初中七年级上册数学认识三角形(基础)知识讲解
三角形 七年级上册知识点

三角形七年级上册知识点在七年级上册数学学习中,三角形是一个非常重要的知识点。
学好三角形不仅对于数学学科来说,也对于生活有很大的帮助。
下面将从三角形的定义、分类、性质等方面进行阐述。
一、三角形的定义三角形,是由三条线段组成的图形,这三条线段两两相交,并且任意两条线段的夹角都小于180度。
那么我们可以得到,三角形是一个有3个顶点和3条边的图形。
其中,三角形的每条边都是由两个端点连接而成的线段。
在三角形中,由三角形两边所夹角称为三角形的一个内角。
二、三角形的分类根据三角形的边长、内角等不同属性,我们可以将三角形进一步分类。
1. 按照边长分类按照三角形的边长,可以将三角形分为等边三角形、等腰三角形和一般三角形。
- 等边三角形:即三边相等的三角形,每个内角都为60度。
- 等腰三角形:即两侧边相等的三角形,两个底角所对的边也相等。
- 一般三角形:即没有边相等的三角形。
2. 按照角度分类按照三角形的内角大小,可以将三角形分为直角三角形、锐角三角形和钝角三角形。
- 直角三角形:其中一个内角是90度。
- 锐角三角形:三个内角都小于90度。
- 钝角三角形:其中一个内角是大于90度的。
三、三角形的性质三角形有很多固有的性质,其中一些性质在数学中是非常重要的。
1. 三角形内角和定理一个三角形的内角之和等于180度。
三角形内角和定理对于很多数学问题是至关重要的,比如求解角度、证明三角形相似等。
2. 直角三角形的性质直角三角形的一些性质也是非常重要的。
- 直角三角形中,对于斜边而言,斜边的平方等于两直角边长度的平方和。
- 直角三角形的高,是指直角边上的垂线所形成的线段,直角三角形的高等于直角边的乘积除以斜边的长度。
3. 三角形的相似关系如果两个三角形对应角相等,那么这两个三角形是相似的。
三角形的相似关系是很重要的,在实际问题中经常用到,比如利用三角形相似性质求解高度、比例等。
四、三角形的应用除了数学中的应用外,在日常生活中,三角形也有着重要的应用。
七年级认识三角形知识点

七年级认识三角形知识点在初中数学学科中,三角形是一个重要的几何图形。
在七年级,学生开始学习关于三角形的知识。
本文将对七年级学生应该了解的三角形知识点进行详细介绍。
三角形的定义三角形是由三条线段(边)所组成的一个几何图形,在三角形中,这三条边的任意两边之和大于第三边。
三角形的分类三角形可以按照三个角的大小来进行分类。
根据角度的大小,有以下三种类型:1.锐角三角形:三角形的三个角都小于90度。
2.直角三角形:三角形有一个角是90度。
3.钝角三角形:三角形有一个角大于90度。
三角形的命名当我们在问及一个特定的三角形时,我们通常会使用其中一个角作为这个三角形的名字。
接下来是一些常见的三角形名称:1.等边三角形:三边长度相等,并且每个角都是60度。
2.等腰三角形:两边长度相等,并且两个顶角都是相等的。
3.直角三角形:拥有一个90度角的三角形。
4.不等边三角形:三边长度都不相等。
5.等角三角形:三个角都相等的三角形。
勾股定理在直角三角形中,勾股定理是指:直角边上的两个平方和等于斜边上的平方。
勾股定理可以表示为:a² + b² = c²,其中a和b是直角三角形的两条直角边而c是斜边。
勾股定理是在数学研究中最基本和重要的领域之一。
三角形的周长和面积当我们谈论一个三角形时,我们可以针对其周长和面积来进行讨论。
三角形的周长是指其所有边长之和,周长可以表示为:周长 = a + b + c,其中a、b和c分别代表三角形的三个边长。
三角形的面积是指其内部的区域。
在七年级数学中,我们可以使用海伦公式来计算三角形的面积,海伦公式可以表示为:p = (a+b+c) ÷ 2其中,p是三角形半周长的值。
当确定了三角形的半周长后,可以使用以下公式来计算它的面积:面积= √(p × (p-a) × (p-b) × (p-c))结论以上是七年级关于三角形的知识点。
学生应该了解三角形的定义、分类、命名、勾股定理、周长和面积,并且具备使用海伦公式来计算三角形面积的能力。
七年级三角形知识点

七年级三角形知识点在初中数学中,三角形作为一个重要的基础概念,被广泛地应用于其它学习内容中。
在七年级的数学中,三角形以其简单易懂、易于计算的特点成为了不可或缺的一部分。
本文将针对七年级学生所需要掌握的三角形知识点进行详尽讲解。
一、三角形的定义及分类三角形是由三条边和三个顶点组成的图形。
我们可以根据三角形的边长及角度来分类:1.根据边的长度分类,三角形可以分为等边三角形、等腰三角形和普通三角形。
2.根据角的大小分类,三角形可以分为锐角三角形、钝角三角形和直角三角形。
二、等边三角形等边三角形是指三边相等的三角形,其特点是每个角都相等。
举个栗子,我们可以想到最常见的等边三角形——正三角形,它有以下特点:1.三条边相等。
2.三个角都是60度。
3.正三角形的每个内角都小于180度。
三、等腰三角形等腰三角形是指两边相等的三角形,其特点是其两个角也相等。
以下为等腰三角形的一些特征:1.两边相等,第三边长度不同。
2.两个角度相等。
3.等腰三角形的底边上角度为锐角或钝角。
四、普通三角形普通三角形是指三边都不相等的三角形。
它的特点是它的三个角度都不相等。
以下为普通三角形的一些特征:1.三边长度各不相同。
2.三个角度都不相等。
3.普通三角形的内角和等于180°。
五、直角三角形直角三角形是指其中一个内角为90度的三角形。
其它两个角则分别为锐角和钝角,以下为直角三角形的一些特点:1.一个角为90度。
2.另外两个角,一个是锐角一个是钝角。
3.斜边是直角三角形中最长的一条边。
六、三角形的性质在学习三角形的过程中,我们不仅要知道不同种类的三角形,还要了解它们的性质。
以下是三角形的一些性质:1.任意两边之和大于第三边。
2.任意两边之差小于第三边。
3.三角形的内角和为180度。
4.直角三角形中,斜边平方等于两腰平方之和。
七、小结三角形是初中数学课程中不可或缺的基础内容,因此学生需要认真学习并掌握其中的知识点。
除了以上的定义、分类和性质,还有许多与三角形相关的命题需要学生进一步掌握,例如勾股定理、正弦定理和余弦定理等。
七年级数学三角形知识点总结

七年级数学三角形知识点总结一、三角形的概念1. 定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三角形有三条边、三个顶点和三个内角。
2. 三角形的表示方法三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。
二、三角形的分类1. 按角分类锐角三角形:三个角都是锐角的三角形。
直角三角形:有一个角是直角的三角形。
直角三角形可以用“Rt△”表示,直角所对的边叫做斜边,夹直角的两条边叫做直角边。
钝角三角形:有一个角是钝角的三角形。
2. 按边分类不等边三角形:三边都不相等的三角形。
等腰三角形:有两边相等的三角形。
相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,腰与底边所夹的角叫做底角。
等边三角形:三边都相等的三角形。
等边三角形是特殊的等腰三角形,它的三个角都相等,并且每个角都等于60°。
三、三角形的三边关系1. 定理三角形两边之和大于第三边。
三角形两边之差小于第三边。
2. 应用判断三条线段能否组成三角形:只需判断较短的两条线段之和是否大于最长的线段。
已知三角形的两边长,求第三边的取值范围:设三角形的两边长分别为a、b (a>b),则第三边c的取值范围是a b < c < a + b。
四、三角形的内角和1. 三角形内角和定理三角形三个内角的和等于180°。
2. 证明方法可以通过作平行线将三角形的三个内角转化为一个平角来证明。
3. 直角三角形的两个锐角关系直角三角形的两个锐角互余。
五、三角形的外角1. 定义三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
2. 三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。
三角形的一个外角大于任何一个与它不相邻的内角。
六、多边形1. 多边形的概念在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
如果一个多边形由n条线段组成,那么这个多边形就叫做n边形。
七年级上册认识三角形笔记

七年级上册认识三角形笔记当学习七年级上册的数学课程中的三角形时,制作一份简单而有效的笔记是很有帮助的。
以下是一份可能包含的内容:标题:认识三角形1、三角形的定义:三角形是一个有三条边的多边形。
三角形的三个顶点和三条边之间形成了三个角。
2、三角形的分类:按边分类:等边三角形:三边长度相等。
等腰三角形:至少有两边长度相等。
普通三角形:三边长度都不相等。
按角分类:锐角三角形:三个角都是锐角。
直角三角形:有一个角是90度。
钝角三角形:有一个角是钝角。
3、三角形内角和:三角形内角和等于180度。
内角和的计算:内角和=角1+角2+角3=180∘内角和=角1+角2+角3=180∘4、特殊三角形:等腰直角三角形:一个角是90度,且有两边长度相等。
等边三角形:三边长度都相等,三个角都是60度。
5、三角形的构造:给定三边构造三角形的条件。
给定两边和夹角构造三角形的条件。
6、三角形的性质:底角定理:等腰三角形的底角相等。
底边定理:底边上的角相等的三角形,底边越短,对顶角越小。
7、直角三角形的勾股定理:在直角三角形中,直角边的平方等于两条直角边上某一锐角的两边平方和。
8、解三角形问题:使用三角形内角和、三边关系等解决实际问题。
9、实例和练习:举例说明各类三角形的性质。
解决一些实际问题,应用所学的知识。
这份笔记可以根据具体的课程内容和学生的理解程度进行调整和扩展。
重点是确保清晰明了地呈现三角形的基本定义、分类、性质和应用。
七年级数学认识三角形ppt课件

三角形在数学建模中的应用举例
利用三角形解决实际问题
01
如测量高度、距离等,通过构建三角形模型进行求解。
三角形在几何变换中的应用
02
通过三角形的性质研究平移、旋转、对称等几何变换。
三角形在函数图像中的应用
03
利用三角形的性质研究一次函数、二次函数等图像的性质。
提高解题能力,培养创新思维
01
掌握三角形的基本性质和定理
七年级数学认识三角形ppt课 件
目录
• 三角形基本概念与性质 • 三角形边长与角度关系 • 三角形全等与相似 • 解直角三角形及其应用 • 三角形面积计算与拓展 • 三角形综合应用与拓展延伸
01
三角形基本概念与性质
三角形的定义及分类
三角形的定义
由三条线段首尾顺次连接而成的图 形。
三角形的分类
按边可分为等边三角形、等腰三角 形和一般三角形;按角可分为锐角 三角形、直角三角形和钝角三角形。
如果三角形的三边长a,b,c满足a² + b² = c²,那么这个三角 形是直角三角形。
03
三角形全等与相似
全等三角形定义及判定方法
01
02
03
04
05
定义
SSS(三边全等) SAS(两边和夹角 ASA(两角和夹 AAS(两角和一
全等)
边全等)
边全等)
能够完全重合的两个三角形 叫做全等三角形。
三边对应相等的两个三角形 全等。
面积法在几何问题中的应用
面积法求线段长
通过构造相似三角形,利 用面积比求出线段长。
面积法证线段相等
通过证明两个三角形面积 相等,从而证明两条线段 相等。
面积法证线段平行
鲁教版数学七年级上册1.1《认识三角形》说课稿4

鲁教版数学七年级上册1.1《认识三角形》说课稿4一. 教材分析鲁教版数学七年级上册1.1《认识三角形》是学生在初中阶段接触到的第一个三角形相关的内容。
本节课的主要内容是让学生了解三角形的定义、性质以及三角形的基本分类。
教材通过生动的图片和实际问题引入三角形的概念,让学生在直观感受的基础上,进一步学习三角形的性质和分类。
教材注重培养学生动手操作、观察分析、推理验证的能力,为后续学习三角形的相关知识打下坚实的基础。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,他们对平面几何图形有了一定的认识。
但学生在进入初中阶段后,对数学的学习方法和思维方式有了更高的要求。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生逐步适应初中数学的学习。
此外,学生对于实际问题的解决方法还不够成熟,需要在教学过程中加以引导和培养。
三. 说教学目标1.知识与技能:让学生了解三角形的定义、性质和分类,能正确识别各种类型的三角形。
2.过程与方法:培养学生动手操作、观察分析、推理验证的能力,提高空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养合作意识,感受数学在生活中的应用。
四. 说教学重难点1.教学重点:三角形的定义、性质和分类。
2.教学难点:三角形性质的推理论证,三角形分类的依据。
五. 说教学方法与手段1.教学方法:采用问题驱动、合作学习、探究学习等教学方法,引导学生主动参与课堂,提高学生的主体地位。
2.教学手段:利用多媒体课件、实物模型、几何画板等教学辅助手段,增强课堂教学的直观性和趣味性。
六. 说教学过程1.导入:通过展示生活中的三角形实例,引导学生关注三角形在日常生活中的应用,激发学生学习兴趣。
2.新课导入:介绍三角形的定义,引导学生观察和分析三角形的特点,总结三角形的性质。
3.三角形分类:根据三角形的边长关系,引导学生对三角形进行分类,并解释各类三角形的特点。
4.性质验证:引导学生运用几何画板等工具,验证三角形性质的正确性。
1.1认识三角形课件(五四制)数学七年级上册

叉开以后,形成 一个三角形,梯 子更稳当。
电线杆为什么要 斜着拉一条线?
斜着拉一条线, 形成一个三角形, 电线杆更稳定, 不容易倒。
通过以上两个例 子,总结出这些 物体中的三角形 有什么作用?
这些物体中的三 角形具有稳固物 体的作用。
拿出课前用木条、钉子制作的三角形框架和四边形框架。
用手拉一拉, 你发现了什么?
(× )
2㎝ 2㎝
5㎝
(× )
6㎝ 2㎝
5㎝
(√ )
课堂小结
1、三角形的概念: 由3条不在同一直线上的线段,首尾依次相接围成的图形称为三角形。 2、三角形的特性: 三角形具有稳定性。 3、三角形三边的关系: 三角形的任意两边之和大于第三条边。
课后作业
1.找一找生活中的三角形,看看 哪些地方用到了三角形的稳定性 2.课本33页:问题讨论
三角形不容易变 形,具有稳定性。
四边形容易变 形。
说一说:生活中有哪些地方应用了三角形的稳定性?
椅子腿活动了,斜着加 跟木条,构成一个三角 形,椅子腿就稳定了。
说一说:生活中有哪些地方应用了三角形的稳定性?
用硬纸板折成一个 三角形位置牌,这 样位置牌不易变形。
是不是任意三根线 段都能围成一个三 角形呢?
能否围成三角形 (画√或×)
1 ( 4 ) (5 ) ( 8 ) √
2 ( 4 ) (8 ) (10 ) √
3 ( 5 ) (8 ) (10 ) √
4 ( 4 ) (5 ) (10 ) ×
5
4 6 10
×
三边关系(算式表示)
想一想:能否 围成三角形与 什么有关系呢?
小提示:先计算两边之和,再与第三条边进行比较。
三角形三边关系实验记录表
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
认识三角形(基础)知识讲解【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解三角形内角和定理的证明方法;3. 掌握并会把三角形按边和角分类;4. 掌握并会应用三角形三边之间的关系;5. 理解三角形的高、中线、角平分线的概念,学会它们的画法.【要点梳理】要点一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段.②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角.③三角形的顶点:即相邻两边的公共端点.(2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”. (3)三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC 来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示.要点二、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数.②已知三角形三个内角的关系,可以求出其内角的度数.③求一个三角形中各角之间的关系.要点三、三角形的分类1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形要点诠释:①锐角三角形:三个内角都是锐角的三角形.②钝角三角形:有一个内角为钝角的三角形.③ 直角三角形:有一个内角是直角的三角形. “直角三角形”用符号“Rt △”表示,把直角所对的边称为直角三角形的斜边,夹直角的两条边称为直角边. 两条直角边相等的直角三角形叫做等腰直角三角形. 2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;③等边三角形:三边都相等的三角形,等边三角形也叫做正三角形. 要点四、三角形的三边关系定理:三角形任意两边之和大于第三边. 推论:三角形任意两边之差小于第三边. 要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围. (3)证明线段之间的不等关系.要点五、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从线段名称 三角形的高三角形的中线 三角形的角平分线 文字语言从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.三角形中,连接一个顶点和它对边中点的线段.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.图形语言作图语言 过点A 作AD ⊥BC 于点D . 取BC 边的中点D ,连接AD .作∠BAC 的平分线AD ,交BC 于点D .标示图形符号语言1.AD是△ABC的高.2.AD是△ABC中BC边上的高.3.AD⊥BC于点D.4.∠ADC=90°,∠ADB=90°.(或∠ADC=∠ADB=90°)1.AD是△ABC的中线.2.AD是△ABC中BC边上的中线.3.BD=DC=12BC4.点D是BC边的中点.1.AD是△ABC的角平分线.2.AD平分∠BAC,交BC于点D.3.∠1=∠2=12∠BAC.推理语言因为AD是△ABC的高,所以AD⊥BC.(或∠ADB=∠ADC=90°)因为AD是△ABC的中线,所以BD=DC=12BC.因为AD平分∠BAC,所以∠1=∠2=12∠BAC.用途举例1.线段垂直.2.角度相等.1.线段相等.2.面积相等.角度相等.注意事项1.与边的垂线不同.2.不一定在三角形内.—与角的平分线不同.重要特征三角形的三条高(或它们的延长线)交于一点.一个三角形有三条中线,它们交于三角形内一点,这个点叫做三角形的重心.一个三角形有三条角平分线,它们交于三角形内一点.【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°.【答案与解析】解:已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.证法1:如图1所示,延长BC到E,作CD∥AB.因为AB∥CD(已作),所以∠1=∠A(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).又∠ACB+∠1+∠2=180°(平角定义),所以∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC边上任取一点D,作DE∥AB,交AC于E,DF∥AC,交AB 于点F.因为DF∥AC(已作),所以∠1=∠C(两直线平行,同位角相等),∠2=∠DEC(两直线平行,内错角相等).因为DE∥AB(已作).所以∠3=∠B,∠DEC=∠A(两直线平行,同位角相等).所以∠A=∠2(等量代换).又∠1+∠2+∠3=180°(平角定义),所以∠A+∠B+∠C=180°(等量代换).2.在△ABC中,已知∠A+∠B=80°,∠C=2∠B,试求∠A,∠B和∠C的度数.【思路点拨】题中给出两个条件:∠A+∠B=80°,∠C=2∠B,再根据三角形的内角和等于180°,即∠A+∠B+∠C=180°就可以求出∠A,∠B和∠C的度数.【答案与解析】解:由∠A+∠B=80°及∠A+∠B+∠C=180°,知∠C=100°.又∵∠C=2∠B,∴∠B=50°.∴∠A=80°-∠B=80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C=180°.本题可以设∠B=x,则∠A=80°-x,∠C=2x建立方程求解.举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型二、三角形的分类3.若三角形三个内角的度数之比为2:3:5,则这个三角形一定是三角形.【答案】直角【解析】解:设三角分别为2x,3x,5x,依题意得2x+3x+5x=180°,解得x=18°.故三角36°,54°,90°.故填直角.【总结升华】利用三角形内角和是180°以及已知条件,可以得到其中最大内角的度数,便可判断出此三角形的形状.举一反三:【变式】一个三角形中,一个内角的度数等于另外两个内角的和的2倍,这个三角形是()三角形.A.锐角 B.直角 C.钝角 D.无法判断【答案】C类型三、三角形的三边关系4. 三根木条的长度如图所示,能组成三角形的是( )【思路点拨】三角形三边关系的性质,即三角形的任意两边之和大于第三边,任意两边之差小于第三边.注意这里有“两边”指的是任意的两边,对于“两边之差”它可能是正数,也可能是负数,一般取“差”的绝对值. 【答案】D【解析】要构成一个三角形.必须满足任意两边之和大于第三边.在运用时习惯于检查较短的两边之和是否大于第三边.A 、B 、C 三个选项中,较短两边之和小于或等于第三边.故不能组成三角形.D 选项中,2cm+3cm >4cm .故能够组成三角形.【总结升华】判断以三条线段为边能否构成三角形的简易方法是:①判断出较长的一边;②看较短的两边之和是否大于较长的一边,大于则能够成三角形,不大于则不能构成三角形. 举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8. 【答案】(1)能; (2)不能; (3)能.5.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7,即 5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b .举一反三: 【变式】(2015•杭州模拟)已知三角形的两边长分别是4和7,则这个三角形的第三条边的长可能是( )A. 12B. 11 C . 8 D. 3 【答案】C .类型四、三角形中重要线段6. (2015•长沙)如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A. B.C. D.【答案】A;【解析】三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部.举一反三:【变式】如图所示,已知△ABC,试画出△ABC各边上的高.【答案】解:所画三角形的高如图所示.7.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC=8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD的周长大3.【答案与解析】解:依题意:△BCD的周长比△ACD的周长大3cm,故有:BC+CD+BD-(AC+CD+AD)=3.又∵CD为△ABC的AB边上的中线,∴ AD =BD ,即BC -AC =3. 又∵ BC =8,∴ AC =5. 答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法. 举一反三:【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1。