《大学物理》课后解答题 第三章刚体定轴转动

合集下载

大学物理第三章-部分课后习题答案

大学物理第三章-部分课后习题答案

大学物理第三章 课后习题答案3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。

分析:用补偿法〔负质量法〕求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。

注意对同一轴而言。

解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112J MR =① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232c M R M R J J md MR =+=⨯⨯+⨯= ②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332J J J MR =-=3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。

分析:取微元,由转动惯量的定义求积分可得 解:〔1〕对x 轴的转动惯量为:2022201(sin 60)32Lx M J r dm l dl ML L ===⎰⎰ 〔2〕对y 轴的转动惯量为:20222015()(sin 30)32296Ly M L M J l dl ML L =⨯⨯+=⎰〔3〕对Z 轴的转动惯量为:22112()32212z M L J ML =⨯⨯⨯=3-3 电风扇开启电源后经过5s 到达额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。

分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。

解:由定轴转动定律得:1f M M J β-=,即11252520.50.5 4.12516f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60kg ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。

第3章 刚体的定轴转动 习题答案

第3章 刚体的定轴转动 习题答案

1
1 v r 78 . 5 1 78 . 5 m s (3) 解:
an r 78.5 1 6162 .2 m s
2 2
2
a r 3.14 m s
2
3-13. 如图所示,细棒长度为l,设转轴通过棒上距中心d的一 点并与棒垂直。求棒对此轴的转动惯量 J O ',并说明这一转 动惯量与棒对质心的转动惯量 J O之间的关系。(平行轴定理)
n0
J 2 2 n 收回双臂后的角动能 E k J n 0 2 J 0 n
1 2 2 1 2
Ek 0 J
1 2
2 0
3-17. 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来, 此后无外力矩作用。则当此人收回双臂时,人和转椅这一系 统的转速、转动动能、角动量如何变化?
解:首先,该系统的角动量守恒。
设初始转动惯量为 J ,初始角速度为 0 收回双臂后转动惯量变为 J n , 由转动惯量的定义容易知,n 1 由角动量守恒定理容易求出,收回双臂后的角速度 初始角动能
M t J
代入数据解得:M 12.5 N m
3-4. 如图所示,质量为 m、长为 l 的均匀细杆,可绕过其一 端 O 的水平轴转动,杆的另一端与一质量为m的小球固定在 一起。当该系统从水平位置由静止转过 角时,系统的角
速度、动能为?此过程中力矩所做的功?
解: 由角动能定理得:
解:设该棒的质量为m,则其
线密度为 m l
1 l d 2 1 l d 2
O
d O'
J O'

0
r dr
2
3
0
r dr

大学物理学课后3第三章答案

大学物理学课后3第三章答案

题 3.8(a)图 (1) m1 , m2 和柱体的运动方程如下:
题 3.8(b)图
T2 m2 g m2a2

m1g T1 m1a1

T1R T2r J

式中 T1 T1,T2 T2 , a2 r , a1 R
而 由上式求得
J 1 MR 2 1 mr 2

Fr N
N N
∴ 又∵
∴ ①
Fr

N

l1
l2 l1
F
J 1 mR 2 , 2
Fr R 2(l1 l2 ) F
J
mRl1
以 F 100 N 等代入上式,得
2 0.40 (0.50 0.75) 100 40 rad s2
0.20m, r =0.10m, m =4 kg, M =10 kg, m1 = m2 =2 kg,且开始时 m1 , m2 离地均为 h =2m.求: (1)柱体转动时的角加速度; (2)两侧细绳的张力.
解: 设 a1 , a2 和β分别为 m1 , m2 和柱体的加速度及角加速度,方向如图(如图 b).
习题 3
3.1 选择题
(1) 有两个力作用在一个有固定转轴的刚体上:
① 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;
② 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;
③ 当这两个力的合力为零时,它们对轴的合力矩也一定是零;
④ 当这两个力对轴的合力矩为零时,它们的合力也一定是零.




(5) 一圆盘正绕垂直于盘面的水平光滑固定轴 O 转动,如图射来两个质量相同,

大学物理五第三章习题答案

大学物理五第三章习题答案

第三章 刚体的转动习题答案1、对于定轴转动刚体上不同的点来说:线速度、法向加速度、切向加速度具有不同的值,角位移、角速度、角加速度具有相同的值。

2、由sin M r F Fr θ=⨯=可知,(1)0,0F M ≠=,当0r =或者sin 0θ=,即力通过转轴或者力与转轴平行; (2)0,0F M =≠,这种情况不存在; (3)0,0F M ==,这种情况任何时候都存在。

3、根据均匀圆盘对中心轴的转动惯量:221122I mr vr ρ==可知,对于相同几何形状的铁盘和铝盘,密度大的转动惯量大。

通常我们取铁的密度为37.9/g cm ,铝的密度32.7/g cm ,因此铁盘对中心轴的转动惯量大;根据刚体动能定理:21222111d 22A M I I θθθωω==-⎰,可知对铁盘的外力矩要做更多的功。

4、轮A 的转动惯量212I mr =,轮B 的转动惯量2I mr =,根据刚体的转动定律M I β=,因为两者所受的阻力矩相等,可知轮A 的转动角加速度大于轮B 的转动角加速度,故轮A 先停止。

5、舞蹈演员在旋转过程中,可以近似地认为角动量守恒,当其把双手靠近身体时,转动惯量减小,故角速度增大;当其把双手伸开,转动惯量增大,故角速度减小。

6、解:2334d a bt ct dtθω==+-, 2612d b t c t dtωβ==-。

7、解:11200240/60rad s πωπ⨯==,22700290/60rad s πωπ⨯==, 2215025/126rad s t ωωππβ-===∆, 2117803902t t n θωβπ=+==。

8、解:根据均匀球体对直径轴的转动惯量225I mr =,得到地球对自转轴的转动惯量3729.810I kg m =⨯⋅,地球自转角速度2/246060rad s πω=⨯⨯,转动动能22813102k E I J ω==⨯。

9、解:已知030/rad s ωπ=,切断电源后的角位移752150θππ=⨯=,根据匀减速运动规律2220023/2rad s ωωβθβπθ=⇒==,由于电扇是匀减速,可知阻力矩为常量,因此根据刚体转动动能定理22101144.422M I I J θωω=-=-, 可得到转动惯量2244.420.01I kg m ω⨯==⋅,以及阻力矩44.40.1150M N m π=≈⋅。

大学物理第三章 部分课后习题答案

大学物理第三章 部分课后习题答案

大学物理第三章 课后习题答案3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。

分析:用补偿法(负质量法)求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。

注意对同一轴而言。

解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112J MR =① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232c M R M R J J md MR =+=⨯⨯+⨯= ②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332J J J MR =-=3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。

分析:取微元,由转动惯量的定义求积分可得 解:(1)对x 轴的转动惯量为:2022201(sin 60)32Lx M J r dm l dl ML L ===⎰⎰ (2)对y 轴的转动惯量为:20222015()(sin 30)32296Ly M L M J l dl ML L =⨯⨯+=⎰(3)对Z 轴的转动惯量为:22112()32212z M L J ML =⨯⨯⨯=3-3 电风扇开启电源后经过5s 达到额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。

分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。

解:由定轴转动定律得:1f M M J β-=,即11252520.50.5 4.12516f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60kg ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。

【大学物理上册课后答案】第3章 刚体的定轴转动

【大学物理上册课后答案】第3章 刚体的定轴转动

第3章 刚体的定轴转动习题解答3-1 一汽车发动机曲轴的转速在12s 内由每分钟1200转匀加速地增加到每分钟2700转,求:(1)角加速度;(2)在此时间内,曲轴转了多少转?解:(1))/(401s rad πω= )/(902s rad πω=)/(1.13)/(6251240902212s rad s rad t≈=-=∆-=πππωωβ匀变速转动(2))(78022122rad πβωωθ=-=)(3902圈==πθn3-2 一飞轮的转动惯量为J ,在0=t 时角速度为0ω,此后飞轮经历制动过程。

阻力矩M 的大小与角速度ω的平方成正比,比例系数0>K 。

求:(1)当30ωω=时,飞轮的角加速度;(2)从开始制动到30ωω=所需要的时间。

解:(1)依题意 2ωβK J M -== )/(92202s rad JK JK ωωβ-=-=(2)由JK dtd 2ωωβ-==得⎰⎰-=3200ωωωωK Jd dt tωK J t 2=3-3 如图所示, 发电机的轮A 由蒸汽机的轮B 通过皮带带动。

两轮半径A R =30cm ,=B R 75cm 。

当蒸汽机开动后,其角加速度π8.0=B βrad/s 2,设轮与皮带之间没有滑动。

求(1)经过多少秒后发电机的转速达到A n =600rev/min ?(2)蒸汽机停止工作后一分钟内发电机转速降到300rev/min ,求其角加速度。

解:(1)t A A βω= t B B βω=因为轮和皮带之间没有滑动,所以A 、B 两轮边缘的线速度相同,即B B A A R R ωω=又)/(20606002s rad A ππω=⨯=联立得)(10s R R t BB A A ==βω(2))/(10603002s rad A ππω=⨯=)/(62s rad tAAA πωωβ=-'=3-4 一个半径为=R 1.0m 的圆盘,可以绕过其盘心且垂直于盘面的转轴转动。

《刚体定轴转动》选择题解答与分析

《刚体定轴转动》选择题解答与分析

2 刚体定轴转动转动惯量1. 关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置. (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. 答案:(C ) 参考解答:首先明确转动惯量的物理意义,从转动定律与牛顿第二定律的对称关系可以看出,与质量m 是平动惯性大小的量度相对应,转动惯量I 则是刚体转动惯性大小的量度。

从转动惯量的的公式∑=∆=ni i i r m I 12可以看出,其大小除了与刚体的形状、大小和质量分布有关外,还与转轴的位置有关。

凡选择回答错误的,均给出下面的进一步讨论:1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。

参考解答:不能.因为刚体的转动惯量∑∆i i m r 2与各质量元和它们对转轴的距离有关.如一匀质圆盘对过其中心且垂直盘面轴的转动惯量为221mR ,若按质量全部集中于质心计算,则对同一轴的转动惯量为零.2. 一刚体由匀质细杆和匀质球体两部分构成,杆在球体直径的延长线上,如图所示.球体的半径为R ,杆长为2R ,杆和球体的质量均为m .若杆对通过其中点O 1,与杆垂直的轴的转动惯量为J 1,球体对通过球心O 2的转动惯量为J 2,则整个刚体对通过杆与球体的固结点O 且与杆垂直的轴的转动惯量为 (A) J =J 1+J 2. (B) J =mR 2+mR 2.(C) J =(J 1+mR 2)+(J 2+mR 2).(D) J =[J 1+m (2R )2]+[J 2+m (2R )2]. 答案:(C) 参考解答:根据转动惯量具有叠加性,则整个刚体对通过杆与球体的固结点0且与杆垂直的轴的转动惯量为细杆和球体分别对该轴转动惯量之合。

大学物理上册第3章习题解答

大学物理上册第3章习题解答

大学物理上册第3章习题解答第3章角动量定理和刚体的转动一、内容提要1、质点的角动量定理⑴质点对于某一定点的角动量和角动量定理:角动量L r mv =? 角动量定理 dL M dt=⑵质点对于z 轴的角动量和角动量定理:角动量z L r mv τ⊥=? 角动量定理 zz dL M dt=2、质点系的角动量定理刚体的转动惯量和定轴转动定理⑴质点系的角动量定理 i i iidM L dt =∑∑ ⑵刚体的转动惯量 2z iiiI r m =∑ 或2zI r dm =?⑶刚体的定轴转动定理 z z zd M I I dtωβ== 3、刚体的定轴转动动能定理⑴力矩的功z A M d θ=?⑵刚体的转动动能 212k z E I ω=⑶刚体的定轴转动动能定理 22211122z z z A M d I I θωω==-?4、角动量守恒定律⑴质点的角动量守恒定律:若0M =,则21L L = ⑵刚体的对轴角动量守恒定律:刚体对轴的角动量也可写为2z izizL r m I ωω=?=∑,若0iziM =∑,则0z z I I ωω=,即有0ωω=二、习题解答3.1 一发动机的转轴在7s 内由200/min r 匀速增加到3000/min r . 求:(1)这段时间内的初末角速度和角加速度. (2)这段时间内转过的角度和圈数. (3)轴上有一半径为2.0=r m 的飞轮, 求它边缘上一点在7s 末的切向加速度、法向加速度和总加速度.解:(1)初的角速度1200220.9/60rad s πω?=≈ 末的角速度230002314/60rad s πω?=≈角加速度231420.941.9/7rad s t ωβ?-==≈?(2)转过的角度为2211120.9741.97117622t t rad θωβ=+=?+??=117618622 3.14n r θπ===? (3)切向加速度241.90.28.38/a r m s τβ==?=法向加速度为:22423140.2 1.9710/n a r m s ω==?=?总的加速度为:421.9710/a m s ===?3.3 地球在1987年完成365次自转比1900年长14.1s. 求在1900年到1987年间, 地球自转的平均角加速度.解:平均角加速度为0003652365287T t T a t T ππωω??--+?==212373036523652 1.140.9610/8787(3.1510)t rad s T ππ-≈=-=-3.4一人手握哑铃站在转盘上, 两臂伸开时整个系统的转动惯量为22kgm . 推动后, 系统以15/min r 的转速转动. 当人的手臂收回时, 系统的转动惯量为20.8kgm . 求此时的转速.解:由刚体定轴转动的角动量守恒定律,1122I I ωω=121221537.5/min 0.8I r I ωω==?=3.5 质量为60kg , 半径为0.25m 的匀质圆盘, 绕其中心轴以900/min r 的转速转动. 现用一个闸杆和一个外力F 对盘进行制动(如图所示), 设闸与盘之间的摩擦系数为4.0. 求:(1)当100F N =, 圆盘可在多长时间内停止, 此时已经转了多少转?(2)如果在2s 内盘转速减少一半, F 需多大?图3-5 习题1.4图解:(1)设杆与轮间的正压力为N ,10.5l m =,20.75l m =,由杠杆平衡原理得121()F l l Nl +=121()F l l N l +=闸瓦与杆间的摩擦力为: 121()F l l f N l μμ+== 匀质圆盘对转轴的转动惯量为212I mR =,由定轴转动定律,M I β=,有 ()122112F l l R mR l μβ+-= 21212()40/3F l l rad s mRl μβ+=-=-停止转动所需的时间: 0900200607.06403t s πωβ--===- 转过的角度201532332.762t t rad rad θωβπ?=+=?≈532n θπ==圈(2)030ωπ=,在2s 内角速度减小一半,知0227.5/23.55/rad s rad s tωωβπ-=-=-=-()1222112F l l R mR l μβ+-= 112600.250.5(23.55)1772()20.4 1.25mRl F N l l βμ-=-=-≈+??3.6 发动机带动一个转动惯量为250kgm 的系统做定轴转动. 在0.5s 内由静止开始匀速增加到120/min r 的转速. 求发动机对系统施加的力矩.解:由题意,250I kgm =,00ω=,120/min 4/r rad s ωπ==系统角加速度为:20825.12/rad s t tωωωβπ-?====?? 由刚体定轴转动的转动定理,可知M I β=5025.121256M Nm =?=3.7一轻绳绕于半径为R 的圆盘边缘, 在绳端施以mg F =的拉力, 圆盘可绕水平固定光滑轴在竖直平面内转动. 圆盘质量为M , 并从静止开始转动. 求:(1)圆盘的角加速度及转动的角度和时间的关系. (2)如以质量为m 的物体挂在绳端, 圆盘的角加速度及转动的角度和时间的关系又如何?解:(1)由刚体转动定理可知:M I β= 上题可知: M FR mgR ==212I MR =代入上式得2mgMRβ=, 2212mg t t MRθβ==(2)对物体受力分析'mg F ma -= 'F R I β= a R β=,212I MR =由上式解得22mgMR mR β=+22122mg t t MR mRθβ==+3.8某冲床飞轮的转动惯量为32410kgm ?. 当转速为30/min r 时, 它的转动动能是多少?每冲一次, 其转速下降10/min r . 求每冲一次对外所做的功.解:由题意,转速为:()030/min /r rad s ωπ== 飞轮的转动动能为:232411410 1.9721022E I J ωπ===? 第一次对外做功为:22011122A I I ωω=- 1220/min 3r πω==()2422222301011111515410 3.14 1.0910*******A I I I I J ωωωωπ=-=-=?==?3.9半径为R , 质量为M 的水平圆盘可以绕中心轴无摩擦地转动. 在圆盘上有一人沿着与圆盘同心, 半径为R r <的圆周匀速行走, 行走速度相对于圆盘为v . 设起始时, 圆盘静止不动, 求圆盘的转动角速度.解:设圆盘的转动角速度为2ω,则人的角速度为12vrωω=-,圆盘的转动惯量为212MR ,人的转动惯量为2mr ,由角动量守恒定律, 222212v mr MR r ωω??-=即22222mrvmr MRω=+3.10 两滑冰运动员, 质量分别为60kg 和70kg , 他们的速率分别为7/m s 和6/m s , 在相距1.5m 的两平行线上相向滑行. 当两者最接近时, 互相拉手并开始绕质心做圆周运动. 运动中, 两者间距离保持m 5.1不变. 求该瞬时:(1)系统的总角动量. (2)系统的角速度.(3)两人拉手前后的总动能.解:⑴ 设1m 在原心,质心为c r70 1.50.87060c r m ?=≈+120.8, 1.50.810.7c r r m r m ===-=21112226070.870607630./J m v r m v r kg m s =+=??+??=⑵ 系统的转动惯量为: 222221122600.8700.772.7I m r m r kgm =+=?+?=6308.66/72.7J rad s I ω==≈ 222201122111160770627302222E m v m v J =+=??+??=221172.78.66272622E I J ω==??≈3.11半径为R 的光滑半球形碗, 固定在水平面上. 一均质棒斜靠在碗缘, 一端在碗内, 一端在碗外. 在碗内的长度为c , 求棒的全长.解:棒的受力如图所示本题属于刚体平衡问题,由于碗为光滑半球形,A 端的支持力沿半径方向,而碗缘B 点处的支持力方向不能确定,两个支持力和重力三者在竖直平面内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 刚体定轴转动
一、思考讨论题
1、刚体转动时,若它的角速度很大,那么作用它上面的力是否一定很大?作用在它上面的力矩是否一定很大?
解:刚体转动时,它的角速度很大,作用在它上面的力不一定大,作用在它上面的力矩也不
一定大。

ω增大,则增大增大,
M , βω
I dt
d I ==, 又⨯= 更无直接关系。

与无直接关系,则有关,与与ωωβF M 2、质量为m =4kg 的小球,在任一时刻的矢径j t i t r 2)1(2
+-=,则t s =3时,
小球对原点的角动量=?从t =1s 到t s =3的过程中,小球角动量的增量=?。

解:角动量)22(]2)1[(2
t m j t i t dt
d m m +⨯+-=⨯=⨯= t s =3
j i t m j t i t 80)26(4)68()22(]2)1[(2
3-=+⨯+=+⨯+-==
j t m j t i t 16)22(42)22(]2)1[(2
1
-=+⨯=+⨯+-==
64)16(8013-=---==∆==
3、如图5.1,一圆形台面可绕中心轴无摩擦地转动,有一辆玩具小汽车相对于台面由静止开始启动,绕作圆周运动,问平台面如何运动?若经过一段时间后小汽车突然刹车,则圆台和小汽车怎样运动?此过程中,对于不同的系统,下列表中的物理哪些是守恒量,受外力,合外力矩情况如何?
解:平台绕中心轴转动,方向与小车转动方向相反。

小车突然刹车,圆台和小车同时减速、同时静止。

分别考虑小车和圆台在垂直和水平方向的受力。


5.1
t
f n
小车
圆台
4、绕固定轴作匀变速转动的刚体,其中各点都绕轴作圆周运动,试问刚体上任一点是否具有切向加速度?是否具有法向加速度?法向加速度和切向加速度大小是否变化? 解:刚体上的任何一点都有切向加速度。

也有法向加速度。

大小不发生变化。

5、在一物体系中,如果其角动量守恒,动量是否也一定守恒?反之,如果该系统的动量守恒,角动量是否也一定守恒?
解:在一物体系中,角动量守恒,动量不一定守恒。

例如题4中的小车与圆台组成的系统。

反之,系统的动量守恒,角动量也不一定守恒,除非是单个质点。

二、课堂练习
1、如图5.2所示,一轻绳绕过一质量为m/4,半径为R 的滑轮(质量分布均匀),一质量为m 的人抓住绳子的一端A
,绳子的另一端系一个质量为m/2的重物B ,绳子与滑轮无相对滑动,试求: (1
) 当人对绳子相对静止时,B 物上升的加速度;
(2) 当人相对于绳子以匀速u 上爬时,B 物上升的加速度; (3) 当人相对于绳子以加速度a 0上爬时,B 上升的加速度。

解:
方法一、用隔离体法,分别研究人、物和滑轮的运动。

(1)分别受力分析 A 、 B 、
a a a ==21
1T f =1
a mg 2 2a
1T 2 R a 2=
ma ma T mg ==-11
ma ma mg T 2
1212122==-
R a mR R T T 2
2214121)(⋅⋅=- 即 ma ma T T 8
181221==- 联立以上各式得:g a 13
4
= (2)同(1)
(3)021a a a -= 带入得0213
8134a g a +=
方法二、选人、滑轮与重物为系统
(1)、对O 轴,系统所受的外力矩为: 设u 为人相对绳的匀速度,v 为重物上升的速度,则系统对O 轴的角动量为:
根据角动量定理:dL
M dt
=
,得 11328d mgR mRv mRu dt ⎛⎫=- ⎪⎝⎭
又因:
0du dt =,dv a dt =得:4
13
a g =
(2)、同(1)。

(3)2048
1313
a g a =
+
2、如图5.3所示,一质量均匀分布的圆盘,质量为M ,半径为R ,圆盘与粗糙水平面接触,可绕通过其中心O 的竖直轴转动,一个质量为m (m <<M ),速度为
v 0的子弹沿圆周的切向射入盘的边缘,并嵌在里面,如图所示。

若圆盘与水平面的摩擦系数为μ,试求: (1)子弹击中圆盘后,盘所获得的角速度;
图5.3
Rmg g m R Rmg M 212=⎪⎭

⎝⎛-=()ωJ v u Rm v m R L +--⎪⎭

⎝⎛=22421R m J ⎪⎭⎫ ⎝⎛=mRu
mRv L -=⇒813
Rmg M 21=mRu mRv L -=8
13
(2)经过多长时间后,圆盘停转;
(3)这时圆盘共转过多少角度?(以弧度表示) 解:子弹和圆盘为一个系统 (1)碰撞时角动量守恒
2201
()()2
mv R J J MR mR ωω'=+=+
所以 00
21
()2
mv mv MR
M m R ω=

+ (2)圆盘面密度2
R
M
πσ=
,则圆盘上半径为r-r+dr 的细圆环所受的摩擦力矩: (2)f dM grdm gr rdr μμσπ=-=-⋅ 2330
2
2223
R
f M
g r dr g R g R gMR μσπ
μσπμσπμ=-⋅=-=-=-⎰
由角动量定理:00f M t J mv R ω=-=-,得:0
32mv t Mg
μ=
(3)由动能定理:
22
22220
022********f m v m v M J MR M R M
θω-=-=-⋅⋅=-
所以 22
0232m v M gR
θμ=
3、如图5.4所示,质量分别为M 1,M 2,半径分别为R 1,
R 2的两均匀圆柱,可分别绕它们本身的轴转动,二轴平
行。

原来它们沿同一转向分别以ω10、ω20的角速度匀速转动,然后平移二轴使它们的边缘相抵触,如图所示。

求最后在接触处无相对滑动时,每个圆柱的角速度ω1,
ω2。

解:两柱体从接触到稳定状态只受摩擦力。

规定两个圆柱旋转与受力矩的正方向均为原来的顺时针方向,由角动量定理:
111110()fR dt R f dt J ωω-=-=-⎰⎰
20图5.4
222220()fR dt R f dt J ωω-=-=-⎰⎰
由上两式得:1211021220()()J R J R ωωωω-=-
而转动惯量分别为: 222221112
1,21R M J R M J ==
可得:1111022220()()M R M R ωωωω-=-
稳定后,两柱体接触的线速度相等,即:2211R R ωω-=,联立可得: 11102220
1121()M R M R M M R ωωω-=
+
222011
10
2122
()M R M R M M R ωωω-=
+
显然,达到稳定后,两圆柱体反向转动。

4、如图5.5所示,弹簧的倔强系数k =2N/m ,弹簧和绳子的质量忽略,绳子不可伸长,不计空气阻力,定滑轮的半径R =0.1m ,绕其轴的转动惯量为01.0=J kgm 2。

求质量1=m kg 的物体,从静止开始(这时弹簧无伸长)落下1米时的速度的大小为多少?(取10=g m/s 2。

) 解:
方法一、分别受力分析如图
1122mg T ma a RT RT J k T kx -=⎧⎪

-=⎨⎪
=⎪⎩
2
()J
mg kx m a R =++
dx dv v dt dv )kx mg (J mR R a ==++=2
2 )kL mgL (J
mR R dx )kx mg (J mR R v l
2
220
222212
1
-+=++=∴⎰
922
2
22
=-+=∴)kL mgL (J
mR R v s m v 3= 方法二、 机械能守恒 未下降时 00=E
下降L 时:mgL kL )R v (J mv E -++=
2222
1
2121 0E E =得 922
2
22
=-+=)kL mgL (J
mR R v ,得 s m v 3=。

相关文档
最新文档