第四章图形认识初步(教案)

合集下载

七年级数学上第四章图形的初步认识单元教学计划

七年级数学上第四章图形的初步认识单元教学计划

七年级数学上第四章图形的初步认识单元教学计划第四章:图形认识初步本章介绍了多种图形,包括立体图形和平面图形。

其中,点、线、角等是最基本的图形。

通过自主探究和实例,我们可以探索“两点确定一条直线”和“两点间线段最短”的性质,认识角以及角的表示方法、度量、画法、比较、余角和补角等。

此外,我们还可以探索比较线段长短的方法和线段中点。

这些概念都是认识复杂图形的基础,因此,本章在初中数学中占有重要的地位。

本章涉及到的主要数学思想和方法包括分类讨论思想、方程的思想和由特殊到一般的思想。

分类讨论思想可以解决直线上的点点位置不确定的问题,或者从公共端点出发的一条射线在角内或角外的不确定问题。

方程的思想则可以用于涉及线段和角度的计算中,通过列方程求解,可以清楚简捷地表示出几何图形中的数量关系。

由特殊到一般的思想则主要体现在依靠图形寻找规律的题中。

本章的教学重点包括角的比较与度量、余角和补角的概念和性质,以及直线、射线、线段和角的概念和性质。

教学难点则在于正确表达概念和性质的几何语言,以及建立空间观念。

本章的教学目标包括体验、感受和认识以生活中的事物为原型的几何图形,初步了解从具体事物中抽象出几何概念的方法,以及特殊与一般的辩证关系。

我们还可以画出从不同方向看一些基本几何体以及它们的简单组合得到的平面图形,了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象和制作立体模型。

通过丰富的实例,我们可以进一步认识点、线、面、体,理解它们之间的关系,并在平面图形和立体图形相互转换的过程中,初步建立空间观念,发展几何直觉。

此外,我们还可以逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形。

四、主要教学方法、手段、选用的教学媒体本章教学采用小组合作、讲授法和练法相结合的教学方法。

在教学过程中,将使用小黑板和班班通等多种教学媒体辅助教学。

五、课时安排本章教学时间约为16课时,具体分配如下:4.1几何图形约4课时,主要介绍基本几何图形的定义、性质及分类。

初中数学《第四章 图形认识初步》教学设计

初中数学《第四章 图形认识初步》教学设计

初中数学《第四章图形认识初步》教学设计第四章图形认识初步单元要点分析教学内容本章主要内容有多姿多彩的图形,直线、射线、线段,角的度量,角的比较与运算.教材从生活中常见的立体与平面图形入手,通过实例,在丰富的现实情境中,使学生经历对几何体的研究的数学活动过程,认识一些常见的几何体及点、线、面的一些特征和性质;通过裁剪、展开、制作及从不同方向看等活动,在几何体与平面图形的转换过程中发展学生的空间观念;通过实例,在丰富的现实情境中,使学生经历对简单的平面图形直线、射线、线段与角的研究的数学活动过程,通过动手画图、线段的大小比较及角的度量、比较与运算等活动过程,理解并掌握这些图形的一些简单性质,感受丰富多彩的图形世界,并为今后进一步学习平面几何知识奠定基础.三维目标1.知识与技能(1)经历探究物体的形状与几何体的关系过程,•能从现实物体中抽象得出立体图形.(2)经历立体图形与平面图形的转换过程,•掌握一些简单的立体图形与平面图形的互相转化的技能.(3)经历对点、线、面、体关系的研究的数学活动过程,•建立平面图形与立体图形的联系.(4)经历画图等数学活动过程,掌握直线和角的一些简单性质;掌握直线、•射线、线段和角的表示方法;掌握角的度量方法.(5)在现实情境中,探索两条线段、两个角的比较方法及比较的结果,•探索线段与线段之间、角与角之间的数量关系.(6)认识线段的等分点,角的平分线、角角和补角的概念.2.过程与方法(1)会用掌握的几何体知识描述现实物体的形状,•在探索立体图形与平面图形的关系中,发展空间观念.(2)通过对本章的学习,学会在具体的现实情境中,抽象概括出数学原理.(3)学会在解决问题的过程中,进行合理的想象,进行简单的、•有条理的思考.(4)能在现实物体中,发现立体图形和平面图形.(5)能在具体的现实情境中,发现并提出一些数学问题.(6)通过小组合作、动手操作、实验验证的方法解决数学问题.3.情感态度与价值观.(1)积极参与数学活动的过程,敢于面对数学活动中的困难,•并能独立地或通过小组合作的方法,运用数学知识克服困难,解决问题.(2)通过对本章的学习,培养和提高抽象概括能力和空间想象能力,•体验数学活动中探索性和创造性,感受丰富多彩的图形世界.重、难点与关键1.重点:(1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;•初步建立空间观念.(2)掌握两点确定一条直线的性质,掌握两点之间线段最短的性质,•会用符号表示直线、射线和线段,会比较线段的大小,会画一条线段等于已知线段,了解两点距离的定义.(3)会用符号表示一个角,学会度量一个角,掌握余角和补角的性质,•理解角的平分线的定义,会比较两个角的大小,确定几个角的运算关系.2.难点:(1)立体图形与平面图形之间的互相转化.(2)从现实情境中,抽象概括出图形的性质,•用数学语言对这些性质进行描述.3.关键:(1)从实际出发,用直观的形式,让学生感受图形的丰富多彩,•激发学生学习的兴趣.(2)结合具体问题,让学生感受到学习空间与图形知识的重要性和必要性.课时划分4.1 多姿多彩的图形 2课时4.2 直线、射线、线段 2课时4.3 角 4课时数学活动 1课时回顾与思考 2课时教学设计4.1 多姿多彩的图形4.1.1 几何图形1.知识与技能(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,•探索平面图形与立体图形之间的关系.2.过程与方法(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力.(2)经历问题解决的过程,提高解决问题的能力.3.情感态度与价值观(1)积极参与教学活动过程,形成自觉、认真的学习态度,•培养敢于面对学习困难的精神,感受几何图形的美感;(2)倡导自主学习和小组合作精神,在独立思考的基础上,•能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性.重、难点与关键1.重点:从现实物体中抽象出几何图形,•把立体图形转化为平面图形是重点.2.难点:立体图形与平面图形之间的转化是难点.3.关键:从现实情境出发,通过动手操作进行实验,•结合小组交流学习是关键.教学过程一、引入新课1.打开电视,播放一个城市的现代化建筑,学生认真观看.2.提出问题:在同学们所观看的电视片中,有哪些是我们熟悉的几何图形?二、新授1.学生在回顾刚才所看的电视片后,充分发表自己的意见,•并通过小组交流,补充自己的意见,积累小组活动经验. 2.指定一名学生回答问题,并能正确说出这些几何图形的名称.学生回答:有圆柱、长方体、正方体等等.教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征.3.立体图形的概念.(1)长方体、正方体、球、圆柱、圆锥等都是立体图形.(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)(3)用幻灯机放映课本4.1-4的幻灯片(或用教学挂图).(4)提出问题:在这个幻灯片中,包含哪些简单的平面图形?(5)探索解决问题的方法.①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念.长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形.注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形.5.立体图形和平面图形的转化.(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,•让学生从不同方向看.(2)提出问题.从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?(3)探索解决问题的方法.①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形.②进行小组交流,评价各自获得的结论,得出正确结论.③指定三名学生,板书画出的图形.6.思考并动手操作.(1)学生活动:在小组中独立完成课本第119页的探究课题,然后进行小组交流,评价.(2)教师活动:教师对学生完成的探究课题给出适当、正确的评价,•并对学生给予鼓励,激发学生的探索热情.7.操作试验.(1)学生活动:让学生把准备好的墨水瓶包装盒裁剪并展开,•并在小组中进行交流,得出一个长方体它的平面展开图具有的一个特征:多样性.许多立体图形都能展开成平面图形.(2)学生活动:观察展开图,看看它的展开图由哪些平面图形组成?•再把展开的纸板复原为包装,体会立体图形与平面图形的关系.三、课堂小结1.本节课认识了一些常见的立体图形和平面图形.2.一个立体图形从不同方向看,可以是一个平面图形;•可以把立体图形进行适当的裁剪,把它展开成平面图形,或者把一个平面图形复原成立体图形,即立体图形与平面图形可以互相转换.注:小结可采取师生互动的方式进行,由学生归纳,教师进行评价、补充.四、作业布置1.课本第123页至第124页习题4.1第1~6题.2.选用课时作业设计.课时作业设计一、填空题.1.如下图所示,这些物体所对应的立体图形分别是:___________.二、选择题.2.如下图所示,每个图片都是由6个大小相同的正方形组成的,其中不能折成正方体的是().A B C D3.如下图所示,经过折叠能围成一个棱柱的是().A.①② B.①③ C.①④ D.②④三、解答题.4.桌上放着一个圆柱和一个长方体[如下图(1)],请说出下列三幅图[如下图(2)]分别是从哪个方向看到的.5.如下图,用4个小正方体搭成一个几何体,分别画出从正面、•左面和上面看该几何体所得的平面图形.6.如下图,动手制作:用纸板按图画线(长度单位是mm),沿虚线剪开,做成一个像装墨水瓶纸盒那样的长方体模型.答案:一、1.正方体、圆柱、圆锥、球、棱柱二、2.C 3.D三、4.分别是从左面、上面和正面看到的. 5~6.略4.1.1几何图形一、教学目标知识与技能通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.过程与方法:(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力.(2)经历问题解决的过程,提高解决问题的能力.情感态度与价值观:从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动,主动与他人合作交流的意识。

2023七年级数学上册第4章图形的初步认识4.5最基本的图形——点和线1点和线教案(新版)华东师大版

2023七年级数学上册第4章图形的初步认识4.5最基本的图形——点和线1点和线教案(新版)华东师大版
- 各小组的成果展示具有深度和广度,能够涵盖点和线的不同方面和应用,表明学生对知识点有全面的理解。
3. 随堂测试:
- 学生在随堂测试中能够准确回答问题和完成题目,表明他们对点和线的基本概念和性质有扎实的掌握。
- 学生能够运用所学的点和线的基本概念和性质解决实际问题,显示出良好的应用能力和解决问题的能力。
- 学生在测试中表现出良好的时间管理和答题策略,能够有效地完成题目。
4. 作业完成情况:
- 学生能够按时完成作业,作业质量符合要求,表明他们对课堂所学的内容有深入的理解和掌握。
- 学生在作业中能够正确运用点和线的基本概念和性质,解决实际问题,显示出良好的应用能力和解决问题的能力。
2. 对于难点内容,可以采取以下策略:
- 通过引导学生观察和分析实际问题,让学生亲身体验和感知点和线的性质,从而更好地理解和运用。
- 提供一些典型的例题和练习题,让学生通过动手操作和思考,逐步掌握解决实际问题的方法和技巧。
- 鼓励学生积极参与讨论和交流,引导学生运用逻辑推理和数学思维来解决问题,提高其解决问题的能力。
本节课的内容与学生的日常生活紧密相关,便于学生理解和接受。教学过程中,教师需要结合课本中的例题和练习题,让学生通过观察、思考、动手操作等方式,掌握点、线的基本概念和性质。同时,教师还需注意引导学生运用所学的知识解决实际问题,提高学生的数学应用能力。
在教学过程中,教师应注重培养学生的观察能力、思考能力和动手操作能力。通过本节课的学习,学生应能掌握点、线的基本概念和性质,并能在实际问题中运用这些知识。
设计课堂互动环节,提高学生学习点和线的积极性和主动性。
(二)课堂导入(预计用时:3分钟)
激发兴趣:
提出问题或设置悬念,引发学生的好奇心和求知欲,引导学生进入点和线的学习状态。

教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形

教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形

教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形《多姿多彩——几何图形》教案设计【教材分析】多姿多彩的图形中的几何图形,是人教版教材《数学》七年级上册第四章第一节的第一课时。

所含内容在小学阶段学生已有了感性认识,本课时以现实背景为素材,让学生亲自经历将实际问题抽象成数学模型的过程,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对空间图形的认识和感受。

本节课的知识是进一步学习平面几何以及立体几何的基础,具有承上启下的作用。

本节课是学习空间与图形的第一课时需要在情感上激发学生兴趣,培养学生学习数学的热情。

【教学目标】知识与技能:通过观察生活中的大量图片或实物,能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能认识一些简单几何体,能用语言描述它们的基本特性,并能对它们进行简单的分类;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系.过程与方法:经历探索平面图形与立体图形之间的关系,发展空间观念,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对几何图形的感性认识;培养动手操作能力,培养观察、抽象、归纳、概括、判断等思维能力以及分类的数学思想。

情感态度与价值观:经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩;激发对学习空间与图形的兴趣;通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识。

【教学重点】简单几何体的识别与分类。

【教学难点】从具体实物中抽象出几何图形及常见几何体的分类。

【教学关键】从现实情境出发,通过动手操作进行实验,结合小组交流学习是关键。

【教学方法】情境教学、实践探究、多媒体演示相结合。

【教学资源】多媒体辅助教学;圆柱、圆锥、正方体、长方体、棱柱、棱锥等简单几何体的实物和模型;三角形、正方形、长方形、正六边形纸片;牙签、胶泥等。

【教学过程】(一)创设情景,设疑导入师:同学们,我们的世界是五彩缤纷、绚丽多彩的。

新人教版初中数学七年级上册《第四章几何图形初步:4.3角》公开课教案_2

新人教版初中数学七年级上册《第四章几何图形初步:4.3角》公开课教案_2
本节分两课时,第一课时是角的认识,第二课时是关于角的度分秒的运算,这里要讲的是第一课时。角的概念,学生在小学已经有粗浅的认识,本节在已有知识基础上,进一步认识它,透析它的组成和特征。
四、教学方法及教学思路
本人在农村中学任教,面对的都是乡土气息浓厚的农村孩子。由于诸多方面的原因,造成这样的现状:绝大多数学生基础薄弱,没有学习习惯,学习品质、竞争意识差,更没有学习中知难而上的信心和毅力。所以面对这样的教育主体,我们在激发学生的学习兴趣、引导探究发现的同时,一定要注意学生的听课状态,降低难度,干启不发时,直接入主题。同时不能过分强调和主张学生课后的自主学习,因为绝大多数学生没有自主学习的习惯和能力。所以很多技能需在课上培养、训练和提高。我这里的教学,接近“一对一”的教,“手把手”的学。很多问题课前就有预见,准备好解决策略和途径。
中学数学(角)
一、教案背景
课时:1课时
二、教学课题
1.教养方面:
通过系统学习,进一步认识角。
通过实物和具体模型,了解从物体外形抽象出来的平面图形。
初步认识图形,培养学生对学习图形与几何的兴趣,建立数学来源于生产、生活,服务于生产、生活的理念。
2.教育方面:
通过模型理解角的两种描述方法。
经历角的画法,进一步理解、认识角,提高画图技能,增强对图形的理解,为今后几何的学习做好准备。
能准确找出和表示简单至复杂图形中的角。
通过强化、重复训练,夯实角的认识,提高学习几何的信心。
三、教材分析
人教版七年级数学(上)《第四章 图形认识初步》第三部分的第一节 《角》的第一课时。
本章是图形与几何的起始章,是图形学习的第三学段。在本章,要进一步丰富学生对几何图形的感性认识,还要引导学生逐步认识一些基本图形的特征和性质。但这并不意味着要用严格的逻辑推理方式来展开学习,还是要强调在实际背景中直观理解图形的概念和特征,经历探索图形性质的过程。

第四章图形认识初步学案

第四章图形认识初步学案

第四章图形认识初步4.1.1几何图形(第一课时)年级: 七年级科目:数学执笔: 任旭审核:内容:第116—118页课型: 新课时间:2011-7学习目标1、通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2、能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.3、从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动,主动与他人合作交流的意识。

学习重点:识别简单几何体学习难点:从具体事物中抽象出几何图形学习过程一、探究与思考1.请同学们回答,小学时我们学过哪些图形?比如:___________________等等归纳:几何图形的定义是________________________。

立体图形的定义是________________________。

平面图形的定义是________________________。

2.几何图形的分类几何图形有很多,比如:棱锥、球、棱柱等立体图形,以及学过的三角形、梯形等平面图形圆柱柱体棱柱圆锥立体图形锥体棱锥球体几何图形长方形平面图形三角形圆……二、巩固训练1.先让我们来认识几种生活中常见的几何体,请在如图所示的横线上填写几何体的名称。

2.下列图形不是立体图形的是()A.球 B.圆柱 C.圆锥 D.圆3.下列立体图形中属于棱柱的是( )4.下列各图形都属于锥体的一组是()三、 学习检测 1. 判断题:A.每个棱锥的顶点只有一个。

( )B.棱柱没有顶点. ( )C.侧面上的棱都是侧棱。

( )D.长方体是棱柱,但正方体不是棱柱 ( )2.下列有关圆柱、圆锥相同点和不同点的描述错误的是( )A.围成圆柱、圆锥的面都是有曲面。

B.两者都有一个面是圆形的。

2022年人教版七年级上册数学第四章几何图形初步单元教案

2022年人教版七年级上册数学第四章几何图形初步单元教案

第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形◇教学目标◇【知识与技能】1.通过实物和具体模型,认识从实物中抽象出来的几何图形;2.了解立体图形和平面图形的概念,并能归纳常见的立体图形和平面图形.【过程与方法】经历探索立体图形与平面图形之间的关系,发展空间观念.【情感、态度与价值观】体会把实物抽象出几何图形的过程.◇教学重难点◇【教学重点】识别一些基本几何图形.【教学难点】认识从物体外形抽象出来的几何图形.◇教学过程◇一、情境导入观察下图中的“鸟巢”,你能抽象出熟悉的几何图形吗?二、合作探究探究点立体图形与平面图形典例1下列图形中不是立体图形的是()A.四棱锥B.长方形C.长方体D.正方体[解析]几何图形的各部分不都在同一平面内的图形叫立体图形,几何图形的各部分都在同一平面内的图形叫平面图形.由定义可知A,C,D均为立体图形.[答案] B下列各组图形中都是平面图形的一组是()A.三角形、圆、球、圆锥B.点、线段、数学书的封面、长方体C.点、三角形、四边形、圆D.点、直线、线段、正方体[答案] C典例2将下列的几何体进行分类,并说出每个几何体的名称.[解析]分别根据柱体、锥体、球体的定义进行分类.[答案]柱体有(1)(2)(4)(7);锥体有(5)(6);球体有(3).(1)长方体(四棱柱);(2)三棱柱;(3)球;(4)圆柱;(5)圆锥;(6)四棱锥;(7)六棱柱.将下列几何体分类,柱体有;锥体有.(只填序号)[答案]①②③⑤⑥三、板书设计认识几何图形立体图形{柱体{棱柱圆柱锥体{棱锥圆锥台体{棱台圆台球体:球◇教学反思◇本节课的内容较简单,课堂上通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识;通过自主探究活动,让学生感受图形的形状特点,提升学生的空间想象能力.第2课时折叠、展开与从不同方向观察立体图形◇教学目标◇【知识与技能】1.会识别从正面、左面、上面看物体所得的平面图形;2.会画一些常见几何体及简单组合体从正面、左面、上面看物体所得的平面图形;3.直观认识简单立体图形的平面展开图.【过程与方法】在平面图形和立体图形的相互转化中,初步发展空间观念,发展几何直觉.【情感、态度价值观】通过探讨现实生活中的实物制作,激发学生学习的热情.【情感、态度与价值观】培养敢于面对困难的精神,感受几何图形的美感.◇教学重难点◇【教学重点】识别、画出简单几何体从正面、左面、上面看物体所得的平面图形,了解直棱柱、棱锥、圆柱、圆锥的平面展开图.【教学难点】由从正面、左面、上面看物体所得的平面图形,还原为实物图,根据平面展开图想象相应的几何体.◇教学过程◇一、情境导入对于一些立体图形的问题,常把它们转化为平面图形来研究处理,从不同的方向看立体图形,往往会得到不同形状的平面图形.例如放在桌面上的茶杯,从不同侧面得到不同的图形,你能用学过的诗句描述这种现象吗?二、合作探究探究点1会从正面、左面、上面看物体所得的平面图形典例1如图的几何体是由一个正方体切去一个小正方体形成的,从正面看得到的图形是()[答案] D下列水平放置的四个几何体中,从正面看得到的图形与其他三个不相同的是()[答案] D典例2一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小方块的个数,则从正面看到几何体的形状图是()[答案] D探究点2会画从正面、左面、上面看物体所得的平面图形典例3如图是由4个大小相等的正方体搭成的几何体,你能画出从正面、左面、上面看得到的平面图形吗?[解析]从正面、左面、上面看得到的平面图形分别如图所示:探究点3探究立体图形的展开图典例4如图所示,下列四个选项中,不是正方体表面展开图的是()[答案] C三、板书设计折叠、展开与从不同方向观察立体图形1.从不同的方向观察立体图形2.立体图形的展开图◇教学反思◇本节课的内容有点难度,主要是培养学生的空间观念和空间想象力.应鼓励学生多动手画图,让学生自主探索立体图形与平面图形之间的对应关系.4.1.2点、线、面、体◇教学目标◇【知识与技能】1.认识点、线、面、体的几何特征,感受它们之间的关系;2.探索点、线、面运动后形成的几何图形.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感、态度与价值观】培养学生积极主动的学习态度和自主学习的方式.◇教学重难点◇【教学重点】了解点、线、面、体是组成几何图形的基本元素,认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】探索点、线、面运动后形成的几何图形.◇教学过程◇一、情境导入如图是一个长方体,它有几个面?面和面相交的地方形成了几条棱?棱和棱相交成几个顶点?二、合作探究探究点1从静态角度认识点、线、面、体典例1如图所示的几何体是由几个面围成的?面与面相交成几条线?它们是直的还是曲的?[解析] 从图中可以看出该几何体由4个面组成,4个面相交成6条线,有2条是曲的.圆柱由 面围成,它有 个底面,是平的,有 个侧面,是曲的,底面与侧面相交形成的线有 条,是 (填“直的”或“曲的”). [答案] 3 2 1 两 曲的探究点2 从动态角度认识点、线、面、体典例2 将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为 ()[解析] 圆柱是由一长方形绕其一边长旋转而成的;圆锥是由一直角三角形绕其直角边旋转而成的;C 中该几何体是由直角梯形绕其下底旋转而成的;D 中该几何体是由直角三角形绕其斜边旋转而成的. [答案] D如图所示的图形绕虚线旋转一周,所形成的几何体是 ( )[答案] B 三、板书设计点、线、面、体点、线、面、体{定义关系{静态关系动态关系◇教学反思◇本节课在学生已有的数学知识基础上,由学生自己观察、发现、探究从对点的认识到对线、面、体的进一步认识,使学生经历运用图形描述现实世界的过程,进一步发展学生的抽象思维能力.4.2直线、射线、线段第1课时直线、射线、线段的概念◇教学目标◇【知识与技能】理解直线、射线、线段的概念及它们的联系与区别,掌握它们的表示方法.【过程与方法】能在现实情境中,进行抽象的数学思考,提高抽象概括能力.【情感、态度与价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】理解直线、射线、线段的概念、表示方法及它们的联系与区别.【教学难点】直线、射线、线段的表示方法;实现文字、图形、符号三种语言的相互转化.◇教学过程◇一、情境导入我们在小学已经学过线段、射线和直线,你能说说它们的区别和联系吗?二、合作探究探究点1探究直线的性质典例1下列语句中正确的个数是 ()①延长直线AB;②延长射线OA;③在线段AB的延长线上取一点C;④延长线段BA至C,使AC=AB.A.1个B.2个C.3个D.4个[答案] B探究点2线段在生活中的应用典例2我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州——宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印制的不同种类的火车票为()A.6种B.15种C.20种D.30种[解析]车票需要考虑往返情况,故有2(1+2+3+4+5)=30.[答案] D乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要制定种不同的票价.[答案]10三、板书设计直线、射线、线段的概念直线、射线、线段{直线:无端点,无长度射线:一端点,无长度线段:两端点,有长度◇教学反思◇本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象,教师在教学时要体现新课程的三维目标,并在有效地利用学生已有的旧知来引导学生学习新知.第2课时线段的比较◇教学目标◇【知识与技能】1.了解尺规作图的概念,会用尺规作图作一条线段等于已知线段;了解度量线段的两种方法,对线段进行大小比较.2.理解线段中点的概念,利用和、差、倍、分关系计算线段的长度.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.◇教学重难点◇【教学重点】线段的大小比较,利用和、差、倍、分关系计算线段的长度.【教学难点】线段的等分点表示方法及运用.◇教学过程◇一、情境导入小明和小华在比身高,以下是他们的对话:小明:“我身高1.5 m.”小华:“我身高1.53 m,比你高3 cm.”怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?二、合作探究探究点1尺规作图典例1如图,已知线段a,b,c(a>b),用圆规和直尺画线段,使它等于a-b+2c.[解析]如图所示:线段AE=a-b+2c.探究点2探索比较线段长短的方法典例2A,B,C三点在同一直线上,线段AB=5 cm,BC=4 cm,那么线段AC的长度是()A.1 cmB.9 cmC.1 cm或9 cmD.以上答案都不对[解析]第一种情况:C点在AB之间上,故AC=AB-BC=1 cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9 cm.[答案] C三、板书设计线段的比较线段的长短比较{度量法叠合法◇教学反思◇教师要尝试让学生自主学习,优化课堂数学的反馈与评价,通过评价激发学生的求知欲,坚定学生学习的自信心.第3课时线段的性质◇教学目标◇【知识与技能】1.掌握“两点之间,线段最短”的性质,并能熟练应用;2.理解两点的距离,并能计算线段中两点的距离.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】掌握“两点之间,线段最短”的性质及应用.【教学难点】两点的距离定义及计算.◇教学过程◇一、情境导入如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.二、合作探究探究点1探究线段性质典例1如图所示,设A,B,C,D为4个村庄,现在需要在四个村庄中间建一个自来水中心,请你确定一个点,使这4个村庄的居民到该中心的距离之和最小.[解析]如图,连接AC,BD交于O点,此时距离之和AC+BD为最小.如图所示,A,B是两个村庄,若要在河边l上修建一个水泵站往两村输水,问水泵站应修在河边的什么位置,才能使铺设的管道最短,并说明理由.[解析]如图所示,根据两点之间,线段最短,连接AB,交l于O点,则O点为水泵站位置.“两点之间,线段最短”这一定理在生活中有许多应用,例如修高速路时,隧道将路变直;铺水管时,走最短的路线等.探究点2两点间的距离典例2已知线段AB=10 cm,点C在直线AB上,试探讨下列问题:(1)是否存在一点C,使它到A,B两点的距离之和等于8 cm?并说明理由;(2)是否存在一点C,使它到A,B两点的距离之和等于10 cm?若存在,它的位置是唯一的吗?(3)当点C到A,B两点距离之和等于20 cm,试说明点C的位置,并举例说明.[解析](1)根据两点之间,线段最短,AC+BC最短距离为10 cm,故不存在合条件的点.(2)存在,这样的点不唯一,线段AB上任意一点均满足条件.(3)存在,在A、B两点外5 cm处的点均满足条件.三、板书设计线段的性质1.线段性质:两点之间线段最短2.两点的距离:连接两点间的线段的长度,叫做这两点间的距离◇教学反思◇本节课通过引导学生主动参与学习过程,探究出线段的性质,从中培养学生动手和合作交流的能力,解决生活中的数学问题是为了进一步巩固两点之间的距离的意义,渗透数形结合思想解决线段长问题,渗透分类讨论思想,训练学生思维严谨性.4.3角4.3.1角◇教学目标◇【知识与技能】1.从实例中建立角的概念,从静态和动态两方面理解角的形成,掌握角的两种定义形式;2.掌握角的四种表示方法,角的度量单位及其换算.【过程与方法】提高学生的识图的能力,学会用运动变化的观点看问题.【情感、态度与价值观】保持学习兴趣,养成积极探索的精神和合作意识,感受数学的价值.◇教学重难点◇【教学重点】角的概念与角的表示方法.【教学难点】角的度量单位及其换算.◇教学过程◇一、情境导入时钟的时针、分针组成的形状是?二、合作探究探究点1探究角的定义及表示方法典例1看图解答下列问题:(1)以A为顶点共有几个角?如何表示?(2)以D为顶点共有几个角?如何表示?(3)图中能用一个大写字母表示的角有几个?分别是哪些角?∠BAC能用∠A表示吗?为什么?(4)图中共有几个角?[解析](1)以A为顶点共有3个角,分别是∠3,∠4,∠BAC.(2)以D为顶点共有8个角,分别是∠5,∠6,∠BDA,∠7,∠EDC,∠8,∠ADG,∠BDG.(3)能用一个大写字母表示的角有2个,分别是∠B,∠C;∠BAC不能用∠A表示,因为以A为顶点的角不止一个角.(4)图中共有17个角.探究点2角的度量典例2(1)填空:①57.18°=度分秒;②17°31'48″=度.(2)解答:38°15'与38.15°相等吗?如不等,谁大?[解析](1)①571048②17.53(2)因为38.15°=38°9',38°9'<38°15',所以38°15'大.(1)36.33°可化为()A.36°30'3″B.36°33'C.36°30'30″D.36°19'48″(2)15°24'36″=°.[答案](1)D(2)15.41°【技巧点拨】用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位乘以进率;而小单位化大单位要除以进率.三、板书设计角角{角的概念角的表示方法度、分、秒的换算◇教学反思◇通过本节课的学习,学生做到了以下三个方面:首先,理解角的定义并掌握角的四种表示方法.其次,能够熟练进行度、分、秒的换算,为接下来角的和差运算打下良好的基础.最后,形成严谨的学习态度.4.3.2角的比较与运算◇教学目标◇【知识与技能】1.掌握角的大小比较方法和角的和差运算;2.理解角平分线的定义及表示方法并能在实际情景中应用.【过程与方法】经历比较角的大小、用量角器画角平分线、用折纸法确定角平分线的过程,积累活动经验,培养动手操作能力.【情感、态度与价值观】让学生认识到用新知识构建新意义的过程,增强学生学习数学的愿望和信心,培养学生爱思考,善于交流的良好的学习习惯.◇教学重难点◇【教学重点】理解角平分线的定义.【教学难点】角平分线的定义、表示及应用.◇教学过程◇一、情境导入前面我们已经学习了比较两条线段的方法,那么怎样比较两个角的大小呢?二、合作探究探究点1角的大小比较典例1如图,射线OC,OD分别在直角∠AOB的内部,外部,则下列各式正确的是()A.∠AOB<∠BOCB.∠AOB=∠CODC.∠AOB<∠AODD.∠BOC>∠DOC[解析]∠BOC在∠AOB的内部,所以∠AOB>∠BOC,A错误;∠AOB与∠COD无重叠的边,∠AOB在∠AOD的内部,所以∠AOB<∠AOD,C正确;同理可得D错误.[答案] C探究点2探究角的和差运算典例2计算:(1)65°53'26″+37°14'53″;(2)106°27'30″-98°25'42″;(3)23°25'24″×4;(4)102°48'21″÷3.[解析](1)65°53'26″+37°14'53″=102°8'19″.(2)106°27'30″-98°25'42″=8°1'48″.(3)23°25'24″×4=93°41'36″.(4)102°48'21″÷3=34°16'7″.计算:(1)45°4'+2°58'=;(2)180°-72°55'=;(3)108°×5=;(4)180°26'÷5=.[答案](1)48°2'(2)107°5'(3)540°(4)36°5'12″探究点3探究角平分线的定义及表示典例3如图,OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,如果∠AOE =130°,求∠BOD 的度数.[解析] 因为OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,所以∠COB =12∠AOC ,∠COD =12∠COE ,所以∠BOD =∠COB +∠COD =12(∠AOC +∠COE )=12∠AOE =65°.三、板书设计角的比较与运算角的比较与运算{角的大小比较角的和差运算角平分线的定义及相关计算◇教学反思◇在讲授知识的过程中必须对旧的知识进行适当的复习,使学生能对角的知识有一个更深的记忆.在角的形象比较中,要努力引导学生的思维方向.重叠法是一个难点,但此法比较适用于实际中的比较.对于角度的计算要设计各个类型的教学.4.3.3余角和补角◇教学目标◇【知识与技能】1.掌握余角、补角的定义、性质及应用;2.理解方位角的意义,会画方位角.【过程与方法】经历余角、补角性质的推导和应用过程,初步掌握图形语言与符号语言之间的相互转化,进一步提高识图能力,发展空间观念.【情感、态度与价值观】通过互余、互补性质的学习过程,培养善于观察、独立思考、合作交流的良好学习习惯.◇教学重难点◇【教学重点】方位角的辨析与应用.【教学难点】余角、补角的性质及应用.◇教学过程◇一、情境导入知识回顾(1)叙述直角、平角的概念.(2)画出直角、平角的图形.二、合作探究探究点1探究余角、补角的性质典例1点A,O,B在一直线上,射线OD,OE分别平分∠AOC和∠BOC.(1)图中互余的角有对;(2)∠3的补角是.[解析](1)由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对;(2)∠3的补角是∠AOE.[答案](1)4(2)∠AOE探究点2角的计算还多1°,求这个角.典例2一个角的补角与这个角的余角的和是平角的34×180+1,解得[解析]设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,则(90-x+180-x)=34x=67.答:这个角为67°.,则这个角的度数是.一个角的补角与它的余角的2倍的差是平角的13[答案]60°探究点3方位角典例3如图,O点是学校所在位置,A村位于学校南偏东42°方向,B村位于学校北偏东25°方向,C村位于学校北偏西65°方向,在B村和C村间的公路OE(射线)平分∠BOC.(1)求∠AOE的度数;(2)公路OE上的车站D相对于学校O的方位是什么?(以正北、正南方向为基准)[解析](1)因为A村位于学校南偏东42°方向,所以∠1=42°,则∠2=48°.因为C村位于学校北偏西65°方向,所以∠COM=65°.因为B村位于学校北偏东25°方向,所以∠4=25°,所以∠BOC=90°.因为OE(射线)平分∠BOC,所以∠COE=45°,∠EOM==20°,所以∠AOE=20°+90°+48°=158°.(2)由(1)可得∠EOM=20°,则车站D相对于学校O的方位是北偏西20°.三、板书设计余角和补角余角和补角{余角、补角的性质余角、补角的计算方位角◇教学反思◇对于七年级学生来说,他们在生活中已有一定的确定位置的经验,方位角的概念、方位角的表示是学生在小学就有所了解的,但根据题意画出方位角以及运用方位角的知识确定点的方位是学生不熟悉的.。

华东师大版七年级数学上册第四章图形的初步认识优秀教案

华东师大版七年级数学上册第四章图形的初步认识优秀教案

华东师大版七年级数学上册第四章图形的初步认识优秀教案华东师大版七年级数学上册第四章图形的初步认识优秀教案4.1生活中的立体图形教学目标知识技能目标能把生活中的空间与图形转化为数学问题,初步认识图形的分类.过程性目标1.通过观察,使学生对身边的立体图形有初步的感受;2.提高空间想象力,培养好奇心和求知欲,激发学习几何的热情.教学过程一.创设情境师: 同学们, 不知你们有没有认真地观察过我们生活的周围,如果你认真观察的话,你会发觉我们周围的物体的形状是千姿百态的.其实这些美好的事物,跟我们的数学有很大的联系,因为它包含着许多图形的知识.我们生活在三维的世界中,随时随地看到的和接触到的物体都是立体的.有些物体,像石头、植物等呈现出极不规则的奇形怪状;同时也有许多物体具有较为规则的形状.师: 请同学举出一些生活中的立体图形.比一比谁想出的图形最多〔由学生答复,教师总结〕.生: 橙子、苹果、西瓜、菠萝等;其它,还有人类制造的:中国传统建筑、钟楼、书、蛋筒冰湛淋等等.二.归纳探究师: 请同学认真观察上面的图形,想一想,你能发觉这些物体与以下图中的立体图形的关系吗?请学生答复:比拟一下这些图形,看看这些图形有什么相同的地方,有什么不相同的地方?教师归纳:如图1.图2所表示的立体图形我们把它叫做柱体;图3.图5所表示的立体图形我们把它叫做锥体, 图4所表示的立体图形我们把它叫做球体.图1和图2.图3和图5之间还有肯定的差异.图1表示的图形我们把它叫做圆柱.图2表示的图形叫做棱柱,棱柱按棱数分类又可以分为三棱柱、四棱柱、五棱柱、六棱柱等等〔如以下图〕.图3所表示的图形叫做圆锥,图5表示的图形叫做棱锥.棱锥按棱数分类又可以分为三棱锥、四棱锥、五棱锥、六棱锥等等〔如上图〕.同学们请思考一下,上图中的图形有什么共同的特征吗?请学生自己探讨总结:生: 上图中的立体图形都有一个共同的特征,就是它们的面都是平的.师: 如果一个立体图形的面都是平的,像这样的立体图形,我们把它叫做多面体.三.实践应用写出以下立体图形的名称.〔1〕〔2〕〔3〕〔4〕.(答案)〔1〕四棱柱;〔2〕圆柱;〔3〕长方体;〔4〕圆锥.4.1生活中的立体图形教学目标:知识与技能目标:通过本节课的学习,让学生直观认识规则的立体图形,正确识别各类立体图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 图形认识初步 4.1.1认识几何图形(一)【教学目标】:1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;2、能由实物形状想象出几何图形,由几何图形想象出实物形状;3、能识别一些简单几何体,正确区分平面图形与立体图形。

【重点难点】:识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。

预 习 案一、预习自学(看课本P116—118完成下列问题) 1.几何图形(1)仔细观察图4.1-1,并抽象出有哪些图形; (2)让同学们观察图4.1-2回答问题:从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?(3)我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。

我们把这些图形称为______图形。

(4)几何图形主要关注物体的______、______和_____.它是数学研究的主要对象之一.而物体的颜色、重量、材料等则是其它学科所关注的。

2.立体图形(1)仔细观察图4.1-3,并思考这些几何图形有什么共同点;(2)什么是立体图?____________________________________________________________。

(3)做课本118页思考题(图4.1-4) 3.平面图形(1)平面图形的概念:线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,(1)纸盒(1)长方体(2)长方形(3)正方形(4)线段 点它们是平面图形。

(2)思考:课本118页图4.1-5的图中包含哪些简单的平面图形?请再举出一些平面图形的例子。

______、______、_____、______、______、_____、______、______、_____等4.思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系?________________________________________________________________________探究案1.做课本119页练习2.做课本123-124页第1、2、3题巩固练习1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A. ①②③;B. ③④⑤;C. ①③⑤;D. ③④⑤⑥2.课本125页第7题课堂小结:1.知识方面2.数学思想方法板书设计:教学反思:4.1.1几何图形(二)【教学目标】:1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看;2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形;【学习重点】:识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形【学习难点】:画出从正面、左面、上面看正方体及简单组合体的平面图形预习案一、预习自学(看课本P119完成下列问题)1.请学生背诵苏东坡《题西林壁》并说说诗中意境,从数学的角度来理解是什么意思呢?2.说一说:分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(1)乒乓球:从正面看是__________、从左面看是__________、从上面看是__________。

(2)粉笔盒:从正面看是__________、从左面看是__________、从上面看是__________。

(3)茶叶盒:从正面看是__________、从左面看是__________、从上面看是__________。

3.画一画:长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(1)长方体:从正面看是__________、从左面看是__________、从上面看是__________。

(2)圆锥:从正面看是__________、从左面看是__________、从上面看是__________。

4. 做课本124页第4题探究案1.从正面、左面、上面观察得到的平面图形你能画出来吗?小组合作学习,动手画一画,并进行展示2.分别从正面、左面、上面观察课本119页图4.1-8这个图形,分别画出得到的平面图形。

A .B .C .D .3.做课本120页练习14.做课本125页第10题巩固练习1. 如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是( )2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。

3. 课本126页第13题课堂小结:1.知识方面 2.数学思想方法 板书设计:教学反思:4.1.1几何图形(三)【教学目标】:1.能直观认识立体图形和展开图,了解研究立体图形方法。

2.通过观察和动手操作,经历和体验平面图形和立体图形相互转换的过程,培养动手操作能力,初步建立空间观念,发展几何直觉。

【学习重点】:了解基本几何体与其展开图之间的关系,体会一个立体按照不同方式展开可得到不同的平面展开图。

【学习难点】:正确判断哪些平面图形可以折叠为立体图形;某个立体图形的展开图可以是哪些平面图形预习案一、预习自学(看课本P120完成下列问题)1.展开图(1)看课本P120找出展开图的含义。

(2)你知道长方体、圆柱、圆锥和三棱柱的展开图是什么样子的吗?想象一下。

(3)剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会? 再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种, 请你画出其余5种。

2.立体图形的折叠(1)看课本P120探究题并思考它们分别是什么立体图形的展开图?通过怎样的折叠方式可以还原成原立体图形,凭想象回答,回答不出来的,就把它画在纸片上,剪下来折叠。

(2)做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?建 设和 谐 沾益名称: _________ _________ _________ _________。

二、我的疑惑:探 究 案1.做课本121页练习22.做课本124页第5题3.做课本125页第11题4.做课本126页第12题巩固练习1.下列图形中,不是正方体的表面展开图的是( )A .B .C .D .2. 一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是() A .和 B .谐 C .沾D .益课堂小结:1.知识方面 2.数学思想方法 板书设计:教学反思:4.1.2点、线、面、体【教学目标】:(1)了解几何体、平面和曲面的意义,•能正确判定围成几何体的面是平面还是曲面;(2)了解几何图形构成的基本元素是点、线、面、体及其关系,•能正确判定由点、面、体经过运动变化形成的简单的几何图形;【学习重点】:正确判定围成立体图形的面是平面还是曲面,探索点、线、面、•体之间的关系。

【学习难点】:探索点、线、面、体运动变化后形成的图形。

预习案一、预习自学(看课本P121—123完成下列问题)1.一个长方体,请同学们认真思考回答问题:这个长方体有几个面?面与面相交成了几条线?•线与线相交成几个点?2.几何体的概念:看书P121找出几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________。

(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?_______________________________________________________________________。

3.面的分类通过对上面问题的解决,得出面的分类:____面和___面。

面与面相交成线,线有___线和____线;线与线相交成_____。

4. 点、线、面、体学生看课本第121~122页内容,•观察图片能发现什么结论?点、线、面、体的关系:点动成_____,线动成___________,面动成________。

5.点、线、面、体与几何图形关系.指导学生阅读课本第123页内容,总结出点、线、面、体与几何图形的关系。

几何图形都是由_______________________组成的,________是构成图形的基本元素。

二、我的疑惑:探究案1.做课本第122页练习1、2;2. 将三角形绕直线L旋转一周,可以得到如下图所示立体图形的是()A B C D巩固练习1.人在雪地上走,他的脚印形成一条_______,这说明了______的数学原理;2.体是由_______围成的,面和面相交形成_______,线和线相交形成______;3.点动成________,线动成______,面动成_______;课堂小结:1.知识方面2.数学思想方法板书设计:教学反思:4.2直线、射线、线段(一)【教学目标】:1.能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,•能用几何语言描述直线性质;2.会用字母表示直线、射线、线段,会根据语言描述画出图形;【重点难点】:理解并掌握直线性质,会用字母表示图形和根据语言描述画出图形;预习案一、预习自学(看课本P128—129完成下列问题)1.在小学已经学过了直线、射线、线段.请你画出一条直线、一条射线、一条线段?直线射线线段图形:2.填写下列表格:3.直线的性质(1)如果你想将一根细木条固定在墙上,至少需要几个钉子?操作一下,试试看。

答:(2)经过一个已知点的直线,可以画多少条直线?请画图说明。

答: O ·(3)经过两个已知点画直线,可以画多少条直线?请画图试试。

··答: A B猜想:如果将细木条抽象成直线,将钉子抽象为点,你可以得到什么结论?4.直线的基本性质经过两点有条直线,并且条直线;简述为:举例说明直线的性质在日常生活中的应用:(1) 在挂窗帘时,只要在两边钉两颗钉子扯上线即可,这是因为 (2)建筑工人在砌墙时拉参照线,木工师傅锯木板时,用墨盒弹墨线,都是根据(3)你还能从生活中举出应用直线的基本性质的例子吗?试试看:5.直线有两种表示方法:①用一个 表示;②用 表示。

如:6.平面上一个点与一条直线的位置有什么关系? ① ;② 。

如:7.当两条直线有一个共公点时,我们就称这两条直线 ,这个公共点叫做它们的 。

如图:用几何语言描述出图形所表达的意思:8.射线和线段的表示方法:如图。

显然,射线和线段都是 的一部分。

图①中的线段记作 或 ;图②中的射线记作 或 注意:用两个大写字母表示射线时,表示端点的字母一定要写在 。

二、我的疑惑:板书设计:教学反思:BA 直线AB· · a直线a · B·A Oba ·a ·B A O Am ·②①4.2直线、射线、线段(二)【教学目标】:1、会用尺规画一条线段等于已知线段;2、会比较两条线段的长短;3、理解线段中点的概念,了解“两点之间,线段最短”的性质。

相关文档
最新文档