模拟混合信号系统中的频率合成技术
第二章直接频率合成技术

ωm, n称为组合频率;m和n的绝对值称为组合
频率分量的阶。
成都信息工程学院电子工程学院
频率合成技术
第四章 单端口网络和多端口网络
37
若频率合成器通过混频器取差频输出, 即ωout=ω1-ω2, 也就是m=1, n=-1,那么 m和n的其他取值均为干扰频率,高阶的干扰 频率的信号很弱,但是低阶的干扰频率信号 必须要加以考虑。
成都信息工程学院电子工程学院
频率合成技术
第四章 单端口网络和多端口网络
5
f n −1 + f n +
( Δf 0−9 )n−1 ( Δf 0−9 )n
10
n−2
+
10n −1
成都信息工程学院电子工程学院
频率合成技术
第四章 单端口网络和多端口网络
6
由n个石英晶体振荡器和混频器以及滤波器构成,每 一个石英晶体振荡器的输出频率为
第四章 单端口网络和多端口网络
10
若设置(Δf0) 1=(Δf0)2=(Δf0)3=0 MHz,则最小 输出频率为
(Δf 0 ) 2 (Δf 0 )3 f out = f1 + f 2 + f 3 + (Δf 0 )1 + + 2 10 10 = 47.0 + 6.0 + 5.0 =58.0 MHz
成都信息工程学院电子工程学院
频率合成技术
第四章 单端口网络和多端口网络
11
若设置(Δf9) 1=(Δf9) 2=(Δf9)3=0.9 MHz, 则最大输出频率为
(Δf 9 ) 2 (Δf 9 )3 f out = f1 + f 2 + f 3 + (Δf 9 )1 + + 2 10 10 = 47.9 + 6.09 + 5.009 =58.999 MHz
DDS原理

通常用频率增量来表示频率合成器的分辨率,DDS的最小分辨率为
f min
fc 2N
这个增量也就是最低的合成频率。最高的合成频率受奈奎斯特抽样定理的限制,所 以有
f 0 max
fc 2
与PLL不同,DDS的输出频率可以瞬时地改变,即可以实现跳频,这是DDS的一个突 出优点,用于扫频测量和数字通讯中,十分方便。
AD9830
芯片特性 +5V电压供电 50MHz频率 片内正弦查询表 片内10位数模转换器 并行数据接口 掉电功能选择 250mW功耗 48引脚薄方扁封装 (TQFP)
DDS的信号质量分析
取样系统信号的频谱
镜像频率分量为-60dB,而其他各种杂散分量 分布在很宽的频带上,其幅值远小于镜像频率分量。 D/A之后用的低通滤波器可用来滤去镜像频率分量, 谐波分量和带外杂散分量。第一个镜像频率分量 最靠近信号频率,且幅度最大,实际应用时, 应尽量提高采样时钟频率,使该分量远离低通 滤波器的带宽,以减少低通滤波器的制作难度。
DDS的信号质量分析
DDS信号源的性能指标: 1, 频率稳定度,等同于其时鈡信号的稳定度。 2, 频率的值的精度,决定于DDS的相位分辨率。即由DDS的相位累加器的字宽和ROM函数表决定。 本题要求频率按10Hz步进,频率值的误差应远小于10Hz。DDS可达到很高的频率分辨率。 3, 失真与杂波:可用输出频率的正弦波能量与其他各种频率成分的比值来描述。失真与杂波的成分 可分为以下几个部分: ⑴,采样信号的镜像频率分量。DDS信号是由正弦波的离散采样值的数字量经D/A转换为阶梯形的 模拟波形的,当时钟频率为,输出正弦波的频率为时,存在着以采样频率为折叠频率的一系列镜像 频率分量,这些镜像频率值为n±它们的幅度沿Sin(x)/x包络滚降。其输出信号的频谱如图6。19所 示。 ⑵ D/A的字宽决定了它的分辨率,它所决定的杂散噪声分量,满量程时,对信号的信噪比影响可表 示为 S/D+N =6.02B+1.76 dB 其中B为D/A的字宽,对于10位的D/A,信噪比可达到60dB以上。 增加D/A的位数,可以减少波形的幅值离散噪声。另外,采用过采样技术,即大幅度增加每个周期 中的样点数(提高时钟频率),也可以降低该类噪声。过采样方法使量化噪声的能量分散到更宽的 频带,因而提高了信号频带内的信噪比。 ⑶ 相位累加器截断造成的杂波。这是由正弦波的ROM表样点数有限而造成的。通过提高时钟频率 或采用插值的方法增加每个周期中的点数(过采样),可以减少这些杂波分量。 ⑷ D/A转换器的各种非线性误差形成的杂散频率分量,其中包括谐波频率分量,它们在N频率处。 这些杂波分量的幅度较小。 ⑸,其他杂散分量,包括时钟泄漏,时钟相位噪声的影响等。 D/A后面的低通滤波器可以滤去镜像频率分量和谐波分量,可以滤去带外的高频杂散分量,但是, 无法滤去落在低通带内的杂散分量。
频率合成技术

频率合成技术一、频率合成技术简述频率合成技术起步于上世纪30年代,至今已有七十年的历史。
其原理是通过一个或多个参考信号源的线性运算,在某一频段内,产生多个离散频率点。
基于此原理制成的频率源称为频率合成器。
频率合成器是现代电子系统的重要组成部分,是决定整个电子系统系统性能的关键设备,不仅在通信、雷达、电子对抗等军事领域,更在广播电视、遥控遥测、仪器仪表等民用领域得到了广泛的应用。
随着电子技术在各领域内占有越来越重要的地位,现代雷达和精确制导等高精尖电子系统对频率合成器的各项指标提出了越来越高的要求,推动了频率合成技术的发展。
频率合成器的主要性能指标包括:(1).输出频率范围,是频率合成器输出的最低频率和最高频率之间的变化范围。
一般来说,输出的带宽越高越容易满足系统对于频率源的需求。
(2).频率分辨率,是输出频率两个相邻频率点之间的最小间隔。
作为标准信号源的频率合成器,频率分辨率越精细越好。
(3).频率切换时间,是输出频率由一个频率切换到另一个指定的频率的时间,电子对抗时的频率跳变对此有着极高的要求。
(4).频谱纯度,频谱的噪声包括杂散分量和相位噪声两方面,杂散又称为寄生信号,主要由频率合成过程中的非线性失真产生;相位噪声是衡量输出信号相位抖动大小的参数。
(5).频率稳定度,是指在规定的时间间隔内,频率合成器输出频率偏离指定值的数值,由作为参考信号源的时钟和各种随机噪声决定。
(6).调制性能,频率合成器是否具有调幅(AM)、调频(FM)和调相(PM)功能。
初期的频率合成技术采用一组晶体组成的晶体振荡器,输出频率点由晶体个数决定,频率准确度和稳定度由晶体性能决定,频率切换由人工手动完成。
随着时间的推移,频率合成技术理论的完善和微电子技术的发展,后来的科学家不断的提出了若干频率合成方法,现代的频率合成技术主要经历了三个阶段:直接模拟频率合成、间接频率合成和直接数字频率合成。
直接模拟频率合成(Direct Frequency Synthesis,DS)技术也是一种早期的频率合成技术,使用一个或几个晶体振荡器作为参考频率源,通过分频、混频和倍频的方法对参考源频率进行加减乘除的运算,然后用滤波器处理杂散频率得到需求的不同频率。
混频 原理

混频原理
混频是一种将多个频率信号合并或分离的过程。
它通常在无线通信、音频信号处理和电子系统中使用。
混频的基本原理是利用混频器(也称为调频器)进行频率转换。
混频器是一种非线性元件,它可以将两个输入信号进行线性或非线性混合。
当输入信号经过混频器时,混频器会产生输出信号,其频率等于输入信号频率之和或差值,同时还会产生其他频率成分。
混频器通常由非线性晶体管、二极管或集成电路实现。
它们可以以不同的方式进行混频操作,包括加法混频、减法混频和倍频混频等。
在加法混频中,输入信号的频率相加形成输出信号的频率,而在减法混频中,输入信号的频率相减形成输出信号的频率。
混频在无线通信中的应用非常广泛。
例如,在超高频(UHF)和极高频(SHF)频段,混频被用来将信号从接收机转换到基
带频率进行解调。
类似地,在频率合成器或数字信号处理中,混频被用于将信号转换到所需的频率范围。
总之,混频是一种重要的信号处理技术,它可以将多个频率信号进行合并或分离,为无线通信和电子系统提供了更灵活和高效的信号处理能力。
频率合成的原理及应用视频

频率合成的原理及应用视频1. 引言频率合成是一种将多个不同频率的信号进行合成,生成新的复合频率信号的技术。
通过频率合成,我们可以生成各种各样的音频信号,用于音乐制作、音频合成、声音合成等领域。
频率合成技术的发展使得音乐产生了革命性的变化,创造了更加多样化的音乐作品。
这个视频将会介绍频率合成的原理及其在实际应用中的一些例子。
2. 频率合成的原理频率合成的原理基于振荡器和混频器的组合。
频率合成器可以根据一组输入频率和幅度信息,输出所需的特定频率的复合信号。
频率合成主要依赖于两个核心组件:•振荡器:振荡器是一种电子设备,可以产生特定频率的周期性信号。
它们可以是简单的正弦波振荡器,也可以是复杂的波形合成器。
振荡器通常由振荡电路或晶体管实现。
•混频器:混频器是一种电子设备,可以将两个或多个不同频率的信号混合在一起。
混频器可以通过调整不同频率信号之间的相对幅度,生成新的复合频率信号。
频率合成的过程大致可以分为以下几步:1.输入待合成的频率信息和幅度信息。
2.使用振荡器生成具有特定频率的信号。
3.使用混频器将多个不同频率的信号混合在一起。
4.输出生成的复合频率信号。
3. 频率合成的应用频率合成技术在许多领域中得到广泛应用,以下是一些常见的应用示例:3.1 音乐合成频率合成技术在音乐制作中扮演重要角色。
通过合成器、调音台和效果器等设备,音乐制作人可以合成各种音乐乐器的声音,如钢琴、吉他、风琴等。
频率合成使得音乐制作人可以创造出各种奇特的音乐效果,为音乐作品增添独特的风格和魅力。
3.2 语音合成频率合成技术在语音合成中也得到广泛应用。
语音合成系统可以将文本或符号转化为声音信号。
通过合成器和音频处理算法,语音合成系统可以产生具有自然听感的合成语音。
这种技术被广泛应用于语音助手、导航系统、自动电话系统等各种语音交互应用中。
3.3 音频特效频率合成技术还可以用于音频特效的生成。
通过合成器和音频效果器,音频工程师可以产生各种特殊的音频效果,如回声、混响、声相位扭曲等。
毕业设计(论文)-基于DDS芯片AD9951的信号发生器

基于DDS芯片AD9951的精密信号发生器设计摘要直接数字频率合成(Direct Digital Frequency Synthesis简称DDS)是近年来迅速发展起来的一种新的频率合成方法。
而AD9951是美国模拟器件公司(ADI)最新推出的高集成度DDS芯片。
本设计采用该芯片,以AT89S52单片机为控制,采用AT24C02来存储重要的系统数据,由1602点阵式字符型液晶显示模块作为显示器,并加上一个小键盘构成了精密信号发生器。
要求其输出频率范围为0~160MHz、最小步进为10Hz或者1Hz、输出信号幅度大于0.3Vp-p、杂散小、有掉电数据保持功能。
文中详细介绍了DDS的工作原理以及该信号发生器的软、硬件设计方案,并给出了具体的程序设计。
指标关键词:直接数字频率合成(DDS)、AD9951、AT89S52、信号发生器、频率控制字直接数字频率合成(Direct Digital Frequency Synthesis简称DDS)是近年来迅速发展起来的一种新的频率合成方法,广泛应用于通讯、导航、雷达、遥控遥测、电子对抗以及现代化的仪器仪表工业等领域。
而AD9951是美国模拟器件公司(ADI)最新推出的高品质、高集成度DDS芯片。
本设计采用该DDS芯片作为核心元件,以AT89S52单片机为主控器件、并辅以AT24C02存储重要的系统数据、1602点阵式字符型液晶显示模块作为显示器,构成了一种精密的DDS信号发生器。
文中详细介绍了DDS的工作原理以及该精密信号发生器的软、硬件设计方法,并给出了具体的程序设计方案。
设计出的信号发生器,输出频率范围为0~160MHz、最小步进为10Hz或者1Hz、输出信号幅度大于0.3Vp-p、杂散小。
关键词:直接数字频率合成(DDS)、AD9951、AT89S52、信号发生器、频率控制字该芯片能以早期DDS 1/10的功耗提供速度高达400 MHz 的内部时钟,而合成频率高达160 MHz。
通信电子中的混频技术应用

通信电子中的混频技术应用混频技术在通信电子领域中是一项非常重要的技术手段,它的作用在于将针对传输信号的操作放到更为低频的部位,这将有助于跨越长距离或通过狭窄带宽的信道来传输高频率信号。
在现代通信系统中,混频技术被广泛应用于数字信号处理、移动通信、无线电、卫星通信和雷达等领域,在各种场合中表现出了极为出色的传输效果。
本文将通过进一步探究混频技术的原理和应用,来了解混频技术在通信电子领域中的广泛应用和巨大价值。
一、混频技术的原理混频技术是一种将输入信号和局部振荡信号进行混合的技术,通过将二者叠加后得到衍生的信号,在频域中既包含原来的频率部分又包含某些新的频率部分,同时频率部分或者幅度也发生了改变。
混频器是混频技术的基础设备,它是一种器件或者电路,用以将两个或更多的输入信号的频率混合在一起产生输出信号。
混频器的内部结构通常包括一个非线性元件和一个局部振荡器,非线性元件主要负责对输入的交流信号进行整流、倍频或者调制等操作,而局部振荡信号则负责对信号频率进行转换,完成混频效果的实现。
二、混频技术在通信电子领域中的应用1.数字信号处理在数字通信领域中,混频技术的主要作用在于对数字信号进行频域转换。
在发送端,混频技术可用来将基带信号的频率转换到更高的调制频率,并通过无线电进行传输;在接收端,混频技术可用来将调制信号的频率转换回基带频率,并通过DSP进行数字信号处理。
混频技术不仅有助于降低信号的噪声和失真,同时也有适用于信号挤压、分集、频谱分析、信号鉴别等方面的应用。
2.移动通信移动通信将无线电信号发送和接收的范围还原到更短的距离内,以便移动设备能够与基站直接通信。
混频技术在移动通信领域中也有许多应用。
例如,在CDMA系统中,混频技术用于将基带信号转换到包含具有不同扰码的多个中频频段中,以便在接收端进行数字信号处理。
此外,在GSM系统中,混频技术也用于将频率带信号转换到更适合移动终端的范围内。
3.无线电和雷达在无线电领域中,混频器经常用来对信号进行调频或调幅,以实现广播和电视节目的传播。
数模混合ic-解释说明

数模混合ic-概述说明以及解释1.引言1.1 概述数模混合IC是指在一个芯片内集成了模数混合信号电路的集成电路,它将数字电路与模拟电路有机地结合在一起。
随着电子技术的快速发展和市场需求的不断增加,数模混合IC的应用逐渐得到了广泛关注和应用。
数模混合IC主要用于将模拟信号转换为数字信号或将数字信号转换为模拟信号的过程中。
它可以实现模拟信号的采样、滤波、放大、调制、解调等功能,同时能够进行数字信号的处理、编解码、调制解调等操作。
因此,数模混合IC被广泛应用于通信、音视频处理、传感器接口等领域。
数模混合IC的设计流程主要包括需求分析、系统设计、电路设计、电路仿真、布局布线、验证测试等多个环节。
在设计过程中,需要考虑电路的性能指标、功耗、面积、成本等因素,以确保设计出满足实际应用需求的芯片。
数模混合IC相比于传统的模拟电路和数字电路独立设计的方式,具有一定的优势和挑战。
它可以减少电路间的接口,简化系统设计,提高集成度和性能。
然而,由于数字和模拟电路之间的互相影响和干扰,数模混合IC的设计和验证相对较为复杂,对设计人员的技术水平要求较高。
总之,数模混合IC作为一种集成度高、功能强大的芯片设计技术,具有广泛的应用前景。
随着科技的不断进步和市场需求的不断变化,数模混合IC的应用将得到进一步的推广和发展。
未来,数模混合IC设计将更加注重低功耗、高性能、高集成度和低成本等方面的探索,为各个领域的应用提供更加优越的解决方案。
1.2文章结构文章结构部分的内容可以按照以下方式进行编写:2. 文章结构本文分为引言、正文和结论三个部分。
每个部分包含多个小节,具体的结构如下:2.1 引言2.1.1 概述2.1.2 文章结构2.1.3 目的2.1.4 总结2.2 正文2.2.1 数模混合IC的定义2.2.2 数模混合IC的应用领域2.2.3 数模混合IC的设计流程2.2.4 数模混合IC的优势和挑战2.3 结论2.3.1 数模混合IC的发展前景2.3.2 数模混合IC的应用推广2.3.3 数模混合IC的未来发展方向2.3.4 总结在引言部分,我们将概述整篇文章的主要内容、目的以及总结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟混合信号系统中的频率合成技术
在模拟混合信号系统中,频率合成技术扮演着至关重要的角色。
频率合成是指
生成一个高稳定度的时钟信号,以供整个系统中的各个模块使用。
在数字通信、无线通信、雷达系统等领域,频率合成技术都扮演着不可或缺的角色。
频率合成技术的核心是锁相环(PLL)和数字控制振荡器(DDS)。
锁相环是
一种经典的频率合成器,通过对输入信号进行频率和相位比对,逐渐调整输出信号的频率和相位,实现从输入信号到输出信号的稳定转换。
DDS则是一种数字化的
频率合成器,通过数字信号直接控制振荡器的输出频率,具有高分辨率、快速切换和灵活性强的特点。
在混合信号系统中,频率合成技术既可以单独应用,也可以与其他模拟数字混
合技术结合使用。
例如,在射频前端中,频率合成技术可以生成射频信号,用于收发信号的调制和解调;在数字基带中,频率合成技术可以生成基带信号,用于数字信号的处理和编解码。
频率合成技术的性能指标包括频率稳定度、相位噪声、谐波失真等。
频率稳定
度是指输出信号频率的稳定性,主要受到振荡器的影响;相位噪声是指输出信号相位的稳定性,主要受到锁相环的影响;谐波失真是指输出信号中包含的不同频率的失真分量,主要受到滤波器的影响。
为了提高频率合成技术的性能,可以采用更高精度的元器件、更优化的设计方案和更严格的测试标准。
总的来说,模拟混合信号系统中的频率合成技术是实现系统高性能的关键因素
之一。
通过对频率合成技术的深入研究和不断创新,可以提高系统的性能和可靠性,满足现代通信系统对频率合成技术的不断提升的需求。