图形认识初步复习教案

合集下载

人教版一年级上册数学教案-四《认识图形(一)》复习课

人教版一年级上册数学教案-四《认识图形(一)》复习课

人教版一年级上册数学教案-四《认识图形(一)》复习课
一、教学目标
1.复习已学过的图形概念,包括正方形、三角形、圆形等。

2.能够根据形状的特征正确命名各种基本图形。

3.能够辨认并描述日常生活中常见的图形。

二、教学重点
1.复习正方形、三角形、圆形等基本图形的特征。

2.训练学生的观察能力,培养他们认识各种图形的能力。

三、教学内容
1. 复习基本图形
•正方形:具有四条相等的边和四个直角。

•三角形:具有三条边和三个角。

•圆形:边界是一条平滑的曲线,任意直线通过圆心都是直径。

2. 辨认日常生活中的图形
•提供实物图片或者学习卡片,让学生辨认图形并描述特征。

四、教学过程
1. 复习基本图形的特征
1.出示正方形、三角形、圆形的图片,让学生说出各自的特征。

2.让学生通过实物或图形卡片进行辨认和分类。

2. 辨认日常生活中的图形
1.带领学生观察教室中各种图形的物体,让学生说出图形名称及特征。

2.让学生找出周围环境中隐藏的图形,提高他们的观察能力。

五、教学反思
这堂课的重点在于复习和巩固学生已学过的基本图形概念。

通过观察、辨认和描述,培养学生对图形的理解能力和观察力。

在教学中,学生的参与度很高,但也需要注意引导学生正确说出图形的特征,帮助他们巩固知识点。

在未来的教学中,可以结合更多生活实例,让学生更好地理解图形的应用价值。

以上是《人教版一年级上册数学教案-四《认识图形(一)》复习课》的教案内容,希望对您有所帮助。

七年级数学上册 第四章 几何图形初步复习教案 (新版)新人教版

七年级数学上册 第四章 几何图形初步复习教案 (新版)新人教版

几何图形初步一、教学目标1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识3.掌握本章的全部定理和公理;4.理解本章的数学思想方法;5.了解本章的题目类型.二、教学重点与难点重点:理解本章的知识结构,掌握本章的全部定理和公理;难点:理解本章的数学思想方法;三、教学方法启发式教学,结合多媒体和学案实施教学.四、学法指导引导——活动——讨论五、教学准备教师:多媒体课件、学案等;六、教学过程1、温故知新【多媒体展示】回顾课本,思考以下问题:1.本章学习了哪些内容?2.它们之间的联系是什么?请列出知识结构图.学生独立完成,最后交流知识结构图,点明知识要点和其中联系。

2、问题探究【多媒体展示】问题1:在本章中,从哪些方面反映了立体图形与平面图形的关系?学生小组讨论、交流,得到结论,教师补充:展开图、三视图、运动问题等。

3、典例分析【多媒体展示】例1:在下列图形中(每个小四边形皆为相同的正方形),可以是一个正方体表面展开图的是()例2:如图,从正面看A、B、C、D四个立体图形,可以得到a、b、c、d四个平面图形,把上下两行相对应的立体图形与平面图形用线连接起来.学生自主作答,教师个别提问,检查知识掌握情况。

4、问题探究【多媒体展示】问题2:与以前相比,你对直线、射线、线段和角有什么新的认识?在解决有关线段和角的问题中,常用到哪些数学思想方法?学生小组讨论、交流,得到结论,教师补充:分类讨论,转化等思想.5、典例分析【多媒体展示】例3:点A,B,C 在同一条直线上,AB=3 cm,BC=1 cm.求AC的长.例4:已知∠α和∠β互为补角,并且∠β的一半比∠α小30°,求∠α、∠β.学生自主作答,教师个别提问,检查知识掌握情况。

6、能力拓展【多媒体展示】例:如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B'处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A'处,得折痕EN,求∠NEM的度数.学生小组内交流解答过程,教师做好指导工作.7、收获小结:1.本节课学到哪些知识?2.本节课有哪些疑惑?8、布置作业:课本练习题;七、板书设计:几何图形初步1.几何图形:(1)分类:立体图形和平面图形;(2)展开图和三视图;2.直线、射线和线段:(1)表示方法:(2)性质:3.角:(1)定义:(2)表示方法:(3)度量:4.余角和补角:(1)定义;(2)性质;。

苏教版(2024)小学数学一年级上册《图形的初步认识(一)》教案及反思

苏教版(2024)小学数学一年级上册《图形的初步认识(一)》教案及反思

苏教版(2024)小学数学一年级上册《图形的初步认识(一)》教案及反思一、教材分析:《图形的初步认识(一)》是苏教版(2024)小学数学一年级上册的内容。

本课程旨在引导学生初步认识基本的平面图形,包括圆形、正方形、长方形和三角形。

这部分教材主要通过观察、操作等活动,让学生直观认识长方体、正方体、圆柱和球等立体图形。

通过观察、比较和操作活动,学生将学会辨识这些基本图形,并理解它们的基本特征,同时引导学生认识这些图形的特征,为后续学习几何知识奠定基础。

二、教学目标:【知识与技能目标】:1.能够正确识别并命名圆形、正方形、长方形和三角形。

2.让学生直观认识长方体、正方体、圆柱和球等立体图形,能够辨认和区分这些图形。

3.培养学生的观察能力、动手操作能力和空间观念。

【过程与方法目标】:1.能够从不同的图形中挑选出指定的图形,并能描述这些图形的基本特征。

2.通过观察、操作、交流等活动,让学生经历认识图形的过程。

3.引导学生在实际生活中寻找这些图形,感受数学与生活的联系。

【情感态度与价值观目标】:1.培养学生对数学的兴趣和好奇心,激发学生的学习积极性。

2.培养学生的合作意识和团队精神,激发学生对数学学习的兴趣,感受数学与生活的密切联系。

3.激发学生对几何图形的兴趣,培养学生的观察力和空间想象力。

三、教学重难点:【教学重点】:认识长方体、正方体、圆柱和球的形状特征,能够正确辨认和区分这些图形。

2.识别并描述圆形、正方形、长方形和三角形的基本特征。

【教学难点】:1.区别不同形状的图形,建立空间观念,培养学生的空间观念。

2.区分长方形和正方形,理解它们的相似性和差异性。

四、学情评估:一年级的学生处于形象思维阶段,对直观的事物比较感兴趣。

但对抽象概念的理解有限。

他们喜欢通过具体的操作和游戏来学习新知识;在生活中已经接触过一些立体图形,但对这些图形的特征还没有系统的认识。

在教学中,要充分利用学生的生活经验,通过直观的教学手段,引导学生认识图形的特征。

图形的初步认识教案

图形的初步认识教案

图形的初步认识教案教案标题:图形的初步认识教学目标:1. 让学生了解不同类型的图形,如圆形、三角形、矩形等。

2. 帮助学生认识图形的特征和属性。

3. 培养学生观察和辨认图形的能力。

4. 引导学生通过图形的组合和分解来培养创造力和问题解决能力。

教学资源:1. 幻灯片或图片展示不同类型的图形。

2. 学生绘图纸和彩色铅笔。

3. 实物图形模型,如塑料几何体等。

4. 教学板书。

教学步骤:引入活动:1. 利用幻灯片或图片展示不同类型的图形,引起学生对图形的兴趣。

2. 引导学生观察并提出对图形的疑问,如它们有什么特点,有什么不同等。

探索活动:1. 让学生分组,每组给予一些实物图形模型,并要求他们观察并描述这些图形的特征和属性。

2. 学生通过讨论和展示,将不同的图形进行分类,如圆形、三角形、矩形等。

3. 引导学生发现图形的共同特征,如边数、角度等,并记录在教学板书上。

知识巩固:1. 学生利用绘图纸和彩色铅笔,绘制不同类型的图形,并在图形旁标注其名称。

2. 学生互相交换绘制的图形,通过观察和辨认图形,巩固对图形的认识。

拓展活动:1. 引导学生通过图形的组合和分解,创造出新的图形,并尝试给予这些图形命名。

2. 学生可以利用实物图形模型进行组合和分解实践,进一步培养创造力和问题解决能力。

总结:1. 教师引导学生回顾今天的学习内容,强调图形的特征和属性。

2. 学生进行简单的自我评价,如他们对图形的认识程度、学习过程中的困难等。

教学延伸:1. 学生可以通过观察周围环境中的图形,进一步应用和巩固所学的知识。

2. 教师可以设计更复杂的图形问题,引导学生进行探究和解决。

教学评估:1. 教师观察学生在探索活动中的表现,包括他们对图形的观察和描述能力。

2. 教师检查学生绘制的图形是否准确,并评估他们对图形的辨认能力。

3. 教师收集学生在拓展活动中创造的图形和命名,评估他们的创造力和问题解决能力。

教学反思:1. 教师根据学生的表现和反馈,对教学过程进行评估和反思,为今后的教学改进提供参考。

七年级上册几何图形初步复习1

七年级上册几何图形初步复习1

一.直线、射线、线段1、直线经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线. 直线有两种表示方法:①用一个小写字母表示;②用两个大写字母表示. 平面上一个点及一条直线的位置有什么关系? ①点在直线上;②点在直线外. 一个点在一条直线上,也可以说这条直线经过这个点,一个点在直线外,也可以说这条直线不经过这个点.当两条直线有一个共公点时,我们就称这两条直线相交,这个公共点叫做它们的交点.2、射线和线段直尺给我们线段的形象,手电筒发出的光给我们射线的形象,射线和线段都是直线的一部分.图①中的线段记作线段AB 或线段a ;图②中的射线记作射线OA 或射线m.B A 直线AB· l直线点在直线· B · 点在直线A O b a· a · B A O A m · ②①注意:用两个大写字母表示射线时,表示端点的字母一定要写在前面.直线、射线和线段有什么联系和区别联系:线段、射线都是直线的一部分,将线段向一端延长得到射线,向两端延长得到直线,将射线向另一方向延长得到直线,它们都有“直”的特征,它们都可以用一个小写字母或两个大写字母来表示.区别:直线没有端点,射线有一个端点,线段有两个端点;直线可以向两个方向延伸,射线可以向一个方向延伸,线段不能再延伸;表示直线和线段的两个大写字母可以交换位置,而表示射线的两个大写字母不能交换位置.3、比较两条线段的长短⑴.度量法:用刻度尺分别量出两条线段的长度从而进行比较.⑵.叠合法:把一条线段移到另一条线段上,使一端重合,从而进行比较.如:线段AB 及线段CD 比较,且A 及C 点重合,则有以下几种情况:①B 及D 重合,两条线段相等,记作:AB =CD .②B 在线段CD 内部,则线段CD 大于线段AB ,记作:CD>AB .③B 在线段CD 外部,则线段CD 小于线段AB ,记作:CD<AB .4、线段的中点及等分点如图(1),点M 把线段AB 分成相等的两条线段AM 及BM ,点M 叫做线段AB 的中点.记作AM=MB=1/2AB如图(2),点M 、N 把线段AB 分成相等的三段AM 、MN 、NB ,点M 、N 叫做线段AB 的三等分点.类似地,还有四等分点,等等. 5、线段的性质 两点的所有连线中,线段最短。

教案-初一几何图形初步章节复习(学生版)

教案-初一几何图形初步章节复习(学生版)

教学目标1. 认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观;2. 掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;3. 初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4. 逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.重点难点重点:几何体的平面展开图及三视图;难点:直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法。

几何图形初步章节复习一、上节回顾1. 下图是一个正方体的侧面展开图,如果相对的两个面上所标数据的和相等,那么2a b c--的值是()A.0 B.2 C.20 D.-202. 计算25352'︒⨯等于()A.5110'︒B.5035'︒C.5010'︒D.2610'︒3. 如下图,OC平分∠AOB,且∠BOC=3∠BOD,则∠AOC等于()A.110°B.120°C.130°D.150°4. 下列说法正确的是()A.画射线AB的中点C B.延长直线AB到CC.画直线AB的中点C D.延长线段AB到C二、本节内容⎧⎨⎩知识点一:几何图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.立体图形与平面图形的相互转化(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.(2)从不同方向看:主(正)视图---------从正面看几何体的三视图左视图-----从左(右)边看俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系几何体是由点、线、面构成的。

「幼儿园中班数学教案」复习:几何图形

「幼儿园中班数学教案」复习:几何图形

「幼儿园中班数学教案」复习:几何图形几何图形几何图形是幼儿园数学课程中重要的一部分,是培养幼儿空间认知能力的基础。

在中班阶段,幼儿们已经学习了基本的几何图形,如圆形、正方形、矩形、三角形等。

本教案旨在通过复习这些基本几何图形,进一步提高幼儿空间感知和形状认知能力。

一、活动目的通过游戏方式复习中班阶段已学习的圆形、正方形、矩形、三角形等基本几何图形,巩固幼儿对这些图形的基本认识和形状特征。

同时,让幼儿们能够在游戏中逐渐发展出对图形的准确定位、辨别和分类等能力。

二、教学内容1.复习基本几何图形:圆形、正方形、矩形、三角形等。

2.辨别图形的形状特征:如边数、角度、对称性等。

3.图形分类:将学习的各种基本几何图形按形状特征分类。

三、教学准备1.大型的圆形、正方形、矩形、三角形等几何图形卡片。

2.相应的贴图、模型等教具。

3.游戏道具:如积木、拼图、塑料卡片等。

四、教学方法1.游戏法(1)望形识图:让幼儿们学会通过名称和外形一一对应,认出各种基本几何图形。

(2)举一反三:通过提供基本几何图形的变化和组合情况,启发幼儿们发现交错、仿制、排列等规律。

2.活动法(1)多感官参与:采用视觉、听觉、触觉等多感官刺激,让幼儿能够全面认知各种基本几何图形。

(2)竞赛互动:采用小组或全班竞赛的方式,激发幼儿兴趣,提高活动的趣味性。

五、教学步骤1.新旧知识热身(1)出示已学习过的几何图形卡片,让幼儿们先说出名称,并找出形状相近的几何图形。

(2)提供一个几何图形的初始形状,要求幼儿们在班内或幼儿园园内寻找同样形状的物品,增强对几何图形的感知。

2.游戏活动(1)启发幼儿发现规律出示仿制、移位、排列等不同造型的几何图形卡片,让幼儿发现其中的规律。

比如,圆形上下组合可以构成各种的脸部,两个三角形可以组成鲸鱼的尾巴等。

(2)多感官参与通过摸索、搭建、排列等方式,让幼儿们能够通过多感官参与认知各种基本几何图形。

(3)竞赛互动设置不同的竞赛形式,如拼图、打扑克牌、互相比赛造空中花园等,让幼儿们在游戏中能够提高空间感知和形状认知能力。

图形初步认识(七年级)复习教案

图形初步认识(七年级)复习教案

龙文教育个性化辅导授课案教师:_______ 学生 _______ 时间:_____年___月____日___________段第____次课课题:图形的初步认识一、授课目的与考点分析:1.进行线段的简单计算,正确区分线段、射线、直线;2.掌握角的基本概念,进行相关运算;3.巩固对角的度量及运算知识的掌握,能解决一些实际问题;4.掌握几何图形的表示方法(用符号表示学过的几何图形);5. 能看懂几何语句,根据几何语句准确地画出图形.二、授课内容:知识点一、直线、射线和线段(3分)(一).直线、射线、线段的区别与联系:从图形上看,直线、射线可以看做是线段向两边或一边无限延伸得到的,或者也可以看做射线、线段是直线的一部分;线段有两个端点,射线有一个端点,直线没有端点;线段可以度量,直线、射线不能度量。

例1如图4所示,已知三点A,B,C,按照下列语句画出图形。

(1)画直线AB;(2)画射线AC ;(3)画线段BC。

;解:如图所示,直线AB、射线AC、线段BC即为所求。

例2如图所示,回答下列问题。

(1)图中有几条直线?用字母表示出来;(2)图中有几条射线?用字母表示出来;(3)图中有几条线段?用字母表示出来。

解:(1)图中有1条直线,表示为直线AD(或直线AB,AC,BD,BC,CD);(2)共有8条射线,能用字母表示的有射线AB,AC,AD,BC,BD,CD,不能用字母表示的有2条,(3)共有6条线段,表示为线段AB,AC,AD,BC,BD,CD。

练习1、下列各直线的表示方法中,正确的是()A.直线A B.直线AB C.直线ab D.直线Ab2、右图中有__________条线段,分别表示为______________。

(二).直线、线段性质:经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;两点的所有连线中,线段最短;简单说:两点之间,线段最短。

练习:1.把一段弯曲的公路改为直道,可以缩短路程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形认识初步教学设计教学设计思想:本章的主要内容是线段与角的概念、性质及其大小的比较,平行、垂直的有关的问题,数学是研究现实世界的空间形式与数量关系的一门学科,而平面几何则是研究空间形式的入门与基础。

点与直线是平面图形的基本元素,掌握本章内容对于学好后继课程至关重要,为此必须加强几何语言的训练,要注意经常总结对比。

教学目标:1.知识与技能直观认识立体图形,掌握平面图形的基本知识;画出简单立体图形的三视图及平面展开图,根据三视图画出一些简单的实物图;进行线段的简单计算,正确区分线段、射线、直线.掌握角的基本概念,进行相关运算;巩固对角得度量及运算知识的掌握,能解决一些实际问题。

2.过程与方法经历相关内容的归纳、总结,巩固对图形的直观认识,了解图形的分割和组合,探索学习空间与图形的方法;通过实验、操作,提高对图形的认识和动手能力。

3.情感、态度与价值观在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验.教学重点:立体图形与平面图形的互相转化,及一些重要的概念、性质等。

解决方法:通过观察、测量、折叠、模型制作与团设计等活动,发展空间观念,自然就加强了对概念及其性质的理解和掌握。

教学难点:建立和发展空间观念;对图形的表示方法,对几何语言的认识与运用。

解决办法:通过多实践操作;加强对几何语言的运用。

教学方法:引导式。

教具准备:投影仪。

教学安排:2课时。

教学过程:第一课时一、导入回忆一下,这一章我们都学习了哪些知识呢教师可以先给出本章的知识结构图:(投影仪)(教师先给一段时间思考,同学之间可以相互交流。

)二、知识回顾教师提问:本章的主要内容有哪些呢师:(概述)本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。

通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。

在此基础上,认识一些简单的平面图形——直线、射线、线段和角。

师:我们来对各个小节的知识回顾一下:第一节:多姿多彩的图形:通过多姿多彩的图形引入几何图形,使我们认识立体图形、平面图形,通过三视图我们可以把立体图形转化为平面图形来研究和处理,也可以把立体图形展开为平面图形;几何体也简称为体,包围体的是面,面面相交为线,线线相交为点;点动成线,线动成面,面动成体,几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

举例:广场礼花在夜空中留下的图形,你是否看到了点动成线在电视中看到收割机在麦田中收割小麦,你是否看到了线动成面第二节:1.直线、射线、线段的区别与联系:从图形上看,直线、射线可以看做是线段向两边或一边无限延伸得到的,或者也可以看做射线、线段是直线的一部分;线段有两个端点,射线有一个端点,直线没有端点;线段可以度量,直线、射线不能度量。

2.直线、线段性质:经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;两点的所有连线中,线段最短;简单说:两点之间,线段最短。

3.线段中点:把一条线段分成两条相等的线段的点叫线段中点,如图:若点C是线段AB的中点,则有(1)AC=BC= AB 或(2)AB=2AC=2BC,反之,若有(1)式或(2)式成立,亦能说明点C是线段AB的中点。

4.关于线段的计算:两条线段长度相等,这两条线段称为相等的线段,记作AB=CD,平面几何中线段的计算结果仍为一条线段。

即使不知线段具体的长度也可以作计算。

例:如图:AB+BC=AC,或说:AC-AB=BC第三节:1.角的意义:有公共端点的两条射线组成的图形叫做角,公共端点是角的顶点,这两条射线是角的两条边,角也可以看做由一条射线绕着它的端点旋转而形成的图形。

2.角的度量:1°=60′ 1′=60″1周角=360° 1平角=180°1直角=90°第四节:1.角的大小的比较:(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;(2)度量法。

2.角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

如图:OC平分∠AOB,则(1)∠AOC=∠BOC= ∠AOB或(2)2∠AOC =2∠BOC =∠AOB。

3.有关角的运算:举例说明:如图,∠AOC+∠BOC=∠AOB,∠AOB-∠AOC=∠BOC特殊情况,如果两个角的和等于直角,就说这两个角互为余角,即其中一个是另一个的余角;如果两个角的和等于平角,就说这两个角互为补角,即其中一个是另一个的补角;等角的余角相等,等角的补角相等。

第二课时一、例题讲解例1 如图3-162所示,讲台上放着一本书,书上放着一个粉笔盒,指出右边三个平面图形分别是左边立体图形的哪个视图。

图3—162解:(1)左视图,(2)俯视图,(3)正视图例2 (1)如图3-163所示,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的物体。

(2)如图3-164所示,写出图中各立体图形的名称。

图3-163图3-164解:(1)①与d类似,②与c类似,③与a类似,④与b类似。

(2)①圆柱,②五棱柱,③四棱锥,④五棱锥。

例3(1)过一个已知点的直线有多少条(2)过两个已知点的直线有多少条(3)过三个已知点的直线有多少条(4)经过平面上三点A,B,C中的每两点可以画多少条直线(5)根据(4)的结论,猜想经过平面上四点A,B,C,D中的任意两点画直线,会有什么样的结果如果不能画,请简要说明理由;如果能画,请画出图来。

解:(1)过一点可以画无数条直线。

(2)过两点可以画惟一的一条直线。

(3)过三个已知点不一定能画出直线。

当三个已知点在一条直线上时,可以画出一条直线;当三个已知点不在一条直线上时,不能画出直线。

(4)如图3-165所示,当A,B,C三点不共线时,过其中的每两点可以画一条直线,共可画出三条直线;当A,B,C三点在一条直线上时,经过每两点画出的直线重合为一条直线。

图3-165(5)经过平面上四点中的任意两点画直线,一共有三种情况,如图3-166所示,当A,B,C,D四点共线时,只能画出一条直线;当A,B,C,D四点中有三点在同一直线上时,可以画出四条直线;当A,B,C,D中不存在三点在同一直线上时,可以画出六条直线。

图3-166例4如图3-172所示,已知三点A,B,C,按照下列语句画出图形。

(1)画直线AB;(2)画射线AC;(3)画线段BC。

[分析]本题要求能根据几何语言规范而准确地画出图形,要做到这一点,关键是:第一,要读懂这些几何语句;第二,要抓住这些基本图形的共同特点及细微区别。

如直线、射线、线段的共同特点是都是笔直的线,不同的是:线段有两个端点,不能延伸;射线有一个端点,向一方无限延伸;直线没有端点,向两方无限延伸。

它们的表示方法:线段是用它的两个端点的大写字母来表示的;射线是用它的端点和射线上另外一个任意点的大写字母来表示的,且端的字母要写在前面;直线是用它上面的任意两个点的大写字母来表示的。

弄清楚这几点,图就不难画出了。

图3-172解:如图3-172所示,直线AB、射线AC、线段BC即为所求。

例5如图3-173所示,回答下列问题。

图3-173(1)图中有几条直线用字母表示出来;(2)图中有几条射线用字母表示出来;(3)图中有几条线段用字母表示出来。

[分析]掌握线段、直线的区别与联系,射线的方向性,线段的无向性,就可以解决这类问题。

解:(1)图中有1条直线,表示为直线AD(或直线AB,AC,BD,BC,CD);(2)共有8条射线,能用字母表示的有射线AB,AC,AD,BC,BD,CD,不能用字母表示的有2条,(3)共有6条线段,表示为线段AB,AC,AD,BC,BD,CD。

例6如图3-184所示的是两块三角板。

(1)用叠合法比较∠1,∠ ,∠2的大小;(2)量出各角的度数,并把图中6个角从小到大排列,然后用“<”或“=”号连接。

[分析]叠合法就是把两个角的一边重合,根据另一边的位置就可以比较出角的大小。

解:(1)如图3-184所示图3-184把两块三角板叠在一起,可得∠1<∠α,用同样的方法可得∠α<∠2,所以∠1<∠α∠2。

(2)用量角器量出各角的度数分别是∠1=30°, ∠2=60°, ∠3=90°, ∠α=45°, ∠β=45°, ∠γ=90°,∴∠1<∠α=∠β<∠2<∠3=∠γ。

例7(1)计算:①27°42′30″+1070′;②63°36′-°。

(2)用度、分、秒表示°。

(3)用度表示50°7′30″。

[分析]在复名数与单名数的加减运算中,参加运算的各个名数需化成相应的同一名数(同为复名数或同为单名数)。

进行角度的单位换算时,因为是60进制,所以度化分、分化秒要乘以60,秒化分、分化度要除以60(即从高一级单位化为低一级单位要乘以60,从低一级单位化为高一级单位要除以60)。

解:(1)①27°42′30″+1070′=27°42′30″+17°50′=45°32′30″。

②63°36′-°=63°36′-36°21′36″=63°35′60″-36°21′36″=27°14′24″或63°36′-°=63°36′-36°′=27°′=27°14′24″。

(2)∵°=48°+°,°=60′×=′=7′+′,′=60″×=12″,∴°=48°7′12″。

(3)∵50°7′30″=50°+7′+30″=50°+7′+′=50°+′=50°+°=°。

∴50°7′30″=°。

例8任意画一个角。

(1)用量角器量出它的度数,然后计算它的余角与补角的度数;(精确到度)(2)用三角板画出它的余角及补角,再用量角器量出余角及补角的度数。

(精确到度)图3-186解:(1)任意画一个角∠ABC(如图3-186(1)所示),用量角器量得∠ABC=38°,那么∠ABC的余角是度数是90°-∠ABC=90°-38°=52°;∠ABC的补角的度数是180°-∠ABC=180°-38°=142°。

(2)如图3-186(2)所示,用三角板的直角顶点对准∠ABC的顶点B,使三角板的一条直角边与BC重合,画出∠CBD=90°(BA在∠CBD的内部),则∠ABD是∠ABC的余角,再用量角器量得∠ABD=52°。

相关文档
最新文档