同底数幂的乘法教学设计和反思

合集下载

《同底数幂的乘法》教学案例(5篇)

《同底数幂的乘法》教学案例(5篇)

《同底数幂的乘法》教学案例(5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《同底数幂的乘法》教学案例(5篇)同底数幂的乘法(一)这次本店铺为您整理了5篇《《同底数幂的乘法》教学案例》,在大家参考的同时,也可以分享一下本店铺给您的好友哦。

14.1.1同底数幂的乘法教案

14.1.1同底数幂的乘法教案
五、教学反思
在本次“14.1.1同底数幂的乘法”教学中,我尝试了多种方法来帮助学生理解和掌握这一概念。首先,我发现通过引入日常生活中的实际问题来激发学生的兴趣和好奇心是非常有效的。他们在思考如何简化计算过程中,自然而然地对同底数幂乘法产生了兴趣。
然而,我也注意到,在理论讲解过程中,部分学生对指数相加的理解仍然存在困难。为了突破这个难点,我采用了具体实例和图示的方式进行讲解。从学生的反馈来看,这种方法有助于他们更好地理解指数相加的概念。
在新课讲授环节,我强调了同底数幂乘法的定义和性质,并配合实际案例进行分析。我发现,学生在这一环节的学习中,对于性质的理解和应用较为顺利。这说明,结合实际案例进行教学可以有效地帮助学生将理论知识与实际问题联系起来。
在实践活动和小组讨论环节,学生们表现出很高的积极性。他们通过讨论和实验操作,加深了对同底数幂乘法的理解。同时,我也注意到,学生在分享讨论成果时,能够主动提出自己的观点和想法,这对于培养他们的逻辑思维和表达能力非常有帮助。
举例:a^2 × a^3 = a^(2+3),可以通过正方体的面积和体积的例子进行解释。
(2)同底数幂乘法性质的推导:这部分内容抽象,学生难以理解。教师应通过生动的例子、图示等方法,引导学生发现性质并加以证明。
举例:利用面积、体积的例子,引导学生发现并证明同底数幂乘法的交换律、结合律等。
(3)应用同底数幂乘法解决问题:学生在解决实际问题时,可能难以将问题抽象为同底数幂乘法的形式。教师应提供多种类型的例题,指导学生分析问题,将问题转化为同底数幂乘法的形式。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了同底数幂乘法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对同底数幂乘法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

同底数幂的乘法教案

同底数幂的乘法教案

同底数幂的乘法教案同底数幂的乘法教案一、教学目标:1.了解同底数幂的概念,掌握同底数幂的乘法规则;2.通过例题训练和练习题目的解答,提高学生对于同底数幂的计算能力。

二、教学内容:1.同底数幂的定义;2.同底数幂的乘法规则。

三、教学重难点:1.同底数幂的乘法规则;2.应用乘法规则解决实际问题。

四、教学过程:1.导入(5分钟)通过一个小问题引导学生思考:小明有3个苹果,小红有2个苹果,小明和小红一共有多少个苹果?学生思考一会后,观察到苹果的数量相同,可以得出结论:小明和小红的苹果数量相同。

引出同底数幂的概念。

2.学习同底数幂的定义(10分钟)给出同一个底数的不同指数,如2^3和2^4,让学生观察底数的变化以及指数的变化。

引导学生总结出结论:底数相同的幂,指数不同,称为同底数幂。

3.探究同底数幂的乘法规则(15分钟)给出同底数幂的乘法算式,如2^3 * 2^4,让学生先独立计算,然后互相讨论结果,最后找一个学生汇报答案。

通过讨论和汇报,引导学生总结同底数幂的乘法规则:相同底数的幂相乘,底数不变,指数相加。

4.讲解同底数幂乘法规则的证明(10分钟)通过示意图的形式,以2^3 * 2^4为例子,讲解同底数幂乘法规则的证明过程。

让学生观察示意图,理解同底数幂乘法规则的合理性。

5.练习乘法规则(15分钟)自主解答一些同底数幂的乘法运算,如2^6 * 2^5、3^4 * 3^2等,然后互相交流讨论答案。

6.解答习题(15分钟)布置一些练习题,如计算2^3 * 2^4 + 2^2,要求学生自己解答,然后在黑板上解答并讲解。

鼓励学生提问和思考。

7.小结(5分钟)对于同底数幂的乘法规则进行小结,并提醒学生多进行类似练习,以加深对同底数幂的理解和掌握。

五、教学反思:本节课通过引导学生思考和观察的方式,培养了学生们的逻辑思维和观察能力。

通过自主解答、互相讨论和黑板解答的过程,提高了学生们的动手实践和合作交流能力。

但是在习题解答环节,可以增加一些拓展性题目,以提高学生们的应用能力和思考能力。

同底数幂的乘法数学教案

同底数幂的乘法数学教案

同底数幂的乘法数学教案
标题:同底数幂的乘法
一、教学目标
- 理解并掌握同底数幂的乘法法则。

- 能够运用同底数幂的乘法法则解决实际问题。

- 培养学生的逻辑思维能力和运算能力。

二、教学重难点
重点:理解并掌握同底数幂的乘法法则。

难点:运用同底数幂的乘法法则解决实际问题。

三、教学过程
1. 引入新课
教师可以通过生活中的实例引入,例如:如果一个人每天学习1小时,那么他连续学习3天,总共学习了多少小时?通过这个问题引导学生思考并引出同底数幂的概念。

2. 新课讲解
(1) 定义:同底数幂是指底数相同,指数不同的幂。

(2) 同底数幂的乘法法则:am×an=am+n (m,n为正整数)
教师可以举例说明这个法则,并引导学生自己推导出这个法则。

3. 巩固练习
设计一些简单的题目让学生进行练习,以巩固他们对同底数幂的乘法法则的理解和应用。

4. 课堂小结
回顾本节课的内容,强调同底数幂的乘法法则及其应用。

四、作业布置
布置一些包含同底数幂的乘法的习题,以便学生在课后继续练习和巩固。

五、教学反思
在课程结束后,反思教学过程中的优点和不足,以便于下次改进。

《同底数幂的乘法》教学反思(精选5篇)

《同底数幂的乘法》教学反思(精选5篇)

《同底数幂的乘法》教学反思(精选5篇)《同底数幂的乘法》教学反思1本课的主要教学任务是“同底数幂乘法的运算性质”:同底数幂相乘,底数不变,指数相加。

在课堂教学时,通过幂的意义引导学生得出这一性质,这一过程比较顺利,效果满意。

学生在完成教材中的例题时,正确率较高。

为了加深对这一性质的理解,也将同底数幂乘法、乘方运算以及整式加减集中运算进行辨析,学生基本上也能辨认清楚。

至此,学生对于本节课的基本知识点已经掌握。

在此基础上,我开始引导学生深入探讨同底数幂运算,幂的底数可以是“任意有理数、单项式、多项式”,训练学生的整体思想,学生掌握情况良好。

接着对于同底数幂乘法法则的逆运用进行探索,并应用到实际问题中:课堂教学环节,实施流畅,效果满意,但是在探索将不同底的幂转化成同底数幂进行计算时,感觉学生理解困难。

课后我分析造成这一结果的根源,觉得主要是因为课堂内容安排过多,学生练习不足,精力有限。

这节课的主要任务就是一个运算性质,然学生理解很容易,但是要让学生能正确的进行计算以及解决实际问题,就会有很多问题。

为了避免问题的发生,我在备课时就挖掘了很多教材上没有提及但是补充习题当中备受关注的题型。

如最后的“探索将不同底的幂转化成同底数幂进行计算”。

可是却事与愿违,由于大容量的课堂,造成教师讲解的过多,而学生自己练习的时间不足,面对运算性质,教师提点固然重要,但唯有自己多练,积累经验,才能提高运算能力。

在以后的教学中,首先在制定一节课的教学目标时,要根据学生的实际情况,先完成教材的基本要求,对于进一步挖掘教材而延伸的知识点则要注意难度。

其次在课堂教学中,立足基本目标,精讲多练,在学生熟练掌握后,再组织学生探索一些特殊题型和解题技巧。

总之,一节课40分钟,不能求全、求难,而是要关注所有学生对基本知识的掌握情况,这样的'教学才扎实,学生学得才牢靠。

《同底数幂的乘法》教学反思2同底数幂的乘法是华师大版八年级上册的内容,学生已经学习了有理数的乘方,并接触过用字母表示数,这为本课奠定了基础。

14.1.1《同底数幂的乘法》教学设计

14.1.1《同底数幂的乘法》教学设计

14.1.1《同底数幂的乘法》教学设计第一篇:14.1.1《同底数幂的乘法》教学设计14.1.1《同底数幂的乘法》教学设计一、教材的地位和作用同底数幂的乘法是在学习了有理数的乘方和整式的加减之后,为了学习整式的乘法而学习的关于幂的一个基本性质(法则),又是幂的三个性质中最基本的一个性质,学好了同底数幂的乘法,其他两个性质和整式乘法的学习便容易了.因此,同底数幂的乘法法则既是有理数幂的乘法的推广又是整式乘法的重要基础,在本章的学习中具有举足轻重的地位和作用。

二、教学目标1.知识与技能目标:(1)巩固同底数幂的乘法法则,学生能灵活地运用法则进行计算;(2)了解同底数幂乘法运算性质,并能解决一些实际问题;(3)能根据同底数幂的乘法性质进行运算(指数指数字)。

2.过程与分析目标:(1)经历探索同底数幂的乘法运算的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力;(2)在了解同底数幂的乘法运算的意义的基础上,“发现” 同底数幂的乘法性质,培养学生观察、概括和抽象的能力;(3)能用字母式子和文字语言表达这一性质,知道它适用于三个和三个以上的同底数幂相乘。

3.情感与态度目标:在推导“性质”的过程中,培养学生观察、概括与抽象的能力。

三、教学重难点重点:同底数幂的乘法的运算性质。

难点:同底数幂的乘法的运算性质的理解与推导。

四、教法与学法教法:引导发现法;合作探究法;练习巩固法。

学法:观察分析;探究归纳;练习巩固。

五、教学过程1.感受学习同底数幂的乘法的必要性引言:在七年级上册,我们已经学习了整式的加减,本章我们将学习整式的乘法及整式的乘法密切相关的因式分解。

为此,我们首先学习同底数幂的乘法。

问题1 一种电子计算机每秒可进行1千万亿(10)次的运算,它工作10s可进行多少次运算?153(1)如何列出算式?(2)10的意义是什么?(3)怎样根据乘方的意义进行计算?师生活动:教师提出问题,学生列出算式并解答。

要求学生写出解答过程中每一步的依据,明确算理。

《同底数幂的乘法》教学案例

《同底数幂的乘法》教学案例

《同底数幂的乘法》教学案例一、教学背景同底数幂的乘法是整式乘法的基础,也是后续学习整式乘除、幂的运算等知识的重要基石。

在学生已经掌握了幂的定义和指数运算的基本规则的基础上,引导学生理解和掌握同底数幂的乘法法则,对于提高学生的数学运算能力和逻辑思维能力具有重要意义。

二、教学目标1、知识与技能目标学生能够理解同底数幂乘法的运算性质,熟练掌握同底数幂的乘法运算规则,并能正确运用法则进行计算。

2、过程与方法目标通过引导学生观察、猜想、验证、归纳等数学活动,培养学生的观察能力、推理能力和归纳能力,体会从特殊到一般、从具体到抽象的数学思维方法。

3、情感态度与价值观目标激发学生学习数学的兴趣,培养学生勇于探索、创新的精神,以及合作交流的意识。

三、教学重难点1、教学重点同底数幂乘法法则的推导和应用。

2、教学难点对同底数幂乘法法则的理解,特别是指数的运算。

四、教学方法讲授法、讨论法、练习法相结合,引导学生自主探究、合作交流。

五、教学过程1、情境导入展示问题:一种电子计算机每秒可进行 10^14 次运算,它工作 10^3 秒可进行多少次运算?引导学生列出算式:10^14×10^3提问:如何计算这个式子呢?从而引出本节课的主题——同底数幂的乘法。

2、探索新知(1)让学生计算以下式子:2^2×2^3 =? 5^3×5^4 =? a^3×a^4 =?(2)组织学生小组讨论,观察计算结果,寻找规律。

(3)引导学生总结规律:同底数幂相乘,底数不变,指数相加。

即:a^m × a^n = a^(m + n) (m、n 都是正整数)3、法则推导(1)以 a^m × a^n 为例,进行推导:a^m × a^n =(a×a××a)(m 个 a)×(a×a××a)(n 个 a)= a×a××a (m + n 个 a)= a^(m + n)(2)强调法则的适用条件:底数相同,且指数为正整数。

数学教案《同底数幂的乘法》

数学教案《同底数幂的乘法》

数学教案《同底数幂的乘法》一、教学目标:1. 让学生理解同底数幂的乘法概念,掌握同底数幂的乘法法则。

2. 培养学生运用同底数幂的乘法解决实际问题的能力。

3. 提高学生的数学思维能力和团队合作能力。

二、教学内容:1. 同底数幂的乘法概念。

2. 同底数幂的乘法法则。

3. 实际问题中的应用。

三、教学重点与难点:1. 教学重点:同底数幂的乘法概念、同底数幂的乘法法则。

2. 教学难点:同底数幂的乘法在实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生探索同底数幂的乘法。

2. 利用小组讨论法,培养学生的团队合作能力。

3. 运用实例分析法,让学生学会解决实际问题。

五、教学过程:1. 导入新课:通过复习幂的定义,引导学生思考同底数幂的乘法。

2. 讲解同底数幂的乘法概念,阐述同底数幂的乘法法则。

3. 进行实例演示,让学生理解并掌握同底数幂的乘法法则。

4. 布置练习题,让学生巩固所学知识。

5. 组织小组讨论,让学生运用同底数幂的乘法解决实际问题。

六、教学评估:1. 课堂问答:通过提问学生,了解他们对同底数幂的乘法概念和法则的理解程度。

2. 练习题:布置一定数量的练习题,评估学生对知识的掌握情况。

3. 小组讨论:观察学生在小组讨论中的表现,了解他们的团队合作能力和解决问题的能力。

七、教学拓展:1. 引导学生思考同底数幂的除法,提示他们发现同底数幂的除法与乘法的联系和区别。

2. 鼓励学生探索同底数幂在其他数学领域的应用,如代数、几何等。

八、教学反思:2. 分析学生的反馈,调整教学策略,以提高教学效果。

九、课后作业:1. 完成同底数幂的乘法练习题,巩固所学知识。

2. 探索同底数幂在其他数学领域的应用,如代数、几何等。

十、教学资源:1. 教学PPT:展示同底数幂的乘法概念、法则和实例。

2. 练习题库:提供一定数量的练习题,帮助学生巩固知识。

3. 小组讨论素材:提供相关素材,引导学生进行小组讨论。

4. 课后拓展资料:提供相关资料,帮助学生探索同底数幂在其他数学领域的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版义务教育教科书八年级《数学》上册(2013年教育部审定)
第十四章整式的乘法与因式分解
14.1.1 同底数幂的乘法
(新蒲新区新蒲镇前进学校何文芳)
一.教学内容
14.1.1 同底数幂的乘法
二.教学目标
1.知识与技能目标:理解同底数幂乘法的性质,能正确地运用性质解决一些实际问题。

2.过程与方法目标:经历探索同底数幂乘法运算性质的过程,在探索过程中, 发展学生的数感和符号感,培养学生的观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理表达能力。

3.数学思考:
(1)通过由特殊到一般、从具体到抽象,得到同底数幂的性质,提高学生推理能力。

(2)通过对公式a m·a n=a m+n(m,n都是正整数)的应用,让学生观察是不是同底数幂相乘,进一步发展观察、归纳、类比等能力,发展有条理的思考能力。

3. 情感、态度、价值观目标:通过同底数幂乘法性质的推导和应用,使学生初步理解“特殊到一般”的认知规律和辨证唯物主义思想,体会科学的思想方法,激发学生探索创新精神。

三.教学重难点
1.重点:同底数幂的乘法运算性质。

2.难点:同底数幂的乘法的运算性质的理解与推导。

四.课时安排
1 课时
五.教学准备
学生准备:复习七年级上册乘方的概念以及幂的概念。

教师准备:多媒体课件,为学生准备的资料。

六.教学过程
活动一:复习旧知识、引入新课:
师生活动:由学生独立完成下列题目,教师引导学生复习乘方的相关知识。

多媒体展示活动内容如下:
1. 运用乘方知识完成下列各题。

(1)n 个相同因数积的运算叫做____,乘方的结果叫做____,则
a
n a a a a 个⋅⋅⋅⋅写成乘方的形式为:_____,其中a 叫____,n 叫_____,n
a 读作:______________。

(2)3x 表示___个___相乘,把3x 写成乘法的形式为:3x =_________。

(3)x 3,x 5,x ,x 2,它们的指数相同吗?它们的底数相同吗?
设计意图:让学生回顾乘方的相关知识,为同底数幂的乘法的学习作铺垫。

活动二: 探究新知 发现规律
1.探究310×210=________
(教师引导学生完成)
根据乘方的意义可知:
310×210=(10×10×10)×(10×10)
=10×10×10×10×10
= 510
设计意图:让学生感受学习同底数幂的乘法的必要性,并通过有步骤,有依据的计算,为探索同底数幂的乘法的运算性质做好知识和方法的铺垫。

2.填空:(学生完成)
(1)32×22 =_______=_______=_______.
(2)3a ·2a =_______=________=_______.
师生活动:学生独立计算,小组成员互相检查,一位同学在黑板上板书,师生共同分析板书结果。

如果学生有困难,教师可以引导学生回顾问题1的解答过程,再进行计算。

设计意图:(1)两个特殊的算式具有代表性和层次性,其中的乘数分别为:底数和指数都是数,底数为字母指数为数;(2)这两个算式和第一个题的算式为抽象慨括出一般的结论奠定基础;(3)让学生在每个算式的计算过程中进一步明确算理和算法,进而得出正确结果。

请同学们观察下列各式左右两边底数,指数有什么关系:
3
10
10×2
10= 5
3
2×22 = 52
3
a·2a = 5a
a·n a=________(m,n都是正整数) (学生猜想:对于任意底数a,m
小组讨论,能说出结果即可,教师引导推导过程)
设计意图:让学生在观察、比较、抽象、概括中总结出同底数幂的乘法运算的本质特征,并猜想出其性质,即:a m·a n=a m+n(m,n都是正整数) 由此得到同底数幂乘法的性质:
同底数幂相乘,底数不变,指数相加。

即:m a·n a=n m a (m,n都是正整数)
活动三:学以致用
例1.计算
(1)105×106 (2)b7·b
(3)(-2)× (-2)2× (-2)3 (4) a n· a n+1
师生活动:师生共同分析解答,教师幻灯片展示(1)的解答过程,学生完成(2)(3)(4).教师着重让学生说明底数是什么,指数是什么,让学生观察是不是同底数幂相乘,引导学生运用性质进行计算。

(2)中b=b 1 是学生易错点,教师提问可能会出错的学生,并抓住时机强调此问题。

设计意图:让学生运用性质进行计算,在积累解题经验的同时,体会将同底数幂的乘法运算转化为指数的加法运算的思想。

活动四:巩固练习
1.下面计算对不对?如果不对,怎样改正?
(1)5b ·5b =25b (2) 5b +5b =10b
(3)5x ·5x =25x (4)y ·5y =5y
(5)(a+b)4.(a+c)3=(a+b)7
师生活动:学生回答,并相互补充。

教师要重点提醒学生分析题目条件,能否应用同底数幂的乘法的运算性质以及如何正确应用。

设计意图:让学生通过辨析,加深对性质的理解和运用。

2.填空:(学生完成)
(1)5x ·____=8x (2)a ·_____=6a
(3)x ·3x ·_____=7x (4)m x ·_____=m x 3
3.计算:(学生完成)
(1)1-n x ·1+n x (2)3)(y x +·4)(y x +
(3)2)(b a +·3)(a b + (4)4)21(-·3)2
1(
课堂小结:
通过本节课的学习,你有什么收获?(引导学生回答)
布置作业:
教科书第104页~105页习题14.1第1题(1)(2)小题。

板书设计:
教学反思:同底数幂的乘法是新人教版八年级上册的内容,学生已经在七年级上册中学过乘方,已经接触过用字母表示数,这为本课奠定了基础,但时间过长,在教学过程中我进行适当的复习。

本节内容同时又是对幂的意义的理解、运用和深化。

整式的乘除法是代数部分的基础,它为后面学习方程,函数做了准备。

本节课的重点是让学生经历探索同底数幂的乘法这一规律(性质)的过程,然后理解其运算性质,并能利用这一性质解决一些与同底数幂的乘法有关的实际问题。

从课堂发言和练习来看,学生在探究其性质时,推理能力和有条理的符号表达能力得到了一定发展。

本节课采取了导学案教学模式,并对每一个过程都进行了深入研究,在活动1中把课本内容设置成了几个问题,由浅入深,由易到难,在合作探究中能以学生为中心,做到全体参与,使学生有问题意识和探索欲望;不仅重过程而且重
结果,重应用。

课前我精心设计探究计划,选择和组织恰当的教学材料;在指导教学过程中,把注意力集中在学生身上,不停地做出各种判断,激发和鼓励学生的学习探究;提问不仅有序、有提示、有鼓励、有启发、问在有疑之处. 同时引导学生注意了这几点:(1)指数相加而不是相乘(2)负数、分数乘方加括号(3)法则逆用要灵活(4)指数不写是1。

本课的主要教学任务是“同底数幂乘法的运算性质”,即同底数幂相乘,底数不变,指数相加。

在课堂教学时,通过幂的意义引导学生探索发现得出这一性质,这一过程比较顺利,效果满意。

学生在完成教材中的例一、例二时,正确率较高。

为了加深对这一性质的理解,也将同底数幂乘法、乘方运算以及整式加减集中运算经行辨析,学生基本上也能辨认清楚。

在此基础上接着对于同底数幂乘法法则的逆运用进行探索,以上的教学环节,实施流畅,效果满意。

回顾这一节课,这节课在教学过程的进度把握的比较好,而且条理比较清晰,课堂气氛很好,基本达到教学目标。

但还存在一些不足。

例如后面的练习题的设计,缺乏新颖,没有难度的变化,而且形式比较单一,不能更好的调动学生的积极性。

忘记了返回刚开始情景导入中遗留的未解决的问题。

另外课堂语言要注意规范和简练。

在以后的教学中,首先制定一节课的教学目标时,要根据学生的实际情况,先完成教材的基本要求,对于进一步挖掘教材而延伸的知识点则要注意难度。

其次在课堂教学中,练习题的设计要有变式,要有梯度。

立足基本目标,精讲多练,在学生熟练掌握后,再组织学生探索一些特殊题型和解题技巧。

作为一名年轻的新老师,缺乏丰富的教学经验,这需要在以后的教学过程中,多向老教师学习,多听课,多进行反思。

多学习教学理论,争取在课堂教学形式上有所突破。

相关文档
最新文档