超实用的分数乘除法应用题解题技巧

合集下载

分数乘除法应用题的解题方法及对比练习题(经典题型)

分数乘除法应用题的解题方法及对比练习题(经典题型)

1.分数应用题一般解题步骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。

(4)根据已知条件和问题列式解答。

2.乘法应用题有关注意概念。

(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。

当句子中的单位“1”不明显时,把原来的量看做单位“1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。

(7)乘法应用题中,单位“1”是已知的。

(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。

(9).找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除分率=比较量;比较量÷分率=单位“1”(10).单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。

(11).单位“1”的特点:①单位“1”为分母;②单位“1”为不变量。

(12)分率与量要对应。

①多的对应量对多的分率;②少的对应量对少的分率;③增加的对应量对增加的分率;④减少的对应量对减少的分率;⑤提高的对应量对提高的分率;⑥降低的对应量对降低的分率;⑦工作总量的对应量对工作总量的分率;⑧工作效率的对应量对工作效率的分率;⑨部分的对应量对部分的分率;⑩总量的对应量对总量的分率;例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算)方法:单位“1”的数量×对应分率=对应数量。

分数乘除法应用题技巧

分数乘除法应用题技巧

《分数乘除法应用题技巧》
分数乘除法是数学中非常重要的知识点,也是中考、高考中经常考查的内容。

因此,
掌握分数乘除法的技巧,尤其是应用题的解答技巧,对考生来说都是很有必要的。

首先,分数乘法的技巧是“分母乘分母,分子乘分子,最后化简”。

即在乘法运算中,
先把分子相乘,然后把分母相乘,最后化简得出最终结果。

其次,分数除法的技巧是“分子除分子,分母除分母,最后化简”。

即在除法运算中,
先把分子相除,然后把分母相除,最后化简得出最终结果。

再次,在解决分数应用题时,要特别注意分母是否相同。

如果分母不同,则必须先把
分母变成相同的,这时可以用分数的乘法技巧,先把分母乘以同一个数,使之变成相同的,然后再把分子乘以同一个数,使之变成相同的,最后化简。

最后,在解决应用题时,还要注意有没有并列分数,如果有并列分数,则可以把它们
合并成一个分数,再对合并后的分数进行计算。

以上就是关于分数乘除法应用题技巧的介绍,希望能够帮助考生在考试中取得优异的
成绩。

分数乘除法解题技巧

分数乘除法解题技巧

分数乘除法解题技巧1、利用数量关系式解题解答分数应用题,往往要抓住题中的“中心句”进行分析,从“中心句”中找出单位“1”和“相关联的两个量”,明确“相关联的两个量”之间的关系,根据分数乘法的意义写出关系式。

如:在“延续生命”献爱心活动中,我校五年级学生捐款3500元,六年级捐的是五年级的,六年级学生捐款多少元?这里把“五年级学生的捐款数”看作单位“1”,五年级和六年级是相关联的两个量,它们的关系是“五年级学生捐款数× =六年级学生捐款数”。

从关系式中很容易知道这道题怎么列式计算了。

其实较复杂的题也是一个一个简单的应用题组合而成的,只要学生学会分析,难题也会迎刃而解。

平时教师可以口头训练这样的关系式,让学生熟练掌握,这样就会有意想不到的收获,能达到事半功倍的效果。

而应用题是灵活多变的,,学生在数学学习中如果一味围绕书上的公式、例题转,程式化、机械性地解题,对知识缺乏透彻的掌握,对题目的数量关系不做具体分析,是不可能把应用题学好的。

但对具体题目还需作具体的分析,否则就容易出错。

2、借助线段图解题。

数形结合的思维方法,便是理论与实际的有机联系,是思维的起点,是儿童建构数学模型的基本方法。

数形结合思想是充分利用“形”把复杂的数量关系和抽象的数学概念变得形象、直观,能丰富学生的表象,引发联想。

在分数乘除应用题教学时经常通过画线段图或面积图弄清题意,分析数量关系,拓宽解题思路,能引导学生迅速找到解决问题的方法。

“线段图”直观、明了,能让学生很清楚地看出两种量的关系,谁多谁少一目了然,便于学生判断,能培养学生的判断能力。

教师在教学生画图时要有耐心,学生刚接触线段图,有很多困难,先画什么,后画什么,要把哪条线段平均分成“几”份,容易混淆,教学时要让学生尝试,发现问题,教师引导纠错,使学生印象深刻。

如:客货两车分别从A、B两地同时出发,相向而行,它们在离中点20千米处相遇,这时货车行了全程的。

A、B 两地相距多少千米?教师引导学生分析、画图从图中很容易看出客车比货车多行(20×2)千米,正好占两地距离的(1—×2)。

分数乘除法方法总结

分数乘除法方法总结

分数乘除分数应用题解题方法:1、 找出关键句,判断单位“1”。

已知单位“1”,直接用乘法。

不知单位“1”,用除法,多加,少减 例:.(1)某校有男生240人,女生是男生的 65,女生有多少人?析:分数的前面的“的”的前面是单位1,即男生是单位1,已知单位1,用乘法,65表示的是女生,单位1⨯65结果表示女生,65240⨯析:分数的前面的“的”的前面是单位1,即梨树是单位1,不知道单位1,用除法,41表示的是桃树,120也是桃树,120÷41结果表示梨树。

(3)某校有男生240人,女生比男生少61,女生有多少人? 析:分数的前面的“比”的后面是单位1,即男生是单位1,已知单位1,用乘法,少用减,比男生少61,比1少61,1-61,用乘还用减,240⎪⎭⎫ ⎝⎛⨯61-1 (4)某校有男生240人,男生比女生少61,女生有多少人? 析:分数的前面的“比”的后面是单位1,即女生是单位1,不知道单位1,求单位1,用除法,少用减,比女生少61,比1少61,1-61,用除还用减,240⎪⎭⎫ ⎝⎛÷61-12、 对应量=单位1⨯分率,单位1=对应量÷分率 注:分率指的是对应量所对应的分数例:.(1)某校有男生240人,女生是男生的 65,女生有多少人?析:分数的前面的“的”的前面是单位1,即男生是单位1,已知单位1,求对应量,对应量=单位1⨯分率,用乘法。

65对应的是女生,对应量=单位1⨯分率,结果表示女生。

65240⨯析:分数的前面的“的”的前面是单位1,即梨树是单位1,不知道单位1,求单位1,单位1=对应量÷分率,用除法。

41表示的是桃树,120也是桃树,也就是说120和41是对应的,单位1=对应量÷分率,120÷41结果表示单位1梨树。

(3)某校有男生240人,女生比男生少61,女生有多少人?析:分数的前面的“比”的后面是单位1,即男生是单位1,已知单位1,求对应量,对应量=单位1⨯分率,用乘法。

分数的乘法与除法技巧掌握知识点总结

分数的乘法与除法技巧掌握知识点总结

分数的乘法与除法技巧掌握知识点总结分数在数学中是一个重要的概念,学生学习数学时经常会遇到分数的乘法和除法。

正确地掌握分数的乘除法技巧对于解决数学题目和提高数学能力至关重要。

本文将总结分数的乘法与除法的技巧和知识点,帮助读者更好地理解和掌握这两个操作。

一、分数的乘法技巧在进行两个分数的乘法时,我们需要掌握以下几点技巧:1. 分子乘分子,分母乘分母:分数的乘法实际上就是将两个分数的分子和分母相乘。

例如,计算1/3乘以2/5,我们可以将分子1与分子2相乘得到2,分母3与分母5相乘得到15,所以答案是2/15。

2. 约分后再运算:如果乘法的结果不是最简形式,我们需要将其约分。

约分即将分子和分母的公因数约去,使分数的值保持不变。

例如,计算4/6乘以2/3,我们可以先约分得到2/3乘以1/3,进一步计算可以得到答案2/9。

3. 乘数与被乘数的位置并不重要:乘法是满足交换律的,即乘数与被乘数的位置可以互换而不影响最终的结果。

例如,计算2/3乘以4/5和4/5乘以2/3都可以得到8/15的答案。

二、分数的除法技巧在进行分数的除法时,我们需要掌握以下几点技巧:1. 乘以倒数:分数的除法可以转化为乘法运算,将除号变为乘号,然后将除数取倒数。

例如,计算1/3除以2/5,我们可以将其转化为1/3乘以5/2,得到答案5/6。

2. 变相乘法:如果遇到分数除以整数的情况,我们可以将整数变为分数,分子为整数,分母为1。

例如,计算4除以2/3,我们可以将其转化为4乘以3/2,得到答案6。

3. 除法的交换律:和乘法一样,除法也具有交换律。

即被除数和除数的位置可以互换而不影响最终的结果。

例如,计算2/3除以4/5和4/5除以2/3都可以得到答案5/6。

三、分数的混合运算在解决实际问题和复杂题目时,经常会同时涉及到分数的加减乘除运算,这就需要我们熟练掌握上述的分数乘除法技巧。

同时也要注意运算的顺序,按照先乘除后加减的原则进行运算。

例如,计算12加上1/3乘以4的结果,我们可以先进行乘法运算得到1/3乘以4等于4/3,然后再将12加上4/3得到12 4/3的答案。

分数乘除法应用题的解题技巧和策略

分数乘除法应用题的解题技巧和策略

分数乘除法应用题的解题技巧和策略分数乘除法是数学中一个重要的知识点,解题时需要掌握一些解题技巧和策略。

下面我来介绍一下。

1. 熟练掌握分数的乘除法运算规则:分数的乘法,直接将分子相乘得到新分子,分母相乘得到新的分母;分数的除法,将被除数乘以倒数,即将除号变成乘号,然后进行乘法运算。

2. 化简分数:分数乘除法运算的结果通常是一个带分数或者一个真分数。

如果需要化简结果,可以将分数转化为最简形式。

求分数的最大公约数,然后将分子和分母都除以最大公约数,得到最简形式的分数。

3. 将混合数转化为带分数:有些题目给出的是一个混合数,可以将它转化为带分数的形式,便于进行乘除法运算。

将混合数的整数部分乘以分数的分母,并加上分数的分子,分母不变。

4. 注意单位换算:在解决实际问题时,可能涉及到单位换算。

如果需要将一个分数乘以一个带有单位的数,可以先将带有单位的数化成真分数形式,然后直接进行乘法运算。

如果需要除以一个带有单位的数,可以将带有单位的数化成倒数的形式,然后进行乘法运算。

5. 注意运算次序:在解决复杂的分数乘除法问题时,要注意运算次序。

使用括号来控制运算的优先顺序,避免出现错误的结果。

可以将复杂分数的乘除法运算先进行分解,然后按照从左到右的顺序进行运算。

6. 细心审题:在解答分数乘除法应用题时,要仔细阅读题目,理解题目的意思。

找出问题的关键点,然后将问题转化为数学计算的步骤。

掌握分数乘除法的运算规则和一些解题技巧,灵活运用,能够解决各种类型的分数乘除法应用问题。

在解题过程中要注意细节,善于转化问题,合理利用已知条件,进行分析推理,找出解题思路。

加强练习,提高计算能力,相信大家一定能够在分数乘除法的运算中取得好成绩。

分数乘除法应用题解题方法总结汇总(全面完整)

分数乘除法应用题解题方法总结汇总(全面完整)
(3)六年级男生有 50 人,女生比男生多 2 ,女生比男生多多少人? 5
(4)如果白兔有 48 只,灰兔比白兔多 3 ,灰兔比白兔多多少只? 4
2
3、求比一个数多几分之几是多少。
几 单位“1”的量×(1+ 几 )(分率)=是多少(分率对应的量)。
4 (1)人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳 75 次,婴儿每分钟心跳的次数比青少年多5 。婴
几 5、求比一个数少几分之几是多少。单位“1”的量×(1- 几 )(分率)=是多少(分率对应的量)。
(1)学校有 20 个足球,篮球比足球少
1 5
,篮球有多少个?
2 (2)一种服装原价 105 元,现在降价7 ,现在售价多少元?
(3)某校计划每月用水 120 吨,实际比计划节约 1 ,实际每月用水多少吨? 6
3、已知一个数比另一个数多几分之几是多少,求这个数。 几
是多少(分率对应的量)÷(1+几 )(分率)=单位“1”的量。 1
例 1:学校有 20 个足球,足球比篮球多 4 ,篮球有多少个?
4、已知一个数比另一个数少几分之几少多少,求这个数。 几
少多少(分率对应的量)÷几 (分率)=单位“1”的量。 例 1:某工程队修筑一条公路。第一天修了 38 米,第二天了 42 米。第一天比第二天少修的是这条公路全长的 1 28 。这条公路全长多少米?
。小新储蓄多少钱?
2、求比一个数多几分之几多多少。
几 单位“1”的量×几 (分率)=多多少(分率对应的量)。
(1)人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳 75 次,婴儿每分钟心跳的次数比青少年多45 。婴
儿每分钟心跳比青少年多多少次?
(2)学校有足球 20 个,篮球比足球多 1 ,篮球比足球多多少个? 2

六年级分数乘除法应用题解题方法小结

六年级分数乘除法应用题解题方法小结

六年级分数乘除法应用题解题方法小结 方法一:一般情况下,六年级有关分数的解决问题,都比较简单,基本上包含三个量,一个叫“比较量”,一个叫“标准量”,另一个叫“分率”。

比如:六年级人数是三年级人数的 。

这里的六年级人数就叫“比较量”,三年级人数是单位“1”也就是标准量,而 就是分率。

它们之间的关系是:比较量=标准量×分率。

标准量=比较量÷分率。

分率=比较量÷标准量。

再比如:苹 果 的 重 量 是 梨 重 量 的题目:饲养厂养鸡126只,养的鸭的只数是它的 ,, 。

养鸭多少只?分析:这里的单位“1”是“它”也就是“鸡的只数”。

比较量是“鸭的只数”,求的是鸭的只数也就是求比较量,利用比较量=标准量×分率,可列式为:126× =42。

题目:饲养厂养鸡126只,是养的鸭的只数的 ,, 。

养鸭多少只?分析:这里的单位“1”是“鸭的只数”。

比较量就是“鸡的只数”,求的是鸭的只数也就是求标准量,利用标准量=比较量÷分率,可列式为:126÷ =378。

求分率就是求一个数是另一个数的几分之几,这里就不再练习。

方法二: 记住口诀“知1用乘,求1用除”。

也就是说如果题目里已经知道单位“1”是多少了,那么就用乘法;如果题目就让我们求单位“1”是多少,就用除法。

单位“1”的找法,一般在“是”、“占”的后面,或者说在分率的前面。

比如:梨树占苹果棵数的 , ,单位“1”就是苹果棵树。

比如:一堆苹果,吃了解 ,要想:吃了谁的七分之四,因为是吃了这堆苹果的七分之四,所以单位“1”就是这堆苹果。

比如:小明的重量是小花的三分之二,那么单位“1”就是小花的体重。

题目:一只鸭重3千克,一只鸡的重量是鸭的2/3,这只鸡重多少千克?(2/3表示三分之二) 分析:单位“1”是“鸭的重量”,而鸭的重量是3千克也就是单位“1”已经告诉我们了,所以用口诀“知1用乘”,可以用乘法算出鸭的重量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数乘除法应用题解题技巧
分数乘除法应用题是小学数学高年级教材中教学的一个重点,也是学生学习的一个难点。

因为这类题比较抽象,学生往往容易因分析失误而错解。

我在多年的小学数学教学中,摸索总结出一句分数乘除法应用题的解题口诀。

应用这个口诀让学生解答这类问题,能极大地提高学生解决这类题型的准确率,效果十分显着。

这个口诀就是:
“的”的前面,“比”的后面(先判定单位“1”)
是单位“1”;
量率对应(确定量率是否对应);
知“1”用乘,求“1”用除(判定用乘还是用除)。

一、我们先来了解什么是“1”。

“1”,就是单位“1”,也就是“标准量”。

如:
(1)我班女生人数是男生人数的。

这里是把男生人数做为一个标准,拿女生人数跟男生人数去做比较,我们就把这里的男生人数叫做单位“1”的量,即标准量。

女生人数是比较量。

(2)果园里桃树的棵数比梨树少。

(3)今年小麦的总产量比去年增长了10%。

二、怎样运用这个口诀呢?
我们仍然以前面的例子做基本条件来进行说明。

()我班女生人数是男生人数的3/5。

男生有25人,女生有多少人?
分析:这道题里是把男生人数看作单位“1”(因为利用口诀“的”的前面是男生人数,所以男生人数是单位“1”),而男生人数是已知的。

根据知“1”用乘列式为:
25×=20(人)
()我班女生人数是男生人数的4/5。

女生有20人,男生有多少人?
分析:这道题里还是把男生人数看作单位“1”(因为利用口诀“的”的前面是男生人数,所以男生人数是单位“1”),而所求的量也是男生人数,即所求的量是单位“1”的量。

根据求“1”用除列式为:
20÷4/5=25(人)
()果园里有桃树30棵,桃树的棵数比梨树少1/5。

梨树有多少棵
30÷(1-1/5)
分析:这道题里是把梨树的棵数看作单位“1”(因为利用口诀“比”的后面是梨树棵树,所以梨树棵树是单位“1”),求梨树有多少棵,就是求单位“1”的量。

而桃树的棵数相当于梨树的(1-1/5 )(经过判定30和(1-1/5)量率对应)。

所以根据求“1”用除列式为:
30÷(1-1/5)=
()果园里有梨树30棵,桃树的棵数比梨树少2/3。

桃树有多少棵
分析:这道题里还是把梨树的棵数看作单位“1”(因为利用口诀“比”的后面是梨树棵树,所以梨树棵树是单位“1”),而梨树有30棵是已知的。

并且桃树的棵数相当于梨树的(1-2/3)(经过判定30和(1-2/3)量率对应)。

根据知“1”用乘列式为:
30×(1-2/3)=
根据前面的这些例子,我们可以总结出运用这个口诀解决分数乘除法应用题的一般步骤是:
1、找出题中单位“1”的量;
2、判断单位“1”的量是已知的量,还是待求的量;
3、根据知“1”用乘,求“1”用除这个口诀列式、计算;
4、检验,写出答案。

三、运用这个口诀时应注意的事项:
1、虽有分数数量,但无分率关系的非典型性分数乘除法应用题
(如一辆汽车每小时行60千米,2 小时行多少千米),不适用于此口诀。

2、有分率关系的百分数应用题和倍数关系应用题,都适用于此口诀。

如:
()某村今年小麦的总产量是198吨,比去年增长了10%,去年小麦的总产量是多少?
()某村去年小麦的总产量是198吨,今年小麦的产量总比去年增长了10%,今年小麦的总产量是多少?
再举一个倍数关系的例子:
同学们折纸花。

折了30朵红花,折的红花是黄花的3倍,折的黄花有多少朵?
3、用口诀前教师应先让学生明确算理,这样学生用起来因为知其所以然,才会得心应手,不出错误;用口诀列式时,应注意数量与分率的对应关系,即:
知“1”用乘:单位“1”的量×所求的量对应的分率=所求的量
如:例子()中,30×(1-)=18(棵)
30是单位“1”的量,(1-)是所求的量对应的分率,18(棵)是所求的量。

求“1”用除:已知的量÷已知的量对应的分率=单位“1”的量
如:例子()中,198÷(1+10%)=180(吨)
198是已知的量,(1+10%)是已知的量对应的分率,180(吨)是单位“1”的量。

这个口诀是否简单实用呢找几道分数乘除法应用题试一试。

记住这个口诀和上面的这两个关系式吧!它对你解答分数乘除法应用题会有很大的帮助的。

相关文档
最新文档