NRF24L01发送程序

合集下载

NRF24L01测试发送程序

NRF24L01测试发送程序

NRF24L01测试发送程序/*对该程序做一下几点说明一、该程序仅用于测试是否发送成功,所以有两处的设置做出了调整1、SPI_RW_Reg(WRITE_REG + EN_AA, 0x00);//频道0自动ACK应答允许(此处禁止用于测试)2、SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x00);//允许接收地址只有频道0(此处禁止用于测试)二、其中P3口连接的是无线模块的引脚,P2口连接的是LED 是为了显示发送数据后STA TUS的状态若使用的开发板不同,需将P2口连接到其他口观察状态寄存器的状态三、P3口一定不要接其他外部设备,如使用的开发板有其他外接设备一定要断掉。

或侧换成最小系统板进行试验四、若发送仍不成功,可以用示波器观察发送数据时的MISO口的波形判断是否为硬件问题*///***************************************************发送程序*********************************//#include#includetypedef unsigned char uchar;//****************************************NRF24L01 IO端口定义*********************************//sbit CE =P3^2;sbit CSN =P3^3;sbit SCK =P3^4;sbit M OSI =P3^5;sbit M ISO =P3^6;sbit IRQ =P3^7;//***********************************发送缓冲区***********************************************//uchar TxBuf[3]={1,2,3};//发送的数据用数字存储//*****************************NRF24L01的接收和发送地址***************************************//#define TX_ADR_WIDTH 5 // 5个字节的TX地址长度#define RX_ADR_WIDTH 5 // 5个字节的TX地址长度#define TX_PLOAD_WIDTH 3 // 20个字节的TX数据长度#define RX_PLOAD_WIDTH 3 // 20个字节的TX数据长度uchar const TX_ADDRESS[TX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //本地地址uchar const RX_ADDRESS[RX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //接收地址//***************************************NRF24L01寄存器指令**********************************//#define READ_REG 0x00 // 读寄存器指令#define WRITE_REG 0x20 // 写寄存器指令#define RD_RX_PLOAD 0x61 // 读取接收数据指令#define WR_TX_PLOAD 0xA0 // 写待发数据指令#define FLUSH_TX 0xE1 // 冲洗发送FIFO指令#define FLUSH_RX 0xE2 // 冲洗接收FIFO指令#define REUSE_TX_PL 0xE3 // 定义重复装载数据指令#define NOP 0xFF // 保留//*************************************SPI(nRF24L01)寄存器地址*****************************//#define CONFIG 0x00 // 配置收发状态,CRC校验模式以及收发状态响应方式#define EN_AA 0x01 // 自动应答功能设置#define EN_RXADDR 0x02 // 可用信道设置#define SETUP_AW 0x03 // 收发地址宽度设置#define SETUP_RETR 0x04 // 自动重发功能设置#define RF_CH 0x05 // 工作频率设置#define RF_SETUP 0x06 // 发射速率、功耗功能设置#define STATUS 0x07 // 状态寄存器#define OBSERVE_TX 0x08 // 发送监测功能#define CD 0x09 // 地址检测#define RX_ADDR_P0 0x0A // 频道0接收数据地址#define RX_ADDR_P1 0x0B // 频道1接收数据地址#define RX_ADDR_P2 0x0C // 频道2接收数据地址#define RX_ADDR_P3 0x0D // 频道3接收数据地址#define RX_ADDR_P4 0x0E // 频道4接收数据地址#define RX_ADDR_P5 0x0F // 频道5接收数据地址#define TX_ADDR 0x10 // 发送地址寄存器#define RX_PW_P0 0x11 // 接收频道0接收数据长度#define RX_PW_P1 0x12 // 接收频道0接收数据长度#define RX_PW_P2 0x13 // 接收频道0接收数据长度#define RX_PW_P3 0x14 // 接收频道0接收数据长度#define RX_PW_P4 0x15 // 接收频道0接收数据长度#define RX_PW_P5 0x16 // 接收频道0接收数据长度#define FIFO_STATUS 0x17 // FIFO栈入栈出状态寄存器设置//*******************************函数声明**************************************************//void Delay(unsigned int s);void inerDelay_us(unsigned char n);void init_NRF24L01(void);uchar SPI_RW(uchar num);uchar SPI_Read(uchar reg);void SetRX_Mode(void);uchar SPI_RW_Reg(uchar reg, uchar value);uchar SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars);uchar SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars);unsigned char nRF24L01_RxPacket(unsigned char* rx_buf);void nRF24L01_TxPacket(unsigned char * tx_buf);//*****************************************延时函数***************************************//void inerDelay_us(unsigned char n){for(;n>0;n--)_nop_();}//*****************************************长延时*****************************************//void Delay(unsigned int s){unsigned int i;for(i=0; i<="" p="">for(i=0; i<="" p="">}//****************************************状态标志****************************************//uchar bdata sta;sbit RX_DR =sta^6;sbit TX_DS =sta^5;sbit MAX_RT =sta^4;//********************************NRF24L01初始化******************************************//void init_NRF24L01(void){inerDelay_us(100);CE=0; // 片选使能CSN=1; // SPI使能SCK=0; // SPI时钟拉低SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH); //写本地地址SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, RX_ADDRESS, RX_ADR_WIDTH); //写接收端地址SPI_RW_Reg(WRITE_REG + EN_AA, 0x00); // 频道0自动ACK 应答允许(此处禁止用于测试)SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x00); //允许接收地址只有频道0(此处禁止用于测试),如果需要多频道可以参考Page21 SPI_RW_Reg(WRITE_REG + RF_CH, 0); //设置信道工作为2.4GHZ,收发必须一致SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH); //设置接收数据长度,本次设置为32字节SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07); //设置发射速率为1MHZ,发射功率为最大值0dBSPI_RW_Reg(WRITE_REG + CONFIG, 0x0e); // IRQ收发完成中断响应,16位CRC,主发送}/************************************************************** **************** **********************/*函数:uint SPI_RW(uint uchar)/*功能:NRF24L01的SPI写时序/************************************************************** **************** **********************/uchar SPI_RW(uchar num){uchar bit_ctr;for(bit_ctr=0;bit_ctr<8;bit_ctr++) // output 8-bit{MOSI = (num & 0x80); // output 'uchar', MSB to MOSInum = (num << 1); // shift next bit into MSB..SCK = 1; // Set SCK high..num |= MISO; // capture current MISO bitSCK = 0; // ..then set SCK low again}return(num); // return read uchar}/************************************************************** **************** **********************函数:uchar SPI_Read(uchar reg)功能:NRF24L01的SPI时序*************************************************************** **************** *********************/uchar SPI_Read(uchar reg){uchar reg_val;CSN = 0; // CSN low, initialize SPI communication...SPI_RW(reg); // Select register to read from..reg_val = SPI_RW(0); // ..then read registervalueCSN = 1; // CSN high, terminate SPI communicationreturn(reg_val); // return register value}/************************************************************** **************** **********************//*功能:NRF24L01读写寄存器函数/************************************************************** **************** **********************/uchar SPI_RW_Reg(uchar reg, uchar value){uchar status;CSN = 0; // CSN low, init SPI transactionstatus = SPI_RW(reg); // select registerSPI_RW(value); // ..and write value to it..CSN = 1; // CSN high againreturn(status); // return nRF24L01 status uchar}/************************************************************** **************** ***************************/*函数:uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars)/*功能: 用于写数据:为寄存器地址,pBuf:为待写入数据地址,uchars:写入数据的个数/****************************************************************** ************ ***************************/uchar SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars){uchar status,uchar_ctr;CSN = 0; //SPI使能status = SPI_RW(reg);for(uchar_ctr=0; uchar_ctr<="" bdsfid="224" p="" uchar_ctr++)="">SPI_RW(*pBuf++);CSN = 1; //关闭SPIreturn(status); //}/************************************************************** **************** *****************************/*函数:void nRF24L01_TxPacket(unsigned char * tx_buf)/*功能:发送tx_buf中数据/************************************************************** **************** ****************************/void nRF24L01_TxPacket(unsigned char *tx_buf){CE=0; //StandBy I模式SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); // 装载接收端地址SPI_Write_Buf(WR_TX_PLOAD, tx_buf, TX_PLOAD_WIDTH); // 装载数据CE=1; //置高CE激发数据发送inerDelay_us(10);}/************************************主函数************************************************************/ void main(void){init_NRF24L01() ;Delay(6000);while(1){nRF24L01_TxPacket(TxBuf); // 发送Tx buffer的数据Delay(15000); //可变P2=SPI_Read(STA TUS);Delay(10000); //可变}}。

nRF24L01无线通信模块使用手册

nRF24L01无线通信模块使用手册

nRF24L01无线通信模块使用手册一、模块简介该射频模块集成了NORDIC公司生产的无线射频芯片nRF24L01:1.支持2.4GHz的全球开放ISM频段,最大发射功率为0dBm2.2Mbps,传输速率高3.功耗低,等待模式时电流消耗仅22uA4.多频点(125个),满足多点通信及跳频通信需求5.在空旷场地,有效通信距离:25m(外置天线)、10m(PCB天线)6.工作原理简介:发射数据时,第一将nRF24L01配置为发射模式,接着把地址TX_ADDR和数据TX_PLD 按照时序由SPI口写入nRF24L01缓存区,TX_PLD必须在CSN为低时连续写入,而TX_ADDR在发射时写入一次即可,然后CE置为高电平并保持至少10μs,延迟130μs后发射数据;若自动应答开启,那么nRF24L01在发射数据后赶忙进入接收模式,接收应答信号。

假如收到应答,则认为此次通信成功,TX_DS置高,同时TX_PLD从发送堆栈中清除;若未收到应答,则自动重新发射该数据(自动重发已开启),若重发次数(ARC_CNT)达到上限,MAX_RT置高,TX_PLD可不能被清除;MAX_RT或TX_DS置高时,使IRQ变低,以便通知MCU。

最后发射成功时,若CE为低,则nRF24L01进入待机模式1;若发送堆栈中有数据且CE为高,则进入下一次发射;若发送堆栈中许多据且CE为高,则进入待机模式2。

接收数据时,第一将nRF24L01配置为接收模式,接着延迟130μs进入接收状态等待数据的到来。

当接收方检测到有效的地址和CRC时,就将数据包储备在接收堆栈中,同时中断标志位RX_DR置高,IRQ变低,以便通知MCU去取数据。

若现在自动应答开启,接收方则同时进入发射状态回传应答信号。

最后接收成功时,若CE变低,则nRF24L01进入闲暇模式1。

三、模块引脚讲明7 NC 空 8 CSN 芯片片选信号 I 9 CE 工作模式选择I 10+5V电源四、模块与AT89S52单片机接口电路注:上图为示意连接,可依照自己实际需求进行更换;使用AT89S52MCU 模块时,请将Nrf24L01通讯模块每个端口(MOSI 、SCK 、CSN 和CE )接4.7K 的排阻上拉到VCC 增强其驱动能力(如下图:)。

NRF24L01无线发射简易教程

NRF24L01无线发射简易教程

NRF24L01 简易教程先来看接口电路,使用的IO 口不是唯一的哦,可随意定义接口,当然是在使用IO 口模拟SPI 且IRQ 中断引脚不使用的使用查询方法判断接收状态的情况下了。

作为初探我们就是用简单的IO 模拟SPI 的方法了,中断使用查询的方式。

那么该教程讲解的接口与单片机的连接如下:首先您需要了解NRF24L01,请参阅“NRF24L01 芯片中文资料”或者“NRF24L01 芯片英文资料”。

我们的教程是以一个简单的小项目为大家展示NRF24L01 的使用方法与乐趣。

我们所写的教程均是以这种方式的呢,让您在学习的时候明白它能做什么,使您学起来不至于枯燥无味。

作为简易的教程,我们只需要知道它是怎么使用的就够了,我们本教程的目的是用NRF24L01 发送数据和接收数据,且接收方会对比发送的数据与接收的数据,若完全相同则控制LED 闪烁一次,并且把接收到的数据通过串口发送到PC 端,通过串口工具查看接收到的数据。

具体的要求如下:1、具备发送和接收的能力。

2、发送32 个字节的数据,接收方接收到正确数据之后给予提示,通过LED 闪烁灯形式。

3、把接收到的数据传送到PC 进行查看。

4、发送端每隔大约1.5 秒发送一次数据,永久循环。

以上是程序的要求,若您想自行设计出硬件接口,您也是可以添加一条呢:使用DIY 方式设计NRF24L01 的接口板,且包含含单片机平台,使用PCB 方式或者万用板方式均可。

如果您想让自己学的很扎实,那么推荐您自行做出接口板子呢。

当然若您的能力不足,那么我们不推荐自行做板呢,因为这样会增加您学习的难度,反而起到了反效果呢。

我们使用的方式是画PCB 的方式呢,若您自己做了接口板子,那么您可以对比下一呢,O(∩_∩)O!我们知道NRF24L01 的供电电压是1.9V~3.6V 不能超过这个范围,低了不工作,高了可能烧毁NRF24L01 芯片。

我们常用的STC89C52 的单片机的供电电压是5V,我们不能直接给24L01 这个模块供电,我们需要使用AMS1117-3.3V 稳压芯片把5V 转成3.3V 的电压为24L01 模块供电。

nrf24l01发送接收一体程序(以调通,解决了接收端只能接收一次的问题)

nrf24l01发送接收一体程序(以调通,解决了接收端只能接收一次的问题)

nrf24l01发送接收一体程序(以调通,解决了接收端只能接收一次的问题)/**************************************************基于单片机无线报警系统主机(机载设别)系统程序/**************************************************/#include#include#define uchar unsigned char/***************************************************/#define TX_ADR_WIDTH 5 // 5字节宽度的发送/接收地址#define TX_PLOAD_WIDTH 4 // 数据通道有效数据宽度uchar code TX_ADDRESS[TX_ADR_WIDTH] = {0x34,0x43,0x10,0x10,0x01}; // 定义一个静态发送地址uchar RX_BUF[4]={0,0,0,0};uchar TX_BUF[4]={0x20,0x20,0x20,0x20};uchar flag; //无线模块接受数据标志uchar DATA = 0x01;uchar bdata sta;unsigned int a,k; //定时器延时参数uchar mark; //传感器响应标志位uchar mark1; // 延时标志位sbit RX_DR = sta^6; //接受数据成功标志位sbit TX_DS = sta^5; // 发送成功标志位sbit MAX_RT = sta^4; //最大重发上限标志位sbit HW=P2^0; //红外感应模块输入端sbit ZD=P1^7; //震动传感器输入端sbit LED=P2^1; //LED报警器输出端sbit SDA=P2^4; //语音模块数据控制端sbit ONN=P2^3; //语音芯片电源控制端口sbit FM =P2^5; //蜂鸣器/************************************************** 函数:delayus()描述:延迟x微秒/**************************************************/void delayus(unsigned int t){while(t--);}/************************************************** 函数:delayms()描述:延迟x毫秒/**************************************************/void delayms(unsigned int h){unsigned int j;while(h--)for(j=85;j>0;j--);}/************************************************** 函数:delays()描述:延迟x.xx秒/**************************************************/void delays( float h){unsigned int i,j;h*=100;while(h--){for(i=0;i<235;i++)for(j=0;j<3;j++);}}/************************************************** 函数:sendadd()描述:语音模块发送地址信号/**************************************************/ void sendadd(unsigned char addr){uchar i;delayms(5); /* 数据信号置于低电平5ms */for(i=0;i<8;i++){ SDA=1;if(addr & 1){delayus(60); /* 高电平比低电平为600us:200us,表示发送数据1 */SDA=0;delayus(20);}else{delayus(20);SDA=0; /* 高电平比低电平为200us:600us,表示发送数据0 */ delayus(60);}addr>>=1;}SDA=1;}/**************************************************函数:SPI_RW()描述:根据SPI协议,写一字节数据到nRF24L01,同时从nRF24L01 读出一字节/**************************************************/uchar SPI_RW(uchar byte){for(i=0; i<8; i++) // 循环8次{MOSI = (byte & 0x80); // byte最高位输出到MOSIbyte <<= 1; // 低一位移位到最高位SCK = 1; // 拉高SCK,nRF24L01从MOSI读入1位数据,同时从MISO输出1位数据byte |= MISO; // 读MISO到byte最低位SCK = 0; // SCK置低}return(byte); // 返回读出的一字节}/**************************************************//**************************************************函数:SPI_RW_Reg()描述:写数据value到reg寄存器/**************************************************/uchar SPI_RW_Reg(uchar reg, uchar value){uchar status;CSN = 0; // CSN置低,开始传输数据status = SPI_RW(reg); // 选择寄存器,同时返回状态字SPI_RW(value); // 然后写数据到该寄存器CSN = 1; // CSN拉高,结束数据传输return(status); // 返回状态寄存器}/************************************************** 函数:clear()描述:清TX_FIFO寄存器/**************************************************/void clear(){CSN=0;SPI_RW(FLUSH_TX);CSN=1;}/************************************************** 函数:SPI_Read()描述:从reg寄存器读一字节/**************************************************/ uchar SPI_Read(uchar reg){uchar reg_val;CSN = 0; // CSN置低,开始传输数据SPI_RW(reg); // 选择寄存器reg_val = SPI_RW(0); // 然后从该寄存器读数据CSN = 1; // CSN拉高,结束数据传输return(reg_val); // 返回寄存器数据}/**************************************************//**************************************************函数:SPI_Read_Buf()描述:从reg寄存器读出bytes个字节,通常用来读取接收通道数据或接收/发送地址/**************************************************/ uchar SPI_Read_Buf(uchar reg, uchar * pBuf, uchar bytes) {uchar status, i;CSN = 0; // CSN置低,开始传输数据status = SPI_RW(reg); // 选择寄存器,同时返回状态字for(i=0; ipBuf[i] = SPI_RW(0); // 逐个字节从nRF24L01读出CSN = 1; // CSN拉高,结束数据传输return(status); // 返回状态寄存器}/**************************************************//**************************************************函数:SPI_Write_Buf()描述:把pBuf缓存中的数据写入到nRF24L01,通常用来写入发射通道数据或接收/发送地址/**************************************************/ uchar SPI_Write_Buf(uchar reg, uchar * pBuf, uchar bytes) {uchar status, i;CSN = 0; // CSN置低,开始传输数据status = SPI_RW(reg); // 选择寄存器,同时返回状态字for(i=0; iSPI_RW(pBuf[i]); // 逐个字节写入nRF24L01CSN = 1; // CSN拉高,结束数据传输return(status); // 返回状态寄存器}/**************************************************函数:RX_Mode()描述:这个函数设置nRF24L01为接收模式,等待接收发送设备的数据包/**************************************************/void RX_Mode(void){CE = 0;SPI_RW_Reg(WRITE_REG + CONFIG, 0x0F); // CRC使能,16位CRC校验,上电,接收模式CE = 1;delayus(200); // 拉高CE启动接收设备}/**************************************************函数:TX_Mode()描述:这个函数设置nRF24L01为发送模式,(CE=1持续至少10us),130us后启动发射,数据发送结束后,发送模块自动转入接收模式等待应答信号。

NRF24L01收发程序

NRF24L01收发程序

/******* ******** ******** ******** ******** ******** ******** ******** ******** ******* ******** ******** ******/ uchar SPI_Read (uchar reg) { uchar reg_val; CSN = 0; // CSN low, initiali ze SPI communic ation... SPI_RW(r eg); // Select register to read from.. reg_val = SPI_RW(0 ); // ..then read register value
/*NRF24L 01 初始 化 //****** ******** ******** ******** ******** ******** ******** ******** */ void init_NRF 24L01(vo id) { inerDela y_us(100 ); CE=0; // chip enable CSN=1; // Spi disable SCK=0; // SPI_Writ e_Buf(WR ITE_REG + TX_ADDR, TX_ADDRE SS, TX_ASCK high.. uchar |= MISO; // capture current MISO bit SCK = 0; // ..then set SCK low again } return(u char); // return read uchar } /******* ******** ******** ******** ******** ******** ******** ******** ******** ******* ******** ******** ****** /*函数: uchar SPI_Read (uchar reg) /*功能: NRF24L01 的SPI 时 序

stc12单片机SPI的nrf24l01程序

stc12单片机SPI的nrf24l01程序

stc12单片机SPI的nrf24l01程序/////////////////////发送/////////////////////////////// #include <reg52.h>#include <intrins.h>typedef unsigned char uchar;#define uint unsigned int//****************************************IO端口定义***************************************sfr SPCTL = 0xCE;//SPI Control Register SSIG SPEN DORD MSTR CPOL CPHASPR1 SPR0 0000,0100sfr SPSTAT = 0xCD;//SPI Status Register SPIF WCOL - - - -- - 00xx,xxxxsfr SPDAT = 0xCF;sbit CE =P1^0;sbit CSN =P1^1;sbit IRQ =P1^2;sbit led=P1^3;//********************************************************* ********************************* uchar bdata sta;//状态标志sbit RX_DR =sta^6;sbit TX_DS =sta^5;sbit MAX_RT =sta^4;//*********************************************NRF24L01*************************************#define TX_ADR_WIDTH 5// 5 uints TX address width#define RX_ADR_WIDTH 5// 5 uints RX address width#define TX_PLOAD_WIDTH 32// 32 uints TX payload#define RX_PLOAD_WIDTH 32// 32 uints TX payloaduchar const TX_ADDRESS[TX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01};//本地地址uchar const RX_ADDRESS[RX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01};//接收地址 uchar codeTx_Buf[TX_PLOAD_WIDTH]={0xff,0xee,0x11,0x22,0x33,0xaa,0xbb,0x11,0x22,0x33,0xaa,0xbb,0x11,0x2 2,0x33,0xaa,0xbb,0x11,0x22,0x33,0xaa,0xbb,0x11,0x22,0x33,0xaa ,0xbb,0x11,0x22,0x33,0xee,0xff};//发送数据 ucharRx_Buf[RX_PLOAD_WIDTH];//接收数据//***************************************NRF24L01寄存器指令*******************************************************#define READ_REG 0x00 // 读寄存器指令 #defineWRITE_REG 0x20 // 写寄存器指令 #define RD_RX_PLOAD 0x61 // 读取接收数据指令 #define WR_TX_PLOAD 0xA0 // 写待发数据指令 #define FLUSH_TX0xE1 // 冲洗发送FIFO指令 #define FLUSH_RX 0xE2 // 冲洗接收 FIFO指令 #define REUSE_TX_PL 0xE3 // 定义重复装载数据指令#define NOP 0xFF // 保留//*************************************SPI(nRF24L01)寄存器地址****************************************************#define CONFIG 0x00 // 配置收发状态,CRC校验模式以及收发状态响应方式 #define EN_AA 0x01 // 自动应答功能设置 #define EN_RXADDR 0x02 // 可用信道设置#define SETUP_AW 0x03 // 收发地址宽度设置 #defineSETUP_RETR 0x04 // 自动重发功能设置 #define RF_CH 0x05 // 工作频率设置 #define RF_SETUP 0x06 // 发射速率、功耗功能设置 #define STATUS 0x07 // 状态寄存器 #define OBSERVE_TX 0x08 // 发送监测功能 #defineCD 0x09 // 地址检测 #define RX_ADDR_P0 0x0A // 频道0接收数据地址#defineRX_ADDR_P1 0x0B // 频道1接收数据地址 #defineRX_ADDR_P2 0x0C // 频道2接收数据地址 #defineRX_ADDR_P3 0x0D // 频道3接收数据地址 #defineRX_ADDR_P4 0x0E // 频道4接收数据地址 #defineRX_ADDR_P5 0x0F // 频道5接收数据地址 #define TX_ADDR 0x10 // 发送地址寄存器 #define RX_PW_P0 0x11 // 接收频道0接收数据长度 #define RX_PW_P1 0x12 // 接收频道1接收数据长度 #define RX_PW_P2 0x13 // 接收频道2接收数据长度 #define RX_PW_P3 0x14 // 接收频道3接收数据长度 #define RX_PW_P4 0x15 // 接收频道4接收数据长度 #define RX_PW_P5 0x16 // 接收频道5接收数据长度#define FIFO_STATUS 0x17 // FIFO栈入栈出状态寄存器设置/******************************************延时函数********************************************************///长延时 void Delay(unsigned int s) { unsigned int i,j;for(i=0;i<1000;i++)for(j=0;j<s;j++); } //短延时 voiddelay_ms(unsigned int x) { unsigned int i,j; i=0;for(i=0;i<x;i++) { j=108; while(j--); } } /************初始化5A spi***************/ void Init_SPI() { SPDAT=0; //初始化数据寄存器 SPSTAT=0XC0; //清除状态寄存器SPCTL=0XD2;//设置为主机模式主频不能超过2M //忽略SS 使能spi MSB SCLK空闲为0 第一个时钟边沿开始采集 spi通信的频率为CUP_CLK/16 } //SPDAT 读写一个字节 //TxData:要写入的字节//返回值:读取到的字节 uchar SPI_ReadWriteByte(uchar TxData){ SPDAT=TxData; //发送一个bytewhile((SPSTAT&0x80)==0); SPSTAT=0XC0; //清除状态寄存器 return SPDAT; //返回收到的数据 } //读取SPI寄存器值 //reg:要读的寄存器 uchar SPI_Read_Reg(uchar reg) { uchar reg_val; CSN = 0; //使能SPI传输SPI_ReadWriteByte(reg); //发送寄存器号reg_val=SPI_ReadWriteByte(0xFF);//读取寄存器内容 CSN = 1;//禁止SPI传输 return(reg_val); //返回状态值 } // 向寄存器REG写一个字节,同时返回状态字节reg寄存器地址 value写入的数据 uchar SPI_RW_Reg (ucharreg,uchar value) { uchar status; CSN=0;status=SPI_ReadWriteByte(reg);//发送寄存器号SPI_ReadWriteByte(value); //写入寄存器的值 CSN=1;return(status); } //写一个数据包 ucharSPI_Write_Buf(uchar reg, uchar *pBuf, uchar bytes) { ucharstatus,byte_ctr; CSN = 0;status=SPI_ReadWriteByte(reg); for(byte_ctr=0; byte_ctr<bytes;byte_ctr++) SPI_ReadWriteByte(*pBuf++); CSN = 1; return(status); } //读一个数据包 uchar SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars) { uchar status,uchar_ctr; CSN = 0;status = SPI_ReadWriteByte(reg);for(uchar_ctr=0;uchar_ctr<uchars;uchar_ctr++)pBuf[uchar_ctr]=SPI_ReadWriteByte(0xFF); CSN = 1; return(status); } /*******************************接 ***** 收 ***** 模 *****式 ***** 代 ***** 码 *************************************//*********************************************************************** *******************************/ /*函数:unsigned char nRF24L01_RxPacket(unsigned char* rx_buf) /*功能:数据读取后放如rx_buf接收缓冲区中/******************************************************************* ***********************************/ unsigned charnRF24L01_RxPacket(unsigned char* rx_buf) { // unsigned char revale=0; sta=SPI_Read_Reg(STATUS); // 读取状态寄存其来判断数据接收状况 SPI_RW_Reg(WRITE_REG+STATUS,sta); //接收到数据后RX_DR,TX_DS,MAX_PT都置高为1,通过写1来清楚中断标志 if(RX_DR) // 判断是否接收到数据{ SPI_Read_Buf(RD_RX_PLOAD,rx_buf,RX_PLOAD_WIDTH);// read receive payload from RX_FIFO bufferSPI_RW_Reg(FLUSH_RX,0xFF);//清除接受FIFO return 1;//读取数据完成标志 } return 0; }/******************************************************************* *********************************/ /*函数:voidRX_Mode(void) /*功能:数据接收配置/******************************************************************* *********************************/ void RX_Mode(void) { CE=0; //SPI_RW_Reg(FLUSH_RX,0x00);//清除接受FIFO //SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH); // Writes TX_Address to nRF24L01 SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, RX_ADDRESS, RX_ADR_WIDTH); // RX_Addr0 same as TX_Adr for Auto.Ack SPI_RW_Reg(WRITE_REG + EN_AA,0x01);//使能自动应答 Enable Auto.Ack:Pipe0 SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01); //连接通道0和地址 Enable Pipe0//SPI_RW_Reg(WRITE_REG + SETUP_RETR, 0x1a); // 500us + 86us, 10 retrans...1a SPI_RW_Reg(WRITE_REG + RF_CH, 40);//通信频率0~125 设置通信的频率 Select RF channel 40SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH); //设置接收数据长度,本次设置为2字节 SPI_RW_Reg(WRITE_REG +RF_SETUP,0X07); //0x07 TX_PWR:0dBm, Datarate:1Mbps, LNA:HCURR // 设置TX发射参数,0db增益,2Mbps,低噪声增益开启 SPI_RW_Reg(WRITE_REG + CONFIG, 0x0F);//配置基本工作模式的参数 CE=1; delay_ms(130); }//************************************串口初始化********************************************************* void StartUART( void ) { //波特率9600 TMOD=0x20;//设置定模式2 TH1=0xFD; TL1=0xFD; SM1=1; //设置串口SCON,为方式1 SM0=0; REN=1; //串行允许 TR1=1; //启动定时器EA=1; //中断 ES=1; //打开串口 }//************************************通过串口将接收到数据发送给PC端 ************************************** voidR_S_Byte(uint R_Byte) { ES=0; SBUF=R_Byte; while(TI==0); TI=0; ES=1; } /************************************主函数************************************************************/ uchar NRF24L01_Check(void) { ucharbuf[5]={0XA5,0XA5,0XA5,0XA5,0XA5}; uchar i;SPI_Write_Buf(WRITE_REG+TX_ADDR,buf,5);//写入5个字节的地址.SPI_Read_Buf(TX_ADDR,buf,5); //读出写入的地址for(i=0;i<5;i++) if(buf[i]!=0XA5) break; if(i!=5) return 1;//检测24L01错误 return 0; //检测到24L01 } void main() { uint i=0; CE=0; CSN=1; led=0; Init_SPI(); StartUART(); //串口初始while(NRF24L01_Check())//检测不到24L01 { delay_ms(500);delay_ms(500); R_S_Byte(0x11); } //接收模式代码 RX_Mode(); //接受模式 Delay(10);//防止编译警告 while(1){ if(nRF24L01_RxPacket(Rx_Buf)) { for(i=0;i<TX_PLOAD_WIDTH;i++) { R_S_Byte(Rx_Buf[i]); //发送接收到的数据到电脑 } } Delay(10); } }。

nRF24L01接收和发送的问题

nRF24L01接收和发送的问题

24L01是收发双方都需要编程的器件,这就对调试方法产生了一定的要求,如果两块一起调,那么通讯不成功,根本不知道是发的问题还是收的问题,不隐晦的说,我当时也是没理清调试思路才浪费了大半天时间看着模块干瞪眼。

正确的方法应该是先调试发送方,能保证发送正确,再去调接收,这样就可以有针对性的解决问题。

至于怎么去调发送方,先说下发送方的工作流程:•配置寄存器使芯片工作于发送模式后拉高CE端至少10us•读状态寄存器ST ATUS•判断是否是发送完成标志位置位•清标志•清数据缓冲网上的程序我也看过,大多都是成品,发送方发送-等应答-(自动重发)-触发中断。

可是这样的流程就已经把接收方给牵涉进来了,就是说一定要接收方正确收到数据并且回送应答信号之后发送方才能触发中断,结束一次完整的发送。

可是这跟我们的初衷不相符,我们想单独调试发送,完全抛开接收,这样就要去配置一些参数来取消自动应答,取消自动重发,让发送方达到发出数据就算成功的目的。

SPI_RW_Reg(WRITE_REG + EN_AA, 0x00); // 失能通道0自动应答SPI_RW_Reg(WRITE_REG + EN_RX ADDR, 0x00); // 失能接收通道0SPI_RW_Reg(WRITE_REG + SETUP_RETR, 0x00); // 失能自动重发(注:以下贴出的寄存器描述由于中文资料上有一个错误,故贴出原版英文资料)有了以上这三个配置,发送方的流程就变成了发送-触发中断。

这样就抛开了接收方,可以专心去调试发送,可是怎么样才知道发送是否成功呢,要用到另外两个寄存器,ST ATUS和FIFO_ST AT US。

这样就很清晰了,我们可以通过读取ST ATUS的值来判断是哪个事件触发了中断,寄存器4、5、6位分别对应自动重发完成中断,数据发送完成中断,数据接收完成中断。

也就是说,在之前的配置下,如果数据成功发送,那么ST ATUS的值应该为0x2e。

nrf24l01发送接收点对点 汇编程序

nrf24l01发送接收点对点 汇编程序

;延时14s子程序
YANSHI1S MOV R7,#250
YANSHI1S1 MOV R6,#250
YANSHI1S2 NOP
NOP
DJNZ R6,YANSHI1S2
DJNZ R2,DUZT1
SETB P1.7 ;CSN变高,完成一次命令
RET
START MOV P1,#0AFH ;模块待机
DJNZ R6,DL0
DJNZ R7,DL1
RET
;将58开始的单或多字节(字节数在R3中)写入芯片
XIENB MOV R0,#58H
CLR P1.7 ;SCN变低
MOV 58H,#21H ;01寄存器
MOV 59H,#03H ;0,1通道允许自动应答
MOV R3,#02H
LCALL XIENB
MOV P1.5,C ;数据送上MOSI线
SETB P1.4 ;数据移入模块
CLR P1.4
SETB P1.6 ;启动发射
MOV R7,#5
DJNZ R7,$
CLR P1.6
MOV R3,#02H
LCALL XIENB
MOV 58H,#2AH ;0A寄存器(通道0)
MOV 59H,#02H ;配置地址
DJNZ R2,XIE1B1
RET
;读芯片状态字 将芯片状态字读到5FH
DUZT MOV R2,#8
SETB P1.5
MOV R0,#70H
XIEXUN LCALL XIE1B
INC R0
DJNZ R3,XIEXUN
SETB P1.7
MOV 58H,#31H ;11寄存器
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#include <reg52.h>#include <intrins.h>typedef unsigned int uint;typedef unsigned char uchar;#define TX_ADDR_WITDH 5//发送地址宽度设置为5个字节#define RX_ADDR_WITDH 5//接收地址宽度设置为5个字节#define TX_DATA_WITDH 8//#define RX_DATA_WITDH 8#define R_REGISTER 0x00 // 读寄存器#define W_REGISTER 0x20 // 写寄存器#define R_RX_PLOAD 0x61 // 读RX FIFO有效数据,1-32字节,当读数据完成后,数据被清除,应用于接收模式#define W_TX_PLOAD 0xA0 // 写TX FIFO有效数据,1-32字节,写操作从字节0开始,应用于发射模式#define FLUSH_TX 0xE1 // 清除TX FIFO寄存器,应用于发射模式#define FLUSH_RX 0xE2 // 清除RX FIFO寄存器,应用于接收模式#define REUSE_TX_PL 0xE3 // 重新使用上一包有效数据,当CE为高过程中,数据包被不断的重新发射#define NOP 0xFF // 空操作,可以用来读状态寄存器#define CONFIG 0x00 // 配置寄存器#define EN_AA 0x01 // “自动应答”功能寄存#define EN_RX_ADDR 0x02 // 接收通道使能寄存器#define SETUP_AW 0x03 // 地址宽度设置寄存器#define SETUP_RETR 0x04 // 自动重发设置寄存器#define RF_CH 0x05 // 射频通道频率设置寄存器#define RF_SETUP 0x06 // 射频设置寄存器#define STATUS 0x07 // 状态寄存器#define OBSERVE_TX 0x08 // 发送检测寄存器#define CD 0x09 // 载波检测寄存器#define RX_ADDR_P0 0x0A // 数据通道0接收地址寄存器#define RX_ADDR_P1 0x0B // 数据通道1接收地址寄存器#define RX_ADDR_P2 0x0C // 数据通道2接收地址寄存器#define RX_ADDR_P3 0x0D // 数据通道3接收地址寄存器#define RX_ADDR_P4 0x0E // 数据通道4接收地址寄存器#define RX_ADDR_P5 0x0F // 数据通道5接收地址寄存器#define TX_ADDR 0x10 // 发送地址寄存器#define RX_PW_P0 0x11 // 数据通道0有效数据宽度设置寄存器#define RX_PW_P1 0x12 // 数据通道1有效数据宽度设置寄存器#define RX_PW_P2 0x13 // 数据通道2有效数据宽度设置寄存器#define RX_PW_P3 0x14 // 数据通道3有效数据宽度设置寄存器#define RX_PW_P4 0x15 // 数据通道4有效数据宽度设置寄存器#define RX_PW_P5 0x16 // 数据通道5有效数据宽度设置寄存器#define FIFO_STATUS 0x17 // FIFO状态寄存器//***************************************************************************** ****uchar sta; // 状态变量#define RX_DR (sta & 0x40) // 接收成功中断标志#define TX_DS (sta & 0x20) // 发射成功中断标志#define MAX_RT (sta & 0x10) // 重发溢出中断标志sbit CE=P1^5;sbit IRQ=P1^0;sbit CSN=P1^4;sbit MOSI=P1^2;sbit MISO=P1^1;sbit SCK=P1^3;sbit LED=P0^0;uchar code TX_Addr[]={0x34,0x43,0x10,0x10,0x01};uchar code TX_Buffer[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x00};uchar RX_Buffer[RX_DATA_WITDH];void _delay_us(uint x){uint i,j;for (j=0;j<x;j++)for (i=0;i<12;i++);}void _delay_ms(uint x){uint i,j;for (j=0;j<x;j++)for (i=0;i<120;i++);}//nRF24L01初始化void nRF24L01_Init(void){CE=0;//待机模式ⅠCSN=1;SCK=0;IRQ=1;}//SPI时序函数uchar SPI_RW(uchar byte){uchar i;for(i=0;i<8;i++)//一字节8位循环8次写入{if(byte&0x80)//如果数据最高位是1MOSI=1;//向NRF24L01写1else //否则写0MOSI=0;byte<<=1;//低一位移到最高位SCK=1;//SCK拉高,写入一位数据,同时读取一位数据if(MISO)byte|=0x01;SCK=0;//SCK拉低}return byte;//返回读取一字节}//SPI写寄存器一字节函数//reg:寄存器地址//value:一字节(值)uchar SPI_W_Reg(uchar reg,uchar value){uchar status;//返回状态CSN=0;//SPI片选status=SPI_RW(reg);//写入寄存器地址,同时读取状态SPI_RW(value);//写入一字节CSN=1;//return status;//返回状态}//SPI读一字节uchar SPI_R_byte(uchar reg){uchar reg_value;CSN=0;//SPI片选SPI_RW(reg);//写入地址reg_value=SPI_RW(0);//读取寄存器的值CSN=1;return reg_value;//返回读取的值}//SPI读取RXFIFO寄存器数据//reg:寄存器地址//Dat_Buffer:用来存读取的数据//DLen:数据长度uchar SPI_R_DBuffer(uchar reg,uchar *Dat_Buffer,uchar Dlen) {uchar status,i;CSN=0;//SPI片选status=SPI_RW(reg);//写入寄存器地址,同时状态for(i=0;i<Dlen;i++)Dat_Buffer[i]=SPI_RW(0);//存储数据}CSN=1;return status;}//SPI向TXFIFO寄存器写入数据//reg:写入寄存器地址//TX_Dat_Buffer:存放需要发送的数据//Dlen:数据长度uchar SPI_W_DBuffer(uchar reg,uchar *TX_Dat_Buffer,uchar Dlen){uchar status,i;CSN=0;//SPI片选,启动时序status=SPI_RW(reg);for(i=0;i<Dlen;i++){SPI_RW(TX_Dat_Buffer[i]);//发送数据}CSN=1;return status;}//设置发送模式void nRF24L01_Set_TX_Mode(uchar *TX_Data){CE=0;//待机(写寄存器之前一定要进入待机模式或掉电模式)SPI_W_DBuffer(W_REGISTER+TX_ADDR,TX_Addr,TX_ADDR_WITDH);//写寄存器指令+接收节点地址+地址宽度SPI_W_DBuffer(W_REGISTER+RX_ADDR_P0,TX_Addr,TX_ADDR_WITDH);//为了接收设备应答信号,接收通道0地址与发送地址相同SPI_W_DBuffer(W_TX_PLOAD,TX_Data,TX_DATA_WITDH);//写有效数据地址+有效数据+有效数据宽度SPI_W_Reg(W_REGISTER+EN_AA,0x01);//接收通道0自动应答SPI_W_Reg(W_REGISTER+EN_RX_ADDR,0x01);//使能接收通道0SPI_W_Reg(W_REGISTER+SETUP_RETR,0x0a);//自动重发延时250US+86US,重发10次 SPI_W_Reg(W_REGISTER+RF_CH,0);//2.4GHZSPI_W_Reg(W_REGISTER+RF_SETUP,0x07);//1Mbps速率,发射功率:0DBM,低噪声放大器增益SPI_W_Reg(W_REGISTER+CONFIG,0x0e);//发送模式,上电,16位CRC校验,CRC使能CE=1;//启动发射_delay_ms(5);//CE高电平持续时间最少10US以上}//检测应答信号uchar Check_Ack(void)sta=SPI_R_byte(R_REGISTER+STATUS);//读取寄存状态if(TX_DS||MAX_RT)//如果TX_DS或MAX_RT为1,则清除中断和清除TX_FIFO寄存器的值{SPI_W_Reg(W_REGISTER+STATUS,0xff);CSN=0;SPI_RW(FLUSH_TX);//如果没有这一句只能发一次数据,大家要注意CSN=1;return 0;}elsereturn 1;}void main(void){uchar i;P0=0xff;//初始化IO口P1=0xff;P2=0xff;P3=0xff;_delay_us(100);nRF24L01_Init();//NRF24L01初始化while(1){for(i=0;i<TX_DATA_WITDH-1;i++)//发送7次数据{nRF24L01_Set_TX_Mode(&TX_Buffer[i]);//发送数据while(Check_Ack());//等待发送完成LED=~LED;}}}。

相关文档
最新文档