基于FPGA平台的数字频率合成器的设计和实现
基于FPGA的直接数字频率合成器

攀枝花学院专科毕业设计(论文)摘要摘要技术的实现依赖于高速、高性能的数字器件,选用现场可编程器件FPGA作为目标器件,可利用其高速、高性能及可重构性,根据需要方便地实现各种比较复杂的调频、调相和调幅功能。
本设计给出了基于FPGA芯片的直接数字频率合成器(DDS)的设计方法。
因为微电子技术的不断发展,开发者能很容易地将整个应用系统实现在一片FPGA 中,从而实现片上系统(SoC)。
因此,用FPGA实现DDS就有了更广泛的现实意义,并在现代通信系统中具有良好的实用性。
本设计在介绍DDS工作原理的基础上,运用EDA技术,使用FPGA来实现一个DDS,频率控制字和相位控制字由凌阳单片机来完成。
关键词:直接数字频率合成器,现场可编程门阵列(FPGA),相位累加器,数/模转换器,凌阳单片机I攀枝花学院专科毕业设计(论文)ABSTRACTABSTRACTThe realization of technology depends on the high-speed , high-performance digital device, select to use on-the-spot programming device FPGA as the goal device, it can utilize its high speed , high performance and can reconstructing,it last various complicated frequency modulation, last looks and amplitude modulation function according to need conveniently. Originally design the design method to provide direct digital frequency synthesizer (DDS ) based on FPGA chip. Because of the constant development of the microelectric technique, the developer can employ the system to realize in a slice of FPGA entirely very much easily , thus it is systematic (SoC ) to realize on slice. So realize with FPGA DDS have extensive realistic meaning , and have good practicability in the modern communication systems.Originally design on the basis of introduction DDS operation principle, use EDA technology , use FPGA to realize one DDS, frequency control word and phase place control word finish by Ling Yang one-chip computer.Keywords:Direct Digital Frequency Synthesizer, FPGA, Phase Addition, DAC,SPCE061A.II目录摘要 (Ⅰ)ABSTRACT (Ⅱ)1绪论 (1)1.1课题背景 (1)1.2发展方向 (1)2方案设计与论证 (2)2.1方案设计 (2)2.2方案论证 (2)3 模组简介 (3)3.1 凌阳单片机介绍 (3)3.1 .1凌阳单片机61板简介 (3)3.1.2 SPCE061A单片机简介 (4)3.2.现场可编程门阵列(FPGA)简介 (7)3.3 VHDL简介 (8)3.3.1概述 (8)3.3.2 HDL的种类 (9)3.3.3 VHDL语言开发环境和硬件平台 (10)3.3.4 VHDL 程序结构 (10)3.4DAC 0832及应用 (11)3.4.1 DAC的内部结构 (11)3.4.2 DAC 0832的基本工作方式 (12)3.5滤波电路 (14)3.5.1、初步定义 (14)3.5.2、有源滤波电路的分类 (14)3.5.3、一阶有源滤波电路 (15)3.5.4、二阶有源滤波电路 (16)3.6 DSP简介 (16)4 DDS的工作原理 (18)4.1 DDS基本原理 (18)4.2 DDS的FPGA实现设计 (18)5 系统软件设计 (21)5.1系统控制部分 (21)5.2 按键控制部份 (25)5.3调试 (26)6 结论 (28)参考文献 (29)附录:部分元器件清单 (30)致谢 (31)1 绪论1.1课题背景1971年,美国学者J.Tierncy、C.M.Reader和B..Gold提出了以全数字技术从相位概念出发直接合成所需波形的一种新的频率合成原理。
最新-基于FPGA的直接数字频率合成器的设计和实现 精品

基于FPGA的直接数字频率合成器的设计和实现摘要介绍了利用的器件150实现直接数字频率合成器的工作原理、设计思想、电路结构和改进优化方法。
关键词直接数字频率合成现场可编程门阵列直接数字频率合成,即,一般简称是从相位概念出发直接合成所需要波形的一种新的频率合成技术。
目前各大芯片制造厂商都相继推出采用先进工艺生产的高性能和多功能的芯片其中应用较为广泛的是公司的985系列,为电路设计者提供了多种选择。
然而在某些场合,专用的芯片在控制方式、置频速率等方面与系统的要求差距很大,这时如果用高性能的器件设计符合自己需要的电路就是一个很好的解决方法。
1是公司着眼于通信、音频处理及类似场合的应用而推出的器件芯片系列,总的来看将会逐步取代10系列,成为首选的中规模器件产品。
它具有如下特点11采用查找表和嵌入式阵列块相结合的结构,特别适用于实现复杂逻辑功能存储器功能,例如通信中应用的数字信号处理、多通道数据处理、数据传递和微控制等。
2典型门数为1万到10万门,有多达49152位的每个有4096位。
3器件内核采用25电压,功耗低,能够提供高达250的双向功能,完全支持33和66的局部总线标准。
4具有快速连续式延时可预测的快速通道互连;具有实现快速加法器、计数器、乘法器和比较器等算术功能的专用进位链和实现高速多扇入逻辑功能的专用级连接。
150具有典型门数50000门,逻辑单元2880个,嵌入系统块10个,完全符合单片实现电路的要求。
因此采用它设计电路,设计工具为的下一代设计工具软件。
范文先生网收集整理1电路工作原理图1所示是一个基于的电路的工作原理框图。
的工作原理是以数控振荡器的方式产生频率、相位可控制的正弦波。
电路一般包括基准时钟、频率累加器、相位累加器、幅度相位转换电路、转换器和低通滤波器。
基于FPGA的数字频率合成器设计与实现

相位 累加器是 典型 的反馈 电路 , Ⅳ位全加 器 和 Ⅳ位 由
累加寄存 器级 联而 成 , 对代 表频率 的二 进制 码进 行 累加运 算 J 。相位累加器 的位数 N=3 。可 以达 到较 高频率 分辨 2 率。该模块通过 V ro 语言编写 。仿真电路如图 2所示 。 ei g l
第2 期
贾伟伟 , 基于 F G 等: P A的数字频率合成 器设计的 R M三部 分组成 。其 中累加器进行 D S O D 相位调节 , 出的结 果 , 入 3 输 送 2位 的 D触 发 器 , 生 读取 产 R M 的地址信号 , O 由于受 到 R M的限制 , O 我们截 取高 1 O位
收稿 日期 : 1 一l 2 1 2一l 0 2
本系统整体 电路 图如图 4所示 , 包括 累加器 、2位的 寄 3
作 者简介 : 贾伟伟 (9 1一 ) 男 , 18 , 山西临汾人 , 硕士研究生 , 助教 , 究方向: 研 嵌入式及通信技 术。 李 美凤 (9 2一 ) 女 ,山西忻州人 ,硕士研 究生 , 18 , 助教 , 究方向: 研 电路 与 系统。
相位 累加器在基准 时钟的作 用下 , 行线 性相位 累加 , 进 当 J 位相位累加器 累加 Ⅳ次后 就会产 生一次 溢 出, 7 、 r 这样 就 完成 了一个周期 , 这个周期 也就是 D S信号的频率周期 。 D
图 3 波形文件仿真图
23 系统整体模块及仿真图 .
DS D 模块的输出频率 是系统工作频率/ 相位累加 ,
0p 8 4 .p 0o s B. s 09p 10op 2. s 10Qp 6. s
《基于FPGA的PLL+DDS的频率合成器》范文

《基于FPGA的PLL+DDS的频率合成器》篇一一、引言随着通信技术的飞速发展,频率合成器作为电子系统中的关键部件,其性能和稳定性直接影响到整个系统的性能。
本文将详细介绍一种基于FPGA(现场可编程门阵列)的PLL(锁相环)+DDS(直接数字合成器)的频率合成器,并对其设计原理、实现方法及性能优势进行深入探讨。
二、PLL+DDS频率合成器的工作原理PLL+DDS频率合成器通过将PLL与DDS结合,利用两者的优势来达到高精度、高稳定性的频率输出。
PLL模块主要负责跟踪和生成参考频率,而DDS模块则能够快速生成多种频率的波形。
FPGA作为核心控制器,负责协调PLL和DDS模块的工作,实现频率的合成和输出。
三、设计实现1. 硬件设计在硬件设计方面,PLL+DDS频率合成器主要包含FPGA、PLL模块、DDS模块以及输出电路等部分。
其中,FPGA作为核心控制器,负责协调整个系统的运行。
PLL模块采用高精度的锁相环电路,以实现稳定的参考频率输出。
DDS模块则采用数字方式生成多种频率的波形。
2. 软件设计在软件设计方面,需要编写FPGA的程序代码来实现对PLL 和DDS模块的控制。
通过配置FPGA的IO口,实现对PLL和DDS模块的驱动和控制。
同时,还需要编写相应的算法程序,以实现频率的合成和输出。
四、性能优势基于FPGA的PLL+DDS频率合成器具有以下优势:1. 高精度:PLL和DDS的结合使得频率合成器具有高精度的频率输出。
2. 高稳定性:通过PLL模块的锁相环电路,可以实现稳定的参考频率输出,从而提高整个系统的稳定性。
3. 快速响应:DDS模块采用数字方式生成波形,具有快速响应的特点,可以快速调整输出频率。
4. 灵活性:FPGA的可编程性使得频率合成器具有很高的灵活性,可以方便地实现多种功能的扩展和升级。
五、应用领域基于FPGA的PLL+DDS频率合成器在通信、雷达、电子测量等领域具有广泛的应用。
例如,在通信系统中,它可以为基站提供稳定的射频信号;在雷达系统中,它可以为雷达提供精确的扫描频率;在电子测量领域,它可以用于信号源的生成和测试等。
《基于FPGA的PLL+DDS的频率合成器》范文

《基于FPGA的PLL+DDS的频率合成器》篇一一、引言随着现代电子技术的飞速发展,频率合成器作为电子系统中的关键部件,其性能的优劣直接影响到整个系统的稳定性和可靠性。
传统的频率合成器往往存在体积大、功耗高、灵活性差等问题。
因此,研究和开发新型的、高性能的频率合成器显得尤为重要。
本文将介绍一种基于FPGA的PLL+DDS的频率合成器,并对其原理、设计、实现及应用进行详细阐述。
二、PLL+DDS原理PLL(Phase-Locked Loop)即锁相环,是一种用于实现两个信号相位同步的电路。
DDS(Direct Digital Synthesizer)即直接数字合成器,是一种通过数字方式产生正弦波等信号的技术。
将PLL和DDS结合起来,可以实现高精度、高稳定性的频率合成。
在基于FPGA的PLL+DDS的频率合成器中,PLL负责跟踪输入信号的频率和相位,将其锁定在目标频率上。
DDS则通过数字方式产生所需的信号波形。
两者的结合,可以在保持高精度的同时,实现快速的频率切换和调节。
三、设计实现1. 硬件设计硬件设计主要包括FPGA芯片、PLL芯片、DDS芯片及其他辅助电路。
其中,FPGA芯片作为核心控制器,负责整个系统的协调和控制。
PLL芯片和DDS芯片分别负责实现锁相和数字波形产生功能。
2. 软件设计软件设计主要包括FPGA的程序设计。
程序设计需要实现对输入信号的采集、处理、控制等功能。
同时,还需要对PLL和DDS进行配置和控制,以实现所需的频率合成功能。
四、性能分析基于FPGA的PLL+DDS的频率合成器具有以下优点:1. 高精度:由于采用了PLL和DDS技术,可以实现高精度的频率合成。
2. 高稳定性:PLL的锁相功能可以保证输出信号的稳定性和一致性。
3. 灵活性好:通过FPGA的控制,可以实现快速的频率切换和调节。
4. 体积小、功耗低:相比于传统的频率合成器,该设计具有更小的体积和更低的功耗。
五、应用领域基于FPGA的PLL+DDS的频率合成器广泛应用于通信、雷达、电子对抗、测控等领域。
基于FPGA的直接数字频率合成器的设计本科设计

基于FPGA的直接数字频率合成器的设计本科设计毕业设计论文基于FPGA的直接数字频率合成器的设计摘要在频率合成领域,常用的频率合成技术有直接模拟合成、模拟锁相环、小数分频锁相环等,直接数字频率合成(Direct Digital Frequency Synthesis ,DDFS,简称DDS)是近年来的新的频率合成技术。
本文介绍了直接数字频率合成器的基本组成及设计原理,给出了基于FPGA的具体设计方案及编程实现方法。
仿真结果表明,该设计简单合理,使用灵活方便,通用性好,可写入各种FPGA 芯片,最高可将频率提高100万倍。
具有良好的性价比。
关键词直接数字频率合成器(DDS) FPGADesign of direct digital frequency synthesizer based on FPGAAbstract In Frequency domain, the common Synthesis technology has Direct simulation, phase lock loop simulation, decimal Frequency and phase lock loop, Direct Digital Frequency Synthesis (as some DDFS, Digital, referred to as spurious bio-synthesis) in recent years is the new Frequency Synthesis technology. The structure and principles of Direct Digital Frequency Synthesizer is introduced. Also a detailed design and the method of program realization based on FPGA are introduced. The result of simulation shows that the design is simple and feasible, convenient and flexible, high universality, writeable various FPGA chip, the highest frequency can be 100 million times. Ratiofor quality to price.Keywords Direct Digital frequency Synthesizer(DDS) FPGA前言在频率合成领域,常用的频率合成技术有直接模拟合成、模拟锁相环、小数分频锁相环等,直接数字频率合成(DDS)是近年来的新的频率合成技术。
《基于FPGA的PLL+DDS的频率合成器》范文

《基于FPGA的PLL+DDS的频率合成器》篇一一、引言随着电子技术的发展,频率合成器作为现代通信、雷达、电子对抗等系统中的核心部件,其性能和稳定性要求越来越高。
FPGA(现场可编程门阵列)技术以其灵活、高速、低功耗等优势,在频率合成器的设计中得到了广泛应用。
本文将详细介绍基于FPGA的PLL(锁相环)+DDS(直接数字频率合成器)的频率合成器设计。
二、PLL+DDS原理概述PLL是一种能够跟踪输入信号频率并产生精确输出信号的电路。
DDS则是一种基于数字算法生成任意频率、相位和幅度的信号的技术。
将PLL和DDS相结合,可以实现高精度、高稳定性的频率合成。
在基于FPGA的PLL+DDS的频率合成器中,PLL用于提供稳定的参考频率,而DDS则用于生成所需的各种频率信号。
通过FPGA对PLL和DDS的控制,可以实现频率的快速切换和调整,满足不同应用场景的需求。
三、FPGA在频率合成器中的应用FPGA在频率合成器中的应用主要体现在以下几个方面:1. 控制逻辑设计:FPGA可以实现对PLL和DDS的控制逻辑设计,包括信号的输入、输出、频率切换等操作。
2. 高速数据处理:FPGA具有高速数据处理能力,可以实现对DDS生成的高速率数字信号的处理和传输。
3. 灵活性高:FPGA的现场可编程特性使得频率合成器的设计具有很高的灵活性,可以根据不同需求进行定制化设计。
四、基于FPGA的PLL+DDS的频率合成器设计基于FPGA的PLL+DDS的频率合成器设计主要包括以下几个部分:1. 参考频率源设计:采用高稳定度的晶体振荡器作为参考频率源,为PLL提供稳定的参考信号。
2. PLL模块设计:利用FPGA实现PLL模块的设计,通过调整环路参数实现精确的频率跟踪和相位锁定。
3. DDS模块设计:采用FPGA实现DDS模块的设计,生成所需的各种频率信号。
4. 信号处理与输出:通过FPGA对DDS生成的数字信号进行高速处理和传输,并输出到相应的设备或系统。
数字频率合成器FPGA设计实现

数字频率合成器的FPGA设计实现1绪论1.1 频率合成技术的背景1)直接频率合成直接频率合成理论大约在20世纪30年代中期开始形成,当时是利用单个或多个不同频率的晶体振荡器作为基准信号源,经过倍频、分频、混频等途径直接产生许多离散频率的输出信号,这就是最早应用的频率合成器,称之为直接式频率合成器.采用单一个或多个不同频率的晶体振荡器作为基准信号源,经过具有加减乘除四则运算功能的混频器、倍频器、分频器和具有选频功能的滤波器的不同组合来实现频率合成。
利用不同组合的四则运算,即可产生大量的、频率间隔较小的离散频率系列。
根据参考频率源的数目和四则运算电路组合的不同,直接式频率合成器有着许多不同的形式.如可由较多晶体振荡器或频率源同时提供基准频率,或仅由一个或少数几个晶体振荡器提供基准频率。
尽管合成器仅输入一个参考频率,但只需改变各倍频次数和分频器的分频数,即可获得一系列的离散频率。
2)锁相频率合成相位反馈理论和锁相技术应用于频率合成领域,产生了间接式频率合成器。
所谓间接式是指合成器的输出信号不是直接从参考源经过变换而得,而是由锁相环的压控振荡器间接产生所需要的频率输出,所以,间接式频率合成器又称为锁相频率合成器.它是基于锁相环路的同步原理,从一个高准确度、高稳定度的参考晶体振荡器综合出大量离散频率的一种技术。
锁相频率合成器由基准频率产生器和锁相环路两部分构成。
基准频率产生器为合成电路提供一个或几个高稳准的参考频率,锁相环路则利用其良好的窄带跟踪特性,使频率准确地锁定在参考频率或其某次谐波上,并使被锁定的频率具有与参考频率一致的频率稳定度和较高的频谱纯度[21。
由于锁相环路具有良好的窄带滤波特性,故其输出信号质量较直接式频率合成器得到明显的改善。
锁相技术在频率合成中的成功应用,使频率合成技术获得突破性进展。
锁相频率合成器的结构简单、输出频率成分的频谱纯度高,而且易于得到大量的离散频率等优点引起了人们的极大关注,为频率合成器的广泛应用打下了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于FPGA平台的数字频率合成器的设计和实
现
数字频率合成技术是一种实现高精度频率合成的方法,具有广泛应用价值。
在
数字频率合成中,FPGA是一种非常重要的平台,能够实现高速、高精度、可编程
的数字频率合成。
本文将介绍基于FPGA平台的数字频率合成器的设计和实现。
一、FPGA简介
FPGA是一种可以编程的数字集成电路,具有非常灵活的可编程性。
FPGA中
包含了大量的逻辑单元、存储单元和输入输出接口,可以通过编程实现各种数字电路功能。
FPGA具有高速、高度集成、低功耗等优点,在数字电路的设计和实现中
得到了广泛应用。
二、数字频率合成的基本原理
数字频率合成是通过一组特定的频率合成器和相位加法器来合成所需要的频率。
首先,将参考频率和相位加法器连接起来,形成一个频率合成器。
然后,将输出频率与参考频率的比例进行数字控制,并将输出频率的相位与参考频率相位进行加法计算,最终输出要求的频率。
三、数字频率合成器的设计
1. 参考频率生成模块
参考频率生成模块是数字频率合成器的核心模块。
参考频率一般使用晶振作为
输入信号,并通过频率除和锁相环等技术来产生高精度的参考频率。
在FPGA中,可以使用PLL、DCM等IP核来实现参考频率的生成。
2. 分频器
分频器是将参考频率转化为所需的输出频率的模块,一般使用计数器实现。
在FPGA中,可以使用计数器IP核或使用Verilog等HDL语言来实现。
3. 相位加法器
相位加法器用于将输出频率的相位和参考频率的相位相加。
在FPGA中,可以
使用LUT(查找表)实现相位加法器。
4. 控制单元
控制单元用于控制数字频率合成器的各个模块,并实现与外部设备的接口。
在FPGA中,可以使用微处理器或FPGA内部逻辑来实现控制单元。
四、数字频率合成器的实现
数字频率合成器的实现需要进行数字电路设计和FPGA编程。
一般来说,可以
采用Verilog或VHDL等硬件描述语言进行FPGA编程,实现各个模块的功能。
数
字电路设计过程中,需要考虑到功耗、面积和时序等问题,同时需要进行仿真和验证。
五、应用实例
数字频率合成器在通信、雷达、医疗等领域得到了广泛应用。
以通信领域为例,数字频率合成器用于产生高精度的信号时钟和频率,实现数据传输、调制解调等功能。
在FPGA平台上,数字频率合成器能够实现高速、高度可编程、低功耗的特点,为通信系统的发展提供了很好的支撑。
六、结论
数字频率合成技术是一种实现高精度频率合成的方法,在FPGA平台上实现具
有很大的优势。
本文介绍了数字频率合成器的基本原理、设计和实现方法,并举例说明了数字频率合成器在通信领域的应用。
未来,数字频率合成技术将在更多领域发挥重要作用,FPGA平台将成为数字频率合成器的重要实现方式。