-2n )·⎝⎛⎭⎫13n +(3-2n )·⎝⎛⎭⎫13n +1, 两式相减,得23S n =13-2⎣⎡⎦⎤⎝⎛⎭⎫132+⎝⎛⎭⎫133+…+⎝⎛⎭⎫13n -(3-2n )·⎝⎛⎭⎫13n +1=13-2⎣⎢⎡⎦⎥⎤19×1-⎝⎛⎭⎫13n -11-13+(2n -3)·⎝⎛⎭⎫13n +1=2n ·⎝⎛⎭⎫13n +1, 所以S n =n 3n .(3)解 假设存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列,则2S q =S p +S r ,即2q3q =p 3p +r 3r. 当n ≥2时,a n =(3-2n )⎝⎛⎭⎫13n<0,所以数列{S n }单调递减. 又p <q ,所以p ≤q -1且q 至少为2, 所以p 3p ≥q -13q -1,q -13q -1-2q 3q =q -33q .①当q ≥3时,p 3p ≥q -13q -1≥2q 3q ,又r 3r >0,所以p 3p +r 3r >2q3q ,等式不成立. ②当q =2时,p =1,所以49=13+r 3r ,所以r 3r =19,所以r =3({S n }单调递减,解惟一确定). 综上可知,p ,q ,r 的值为1,2,3.(三)应用题1.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用P 是多少元?(2)设该厂x 天购买一次配料,求该厂在这x 天中用于配料的总费用y (元)关于x 的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少? 解 (1)当9天购买一次时,该厂用于配料的保管费用 P =70+0.03×200×(1+2)=88(元).(2)①当x ≤7时,y =360x +10x +236=370x +236,②当x >7时,y =360x +236+70+6[(x -7)+(x -6)+…+2+1]=3x 2+321x +432,∴y =⎩⎪⎨⎪⎧370x +236,x ≤7,3x 2+321x +432,x >7,∴设该厂x 天购买一次配料平均每天支付的费用为f (x )元.f (x )=⎩⎨⎧370x +236x,x ≤7,3x 2+321x +432x,x >7.当x ≤7时,f (x )=370+236x ,当且仅当x =7时,f (x )有最小值2 8267≈404(元);当x >7时,f (x )=3x 2+321x +432x =3⎝⎛⎭⎫x +144x +321≥393.当且仅当x =12时取等号.∵393<404,∴当x =12时f (x )有最小值393元.2.南半球某地区冰川的体积每年中随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年的数据,冰川的体积(亿立方米)关于t 的近似函数的关系式为V (t )=⎩⎪⎨⎪⎧-t 3+11t 2-24t +100,0<t ≤10,4(t -10)(3t -41)+100,10<t ≤12.(1)该冰川的体积小于100亿立方米的时期称为衰退期.以i -1<t <i 表示第i 月份(i =1,2,…,12),问一年内哪几个月是衰退期? (2)求一年内该地区冰川的最大体积.解 (1)当0<t ≤10时,V (t )=-t 3+11t 2-24t +100<100,化简得t 2-11t +24>0,解得t <3或t >8.又0<t ≤10,故0<t <3或8<t ≤10,当10<t ≤12时,V (t )=4(t -10)(3t -41)+100<100, 解得10<t <413,又10<t ≤12,故10<t ≤12.综上得0<t <3或8<t ≤12.所以衰退期为1月,2月,3月,9月,10月,11月,12月共7个月. (2)由(1)知,V (t )的最大值只能在(3,9)内取到.由V ′(t )=(-t 3+11t 2-24t +100)′=-3t 2+22t -24, 令V ′(t )=0,解得t =6或t =43(舍去).当t 变化时,V ′(t )与V (t )的变化情况如下表:由上表,V (t )在t =6时取得最大值V (6)=136(亿立方米). 故该冰川的最大体积为136亿立方米.3.如图,某城市有一条公路从正西方AO 通过市中心O 后转向东偏北α角方向的OB .位于该市的某大学M 与市中心O 的距离OM =313 km ,且∠AOM =β.现要修筑一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,且经过大学M .其中tan α=2,cos β=313,AO =15 km.(1)求大学M 与站A 的距离AM ; (2)求铁路AB 段的长AB .解 (1)在△AOM 中,AO =15,∠AOM =β且cos β=313,OM =313, 由余弦定理,得AM 2=OA 2+OM 2-2OA ·OM ·cos ∠AOM =152+(313)2-2×15×313×313=13×9+15×15-2×3×15×3=72.∴AM =62,即大学M 与站A 的距离(2)∵cos β=313,且β为锐角,∴sin β=213, 在△AOM 中,由正弦定理,得AM sin β=OMsin ∠MAO ,即62213=313sin ∠MAO ,sin ∠MAO =22, ∴∠MAO =π4,∴∠ABO =α-π4,∵tan α=2,∴sin α=25,cos α=15, ∴sin ∠ABO =sin ⎝⎛⎭⎫α-π4=110, 又∠AOB =π-α,∴sin ∠AOB =sin(π-α)=25. 在△AOB 中,OA =15,由正弦定理,得 AB sin ∠AOB =OA sin ∠ABO,即AB 25=15110,∴AB =302,即铁路AB 段的长为30 2 km.4.(2017·江苏苏州大学指导卷)如图,某地区有一块长方形植物园ABCD ,AB =8(百米),BC =4(百米).植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为HBCEFG ,满足下列要求:E 在CD 的延长线上,H 在BA 的延长线上,DE =0.5(百米),AH =4(百米),N 为AH 的中点,FN ⊥AH ,EF 为曲线段,它上面的任意一点到AD 与AH 的距离的乘积为定值,FG ,GH 均为线段,GH ⊥HA ,GH =0.5(百米).(1)求四边形FGHN 的面积;(2)已知音乐广场M 在AB 上,AM =2(百米),若计划在EFG 的某一处P 开一个植物园大门,在原植物园ABCD 内选一点Q 为中心建一个休息区,使得QM =PM ,且∠QMP =90°,问点P 在何处时,AQ 最小.解 (1)以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立平面直角坐标系如图所示.则E ⎝⎛⎭⎫-12,4,因为E 到AD 与AH 距离的乘积为2, 所以曲线EF 上的任意一点都在函数y =-2x 的图象上.由题意,N (-2,0),所以F (-2,1).四边形FGHN 的面积为12×⎝⎛⎭⎫12+1×2=32(平方百米). (2)设P (x ,y ),则MP →=(x -2,y ),MQ →=(y ,-x +2),AQ →=(y +2,-x +2),因为点Q 在原植物园内,所以⎩⎪⎨⎪⎧0≤y +2≤8,0≤2-x ≤4,即-2≤x ≤2.又点P 在曲线EFG 上,x ∈⎣⎡⎦⎤-4,-12, 所以-2≤x ≤-12,则点P 在曲线段EF 上,AQ =(y +2)2+(2-x )2, 因为y =-2x ,所以AQ =⎝⎛⎭⎫-2x +22+(2-x )2= x 2+4x 2-4x -8x+8=⎝⎛⎭⎫x +2x 2-4⎝⎛⎭⎫x +2x +4=⎝⎛⎭⎫x +2x -22=-x +2-x+2≥22+2. 当且仅当-x =-2x,即x =-2时等号成立.此时点P (-2,2),即点P 在距离AD 与AH 均为2百米时,AQ 最小.(四)解析几何1.已知点A (x 1,y 1),B (x 2,y 2)(x 1x 2≠0),O 是坐标原点,P 是线段AB 的中点,若C 是点A 关于原点的对称点,Q 是线段BC 的中点,且OP =OQ ,设圆P 的方程为x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.(1)证明:线段AB 是圆P 的直径;(2)若存在正数p 使得2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2成立,当圆P 的圆心到直线x -2y =0的距离的最小值为255时,求p 的值.(1)证明 由题意知,点P 的坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22,点A (x 1,y 1)关于原点的对称点为C (-x 1,-y 1),那么点Q 的坐标为⎝⎛⎭⎫-x 1+x 22,-y 1+y 22,由OP =OQ ,得OP 2=OQ 2, 即⎝⎛⎭⎫x 1+x 222+⎝⎛⎭⎫y 1+y 222=⎝⎛⎭⎫-x 1+x 222+⎝⎛⎭⎫-y 1+y 222,得(x 1+x 2)2+(y 1+y 2)2=(x 1-x 2)2+(y 1-y 2)2, 从而x 1x 2+y 1y 2=0,由此得OA ⊥OB ,由方程x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0知,圆P 过原点,且点A ,B 在圆P 上, 故线段AB 是圆P 的直径.(2)解 由2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2,得x 1+x 2=12p [(y 1+y 2)2+8p 2],又圆心P ⎝⎛⎭⎫x 1+x 22,y 1+y 22到直线x -2y =0的距离为d =⎪⎪⎪⎪x 1+x 22-(y 1+y 2)5=⎪⎪⎪⎪14p [(y 1+y 2)2+8p 2]-(y 1+y 2)5=[(y 1+y 2)-2p ]2+4p 245p ≥4p 245p,当且仅当y 1+y 2=2p 时,等号成立,所以4p 245p =255,从而得p =2.2.如图,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,O 是坐标原点,OF =5,过点F 作OF 的垂线交椭圆C 于P 0,Q 0两点,△OP 0Q 0的面积为453.(1)求椭圆的标准方程;(2)若过点M (-5,0)的直线l 与上、下半椭圆分别交于点P ,Q ,且PM =2MQ ,求直线l 的方程.解 (1)由题设条件,P 0F =00OP Q S OF∆=4535=43.易知P 0F =b 2a ,所以b 2a =43.又c =OF =5,即a 2-b 2=5,因此a 2-43a -5=0,解得a =3或a =-53,又a >0,所以a =3,从而b =2. 故所求椭圆的标准方程为x 29+y 24=1.(2)设P (x 1,y 1),Q (x 2,y 2),由题意y 1>0,y 2<0, 并可设直线l :x =ty -5, 代入椭圆方程得(ty -5)29+y 24=1,即(4t 2+9)y 2-85ty -16=0. 从而y 1+y 2=85t 4t 2+9,y 1y 2=-164t 2+9.又由PM =2MQ ,得y 1-y 2=PMMQ=2,即y 1=-2y 2.因此y 1+y 2=-y 2,y 1y 2=-2y 22, 故-164t 2+9=-2⎝ ⎛⎭⎪⎫-85t 4t 2+92,可解得t 2=14.注意到y 2=-85t 4t 2+9且y 2<0,知t >0,因此t =12.故满足题意的直线l 的方程为2x -y +25=0.3.如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线l :y =-12x 与椭圆E 相交于A ,B 两点,AB =210,C ,D 是椭圆E 上异于A ,B 的两点,且直线AC ,BD 相交于点P ,直线AD ,BC 相交于点Q .(1)求椭圆E 的标准方程; (2)求证:直线PQ 的斜率为定值. (1)解 因为e =c a =32,所以c 2=34a 2,即a 2-b 2=34a 2,所以a =2b .所以椭圆方程为x 24b 2+y 2b2=1.由题意不妨设点A 在第二象限,点B 在第四象限,由⎩⎨⎧y =-12x ,x 24b 2+y2b 2=1,得A (-2b ,22b ). 又AB =210,所以OA =10, 则2b 2+12b 2=52b 2=10,得b =2,a =4.所以椭圆E 的标准方程为x 216+y 24=1.(2)证明 由(1)知,椭圆E 的方程为x 216+y 24=1,A (-22,2),B (22,-2).①当直线CA ,CB ,DA ,DB 的斜率都存在,且不为零时,设直线CA ,DA 的斜率分别为k 1,k 2,C (x 0,y 0),显然k 1≠k 2.从而k 1·k CB =y 0-2x 0+22·y 0+2x 0-22=y 20-2x 20-8=4⎝⎛⎭⎫1-x 2016-2x 20-8=2-x 204x 20-8=-14,所以k CB =-14k 1.同理k DB =-14k 2.所以直线AD 的方程为y -2=k 2(x +22),直线BC 的方程为y +2=-14k 1(x -22), 由⎩⎪⎨⎪⎧y +2=-14k 1(x -22),y -2=k 2(x +22), 解得⎩⎪⎨⎪⎧x =22(-4k 1k 2-4k 1+1)4k 1k 2+1,y =2(-4k 1k 2+4k 2+1)4k 1k 2+1,从而点Q 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 1+1)4k 1k 2+1,2(-4k 1k 2+4k 2+1)4k 1k 2+1.用k 2代替k 1,k 1代替k 2得点P 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 2+1)4k 1k 2+1,2(-4k 1k 2+4k 1+1)4k 1k 2+1.所以k PQ =2(-4k 1k 2+4k 2+1)4k 1k 2+1-2(-4k 1k 2+4k 1+1)4k 1k 2+122(-4k 1k 2-4k 1+1)4k 1k 2+1-22(-4k 1k 2-4k 2+1)4k 1k 2+1=42(k 2-k 1)82(k 2-k 1)=12.即直线PQ 的斜率为定值,其定值为12.②当直线CA ,CB ,DA ,DB 中,有直线的斜率不存在时,由题意得,至多有一条直线的斜率不存在,不妨设直线CA 的斜率不存在,从而C (-22,-2). 设DA 的斜率为k ,由①知,k DB =-14k.因为直线CA :x =-22,直线DB :y +2=-14k (x -22),得P ⎝⎛⎭⎫-22,-2+2k . 又直线BC :y =-2,直线AD :y -2=k (x +22), 得Q ⎝⎛⎭⎫-22-22k ,-2, 所以k PQ =12.由①②可知,直线PQ 的斜率为定值,其定值为12.4.(2017·江苏预测卷)平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,右准线的方程为x =433.(1)求椭圆C 的方程;(2)已知点P ⎝⎛⎭⎫12,2,过x 轴上的一个定点M 作直线l 与椭圆C 交于A ,B 两点,若三条直线P A ,PM ,PB 的斜率成等差数列,求点M 的坐标. 解 (1)因为椭圆的离心率为32,右准线的方程为x =433, 所以e =c a =32,a 2c =433,则a =2,c =3,b =1,椭圆C 的方程为x 24+y 2=1.(2)设M (m,0),当直线l 为y =0时,A (-2,0),B (2,0), P A ,PM ,PB 的斜率分别为 k P A =45,k PM =41-2m,k PB =-43,因为直线P A ,PM ,PB 的斜率成等差数列, 所以81-2m =45-43,m =8.证明如下:当M (8,0)时,直线P A ,PM ,PB 的斜率构成等差数列, 设AB :y =k (x -8),代入椭圆方程x 2+4y 2-4=0, 得x 2+4k 2(x -8)2-4=0,即(1+4k 2)x 2-64k 2x +256k 2-4=0, 设A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=64k 21+4k 2,x 1x 2=256k 2-41+4k 2,又k PM =0-28-12=-415, 所以k P A +k PB =y 1-2x 1-12+y 2-2x 2-12=kx 1-8k -2x 1-12+kx 2-8k -2x 2-12=2k +⎝⎛⎭⎫-152k -2⎝ ⎛⎭⎪⎫1x 1-12+1x 2-12 =2k +⎝⎛⎭⎫-152k -2(x 1+x 2)-1x 1x 2-12(x 1+x 2)+14=2k +⎝⎛⎭⎫-152k -264k 21+4k 2-1256k 2-41+4k 2-12×64k 21+4k 2+14=2k +⎝⎛⎭⎫-152k -260k 2-1154(60k 2-1)=-815=2k PM ,即证. (四)数 列(2)1.已知{a n },{b n },{c n }都是各项不为零的数列,且满足a 1b 1+a 2b 2+…+a n b n =c n S n ,n ∈N *,其中S n 是数列{a n }的前n 项和,{c n }是公差为d (d ≠0)的等差数列. (1)若数列{a n }是常数列,d =2,c 2=3,求数列{b n }的通项公式; (2)若a n =λn (λ是不为零的常数),求证:数列{b n }是等差数列;(3)若a 1=c 1=d =k (k 为常数,k ∈N *),b n =c n +k (n ≥2,n ∈N *),求证:对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.(1)解 因为d =2,c 2=3,所以c n =2n -1. 因为数列{a n }是各项不为零的常数列, 所以a 1=a 2=…=a n ,S n =na 1.则由c n S n =a 1b 1+a 2b 2+…+a n b n 及c n =2n -1,得 n (2n -1)=b 1+b 2+…+b n ,当n ≥2时,(n -1)(2n -3)=b 1+b 2+…+b n -1, 两式相减得b n =4n -3.当n =1时,b 1=1也满足b n =4n -3. 故b n =4n -3(n ∈N *).(2)证明 因为a 1b 1+a 2b 2+…+a n b n =c n S n , 当n ≥2时,c n -1S n -1=a 1b 1+a 2b 2+…+a n -1b n -1, 两式相减得c n S n -c n -1S n -1=a n b n , 即(S n -1+a n )c n -S n -1c n -1=a n b n , S n -1(c n -c n -1)+a n c n =a n b n , 所以S n -1d +λnc n =λnb n .又S n -1=λ+λ(n -1)2(n -1)=λn (n -1)2,所以λn (n -1)2d +λnc n =λnb n ,即(n -1)2d +c n =b n ,(*) 所以当n ≥3时,(n -2)2d +c n -1=b n -1,两式相减得b n -b n -1=32d (n ≥3),所以数列{b n }从第二项起是公差为32d 的等差数列.又当n =1时,由c 1S 1=a 1b 1,得c 1=b 1. 当n =2时,由(*)得b 2=(2-1)2d +c 2=12d +(c 1+d )=b 1+32d ,得b 2-b 1=32d .故数列{b n }是公差为32d 的等差数列.(3)证明 由(2)得当n ≥2时,S n -1(c n -c n -1)+a n c n =a n b n ,即S n -1d =a n (b n -c n ). 因为b n =c n +k ,所以b n =c n +kd , 即b n -c n =kd , 所以S n -1d =a n ·kd , 即S n -1=ka n ,所以S n =S n -1+a n =(k +1)a n . 当n ≥3时,S n -1=(k +1)a n -1, 两式相减得a n =(k +1)a n -(k +1)a n -1, 即a n =k +1k a n -1,故从第二项起数列{a n }是等比数列, 所以当n ≥2时,a n =a 2⎝⎛⎭⎫k +1k n -2,b n =c n +k =c n +kd =c 1+(n -1)k +k 2=k +(n -1)k +k 2=k (n +k ), 另外由已知条件得(a 1+a 2)c 2=a 1b 1+a 2b 2. 又c 2=2k ,b 1=k ,b 2=k (2+k ), 所以a 2=1,因而a n =⎝⎛⎭⎫k +1k n -2.令d n =b na n ,则d n +1d n =b n +1a n a n +1b n =(n +k +1)k (n +k )(k +1).因为(n +k +1)k -(n +k )(k +1)=-n <0, 所以d n +1d n<1,所以对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.2.已知数列{a n }的前n 项和为S n ,且a 1=1,a 2=2,设b n =a n +a n +1,c n =a n ·a n +1(n ∈N *). (1)若数列{b 2n -1}是公比为3的等比数列,求S 2n ; (2)若数列{b n }是公差为3的等差数列,求S n ;(3)是否存在这样的数列{a n },使得{b n }成等差数列和{c n }成等比数列同时成立,若存在,求出{a n }的通项公式;若不存在,请说明理由. 解 (1)b 1=a 1+a 2=1+2=3,S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 3+…+b 2n -1=3(1-3n )1-3=3n +1-32.(2)∵b n +1-b n =a n +2-a n =3,∴{a 2k -1},{a 2k }均是公差为3的等差数列,a 2k -1=a 1+(k -1)·3=3k -2,a 2k =a 2+(k -1)·3=3k -1,当n =2k (k ∈N *)时,S n =S 2k =(a 1+a 3+…+a 2k -1)+(a 2+a 4+…+a 2k )=k (1+3k -2)2+k (2+3k -1)2=3k 2=3n 24;当n =2k -1(k ∈N *)时,Sn =S 2k -1=S 2k -a 2k =3k 2-3k +1=3×⎝⎛⎭⎫n +122-3·n +12+1=3n 2+14.综上可知,S n=⎩⎨⎧3n 24,n =2k ,k ∈N *,3n 2+14,n =2k -1,k ∈N *.(3)∵{b n }成等差数列,∴2b 2=b 1+b 3,即2(a 2+a 3)=(a 1+a 2)+(a 3+a 4),a 2+a 3=a 1+a 4,① ∵{c n }成等比数列,∴c 22=c 1c 3. 即(a 2a 3)2=(a 1a 2)·(a 3a 4), ∵c 2=a 2a 3≠0,∴a 2a 3=a 1a 4,②由①②及a 1=1,a 2=2,得a 3=1,a 4=2,设{b n }的公差为d ,则b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=d ,即a n +2-a n =d ,即数列{a n }的奇数项和偶数项都构成公差为d 的等差数列, 又d =a 3-a 1=a 4-a 2=0, ∴数列{a n }=1,2,1,2,1,2,…,即a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *.此时c n =2,{c n }是公比为1的等比数列,满足题意.∴存在数列{a n },a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *, 使得{b n }成等差数列和{c n }成等比数列同时成立.高考附加题加分练 1.矩阵与变换1.已知矩阵M =⎣⎢⎡⎦⎥⎤a 1b 0,点A (1,0)在矩阵M 对应的变换作用下变为A ′(1,2),求矩阵M 的逆矩阵M -1. 解 ∵⎣⎢⎡⎦⎥⎤a 1b0 ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤12, ∴a =1,b =2.∴M =⎣⎢⎡⎦⎥⎤1 120,∴M -1=⎣⎢⎡⎦⎥⎤0 121 -12.2.(2017·江苏徐州一中检测)已知曲线C :y 2=12x ,在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到曲线C 2,求曲线C 2的方程.解 设A =NM ,则A =⎣⎢⎡⎦⎥⎤0 11 0 ⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0, 设P (x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P (x ,y ), 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0 ⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤-2y ′ x ′, 即⎩⎪⎨⎪⎧x =-2y ′,y =x ′,∴⎩⎪⎨⎪⎧x ′=y ,y ′=-12x .又点P (x ′,y ′)在曲线C :y 2=12x 上,∴⎝⎛⎭⎫-12x 2=12y ,即x 2=2y .3.已知矩阵M =⎣⎢⎡⎦⎥⎤1 22x 的一个特征值为3,求M 的另一个特征值及其对应的一个特征向量. 解 矩阵M 的特征多项式为f (λ)=⎣⎢⎡⎦⎥⎤λ-1 -2-2 λ-x =(λ-1)(λ-x )-4.因为λ1=3是方程f (λ)=0的一根,所以x =1. 由(λ-1)(λ-1)-4=0,得λ2=-1. 设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y , 则⎩⎪⎨⎪⎧-2x -2y =0,-2x -2y =0,得x =-y . 令x =1,则y =-1,所以矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤ 1-1.4.(2017·江苏江阴中学质检)若点A (2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.解 M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎡⎦⎥⎤2cos α-2sin α2sin α+2cos α=⎣⎢⎡⎦⎥⎤-2 2, 所以⎩⎪⎨⎪⎧cos α-sin α=-1,sin α+cos α=1,解得⎩⎪⎨⎪⎧cos α=0,sin α=1.所以M =⎣⎢⎡⎦⎥⎤0 -11 0.由M -1M =⎣⎢⎡⎦⎥⎤1 001,得M -1=⎣⎢⎡⎦⎥⎤1-10. 2.坐标系与参数方程1.(2017·江苏兴化中学调研)已知曲线C 1的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=-1,曲线C 2的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4,判断两曲线的位置关系. 解 将曲线C 1,C 2化为直角坐标方程,得 C 1:x +3y +2=0,C 2:x 2+y 2-2x -2y =0, 即C 2:(x -1)2+(y -1)2=2. 圆心到直线的距离d =|1+3+2|12+(3)2=∴曲线C 1与C 2相离.2.(2017·江苏金坛一中期中)已知在极坐标系下,圆C :ρ=2cos ⎝⎛⎭⎫θ+π2与直线l :ρsin ⎝⎛⎭⎫θ+π4=2,点M 为圆C 上的动点,求点M 到直线l 的距离的最大值. 解 圆C 化为直角坐标方程,得x 2+(y +1)2=1. 直线l 化为直角坐标方程,得x +y =2. 圆心C 到直线l 的距离d =|-1-2|2=322,所以点M 到直线l 的距离的最大值为1+322.3.已知直线l :⎩⎪⎨⎪⎧ x =1+t ,y =-t (t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ,y =m +2sin θ(θ为参数)相交于A ,B 两点,m 为常数. (1)当m =0时,求线段AB 的长;(2)当圆C 上恰有三点到直线的距离为1时,求m 的值. 解 (1)直线l :x +y -1=0,曲线C :x 2+y 2=4, 圆心到直线的距离d =12, 故AB =2r 2-d 2=14.(2)圆C 的直角坐标方程为x 2+(y -m )2=4, 直线l :x +y -1=0,由题意,知圆心到直线的距离d =|m -1|2=1,∴m =1± 2.4.(2017·江苏昆山中学质检)已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为ρ2cos 2θ+3ρ2sin 2θ=3,直线l 的参数方程为⎩⎨⎧x =-3t ,y =1+t(t 为参数,t ∈R ).试在曲线C 上求一点M ,使它到直线l 的距离最大. 解 曲线C 的普通方程是x 23+y 2=1,直线l 的普通方程是x +3y -3=0.设点M 的直角坐标是(3cos θ,sin θ),则点M 到直线l 的距离是d =|3cos θ+3sin θ-3|2=3⎪⎪⎪⎪2sin ⎝⎛⎭⎫θ+π4-12.因为-2≤2sin ⎝⎛⎭⎫θ+π4≤2,所以当sin ⎝⎛⎭⎫ θ+π4=-1,即θ=2k π-3π4(k ∈Z )时,d 取得最大值.此时3cos θ=-62,sin θ=-22. 设点M 的极角为φ,则⎩⎨⎧ρcos φ=-62,ρsin φ=-22,所以⎩⎪⎨⎪⎧ρ=2,φ=7π6. 综上,当点M 的极坐标为⎝⎛⎭⎫2,7π6时,该点到直线l 的距离最大. 3.空间向量与立体几何1.(2017·江苏南通中学月考)如图,已知三棱锥O -ABC 的侧棱OA ,OB ,OC 两两垂直,且OA =1,OB =OC =2,E 是OC 的中点.(1)求异面直线BE 与AC 所成角的余弦值; (2)求二面角A -BE -C 的正弦值.解 (1)以O 为原点,分别以OB ,OC ,OA 为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,1),B (2,0,0),C (0,2,0),E (0,1,0). EB →=(2,-1,0),AC →=(0,2,-1), ∴cos 〈EB →,AC →〉=-25,即异面直线BE 与AC 所成角的余弦值为25.(2)AB →=(2,0,-1),AE →=(0,1,-1), 设平面ABE 的法向量为n 1=(x ,y ,z ), 则由n 1⊥AB →,n 1⊥AE →,得⎩⎪⎨⎪⎧2x -z =0,y -z =0,取n 1=(1,2,2), 平面BEC 的法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23,∴二面角A -BE -C 的余弦值cos θ=23,∴sin θ=53, 即二面角A -BE -C 的正弦值为53.2.(2017·江苏宜兴中学质检)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,AA 1=3,D 是BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1-A 1D -C 1的正弦值.解 (1)由题意知,B (2,0,0),C (0,4,0),D (1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3),则A 1D →=(1,2,-3),A 1C 1→=(0,4,0),DB 1→=(1,-2,3). 设平面A 1C 1D 的一个法向量为n =(x ,y ,z ). 由n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0, 得y =0,x =3z ,令z =1,得x =3,n =(3,0,1).设直线DB 1与平面A 1C 1D 所成的角为θ, 则sin θ=|cos 〈DB 1→,n 〉|=|3+3|10×14=33535.(2)设平面A 1B 1D 的一个法向量为m =(a ,b ,c ),A 1B 1→=(2,0,0). 由m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0, 得a =0,2b =3c ,令c =2,得b =3,m =(0,3,2). 设二面角B 1-A 1D -C 1的大小为α, |cos α|=|cos 〈m ,n 〉|=|m ·n ||m ||n |=265, sin α=3765=345565.所以二面角B 1-A 1D -C 13.(2017·江苏运河中学质检)PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥CD ,∠ADC =π2,AB =AD =PD =1,CD =2.设Q 为侧棱PC 上一点,PQ →=λPC →.试确定λ的值,使得二面角Q -BD -P 为π4.解 因为侧面PCD ⊥底面ABCD , 平面PCD ∩平面ABCD =CD ,PD ⊥CD , 所以PD ⊥平面ABCD ,所以PD ⊥AD , 又∠ADC =π2,故DA ,DC ,DP 两两互相垂直.如图,以D 为坐标原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立直角坐标系,A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,1),则平面PBD 的一个法向量为n =(-1,1,0),PC →=(0,2,-1),PQ →=λPC →,λ∈(0,1), 所以Q (0,2λ,1-λ).设平面QBD 的一个法向量为m =(a ,b ,c ), 由m ·BD →=0,m ·DQ →=0,得⎩⎪⎨⎪⎧a +b =0,2λb +(1-λ)c =0, 所以取b =1,得m =⎝⎛⎭⎫-1,1,2λλ-1,所以cos π4=|m ·n ||m ||n |,即22·2+⎝⎛⎭⎫2λλ-12=22. 注意到λ∈(0,1),解得λ=2-1.4.在三棱锥S -ABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 是AC 的中点,侧棱SB 和底面成45°角.(1)若D 为棱SB 上一点,当SDDB为何值时,CD ⊥AB ; (2)求二面角S -BC -A 的余弦值的大小.解 以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系. 由题意知∠SBO =45°,SO =3.。

相关文档
最新文档