2014年7月浙江学考-数学试题
2014年普通高等学校招生全国统一考试数学(浙江卷)文 (2)

2014年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页,非选择题部分3至4页.满分150分,考试时间120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2014浙江,文1)设集合S={x|x≥2},T={x|x≤5},则S∩T=().A.(-∞,5]B.[2,+∞)C.(2,5)D.[2,5]答案:D解析:由已知得S∩T={x|2≤x≤5}=[2,5],故选D.2.(2014浙江,文2)设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:当四边形ABCD为菱形时,其对角线互相垂直,必有AC⊥BD;但当AC⊥BD时,四边形不一定是菱形(如图),因此“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件.故选A.3.(2014浙江,文3)某几何体的三视图(单位:cm)如图所示,则该几何体的体积是().A.72 cm 3B.90 cm 3C.108 cm 3D.138 cm 3答案:B解析:由三视图可知,该几何体是一个组合体,其左侧是一个直三棱柱,右侧是一个长方体.其中三棱柱的底面是一个直角三角形,其两直角边长分别是3 cm 和4 cm,三棱柱的高为3 cm,因此其体积V 1=Sh=12×4×3×3=18(cm 3).长方体中三条棱的长度分别为4 cm,6 cm,3 cm,因此其体积V 2=4×6×3=72(cm 3).故该几何体的体积V=V 1+V 2=18+72=90(cm 3),故选B .4.(2014浙江,文4)为了得到函数y=sin 3x+cos 3x 的图象,可以将函数y=√2cos 3x 的图象( ).A.向右平移π12个单位B.向右平移π4个单位 C.向左平移π12个单位 D.向左平移π4个单位 答案:A解析:由于y=sin 3x+cos 3x=√2sin (3x +π4),y=√2cos 3x=√2sin (3x +π2),因此只需将y=√2cos 3x 的图象向右平移π12个单位,即可得到y=√2sin [3(x -π12)+ π2]=√2sin (3x +π4)的图象,故选A . 5.(2014浙江,文5)已知圆x 2+y 2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a 的值是( ). A.-2 B.-4 C.-6 D.-8 答案:B解析:圆的方程可化为(x+1)2+(y-1)2=2-a ,因此圆心为(-1,1),半径r=√2-a .圆心到直线x+y+2=0的距离d=√2=√2,又弦长为4,因此由勾股定理可得(√2)2+(42)2=(√2-a )2,解得a=-4.故选B .6.(2014浙江,文6)设m ,n 是两条不同的直线,α,β是两个不同的平面.( ). A.若m ⊥n ,n ∥α,则m ⊥α B.若m ∥β,β⊥α,则m ⊥α C.若m ⊥β,n ⊥β,n ⊥α,则m ⊥α D.若m ⊥n ,n ⊥β,β⊥α,则m ⊥α 答案:C解析:当m ⊥n ,n ∥α时,可能有m ⊥α,但也有可能m ∥α或m ⊂α,故A 选项错误;当m ∥β,β⊥α时,可能有m ⊥α,但也有可能m ∥α或m ⊂α,故选项B 错误; 当m ⊥β,n ⊥β,n ⊥α时,必有α∥β,从而m ⊥α,故选项C 正确;在如图所示的正方体ABCD-A 1B 1C 1D 1中,取m 为B 1C 1,n 为CC 1,β为平面ABCD ,α为平面ADD 1A 1,这时满足m ⊥n ,n ⊥β,β⊥α,但m ⊥α不成立,故选项D 错误.7.(2014浙江,文7)已知函数f (x )=x 3+ax 2+bx+c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ). A.c ≤3 B.3<c ≤6C.6<c ≤9D.c>9答案:C解析:由于f (-1)=f (-2)=f (-3),所以-1+a-b+c=-8+4a-2b+c=-27+9a-3b+c.由-1+a-b+c=-8+4a-2b+c ,整理得3a-b=7, 由-8+4a-2b+c=-27+9a-3b+c ,整理得5a-b=19,由{3a -b =7,5a -b =19,解得{a =6,b =11.于是f (-1)=f (-2)=f (-3)=c-6, 又因为0<f (-1)=f (-2)=f (-3)≤3, 因此0<c-6≤3,解得6<c ≤9,故选C .8.(2014浙江,文8)在同一直角坐标系中,函数f (x )=x a (x>0),g (x )=log a x 的图象可能是( ).答案:D解析:若a>1,则函数g (x )=log a x 的图象过点(1,0),且单调递增,但当x ∈(0,1)时,y=x a (x>0)的图象应在直线y=x 的下方,故C 选项错误;若0<a<1,则函数g (x )=log a x 的图象过点(1,0),且单调递减,函数y=x a (x>0)的图象应单调递增,且当x ∈(0,1)时图象应在直线y=x 的上方,因此A,B 均错,只有D 项正确.9.(2014浙江,文9)设θ为两个非零向量a ,b 的夹角.已知对任意实数t ,|b +t a |的最小值为1.( ). A.若θ确定,则|a |唯一确定 B.若θ确定,则|b |唯一确定 C.若|a |确定,则θ唯一确定 D.若|b |确定,则θ唯一确定 答案:B解析:|b +t a |2=(b +t a )2=|b |2+|a |2t 2+2a ·b t ,令f (t )=|a |2t 2+2a ·b t+|b |2,由于|b +t a |的最小值为1,所以函数f (t )的最小值也为1,即4|a |2|b |2-4(a ·b )24|a |2=1.又a ,b 均为非零向量,且夹角为θ, 因此|b |2-|b |2cos 2θ=1,于是|b |2=11-cos 2θ, 因此当θ确定时,|b |2的值唯一确定,亦即|b |唯一确定,故选B .10.(2014浙江,文10)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.(仰角θ为直线AP 与平面ABC 所成角).若AB=15 m,AC=25 m,∠BCM=30°,则tan θ的最大值是( ).A.√305B.√3010C.4√39D.5√39答案:D解析:由于AB ⊥BC ,AB=15 m,AC=25 m,所以BC=√252-152=20 m . 过点P 作PN ⊥BC 交BC 于N , 连接AN (如图),则∠PAN=θ,tan θ=PN AN.设NC=x (x>0),则BN=20-x ,于是AN=√AB 2+BN 2=√152+(20-x )2 =√x 2-40x +625, PN=NC ·tan 30°=√33x ,所以tan θ=√33x √x 240x+625=√33√-40x +625x 2√33√625x2-40x +1, 令1x=t ,则625x 2−40x+1=625t 2-40t+1, 当t=4125时,625t 2-40t+1取最小值925,因此√625x 2-40x +1的最小值为√925=35,这时tan θ的最大值为√33×53=5√39(此时x =1254).故选D .非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分. 11.(2014浙江,文11)已知i 是虚数单位,计算1-i (1+i )2=.答案:-12−12i 解析:1-i(1+i )2=1-i 2i=(1-i )·i 2i ·i=1+i -2=-12−12i . 12.(2014浙江,文12)若实数x ,y 满足{x +2y -4≤0,x -y -1≤0,x ≥1,则x+y 的取值范围是 .答案:[1,3]解析:画出约束条件所确定的可行域(如图中阴影部分所示).令z=x+y ,则y=-x+z ,画出直线l :y=-x ,平移直线l ,当l 经过可行域中的点A (1,0)时,z 取最小值,且z min =1+0=1; 当l 经过可行域中的点B (2,1)时,z 取最大值,且z max =2+1=3,故x+y 的取值范围是[1,3].13.(2014浙江,文13)若某程序框图如图所示,当输入50时,则该程序运行后输出的结果是 .答案:6解析:第一次执行循环体S=2×0+1=1,i=1+1=2;第二次执行循环体S=2×1+2=4,i=2+1=3; 第三次执行循环体S=2×4+3=11,i=3+1=4; 第四次执行循环体S=2×11+4=26,i=4+1=5; 第五次执行循环体S=2×26+5=57,i=5+1=6, 这时S=57>50,跳出循环,输出i=6.14.(2014浙江,文14)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是 . 答案:13解析:甲、乙两人各抽取1张,一共有3×2=6种等可能的结果,两人都中奖的结果有2×1=2种,由古典概型计算公式可得所求概率为P=26=13.15.(2014浙江,文15)设函数f (x )={x 2+2x +2,x ≤0,-x 2,x >0,若f (f (a ))=2,则a= .答案:√2解析:当a ≤0时,f (a )=a 2+2a+2=(a+1)2+1>0,于是f (f (a ))=f (a 2+2a+2)=-(a 2+2a+2)2, 令-(a 2+2a+2)2=2,显然无解;当a>0时,f (a )=-a 2<0,于是f (f (a ))=f (-a 2)=(-a 2)2+2(-a 2)+2=a 4-2a 2+2, 令a 4-2a 2+2=2,解得a=√2(a=0,-√2舍去).综上,a 的取值为√2.16.(2014浙江,文16)已知实数a ,b ,c 满足a+b+c=0,a 2+b 2+c 2=1,则a 的最大值是 . 答案:√63解析:由a+b+c=0可得c=-(a+b ).又a 2+b 2+c 2=1,所以a 2+b 2+[-(a+b )]2=1, 整理得2b 2+2ab+2a 2-1=0.又由a 2+b 2+c 2=1易知0≤b 2≤1,-1≤b ≤1,因此关于b 的方程2b 2+2ab+2a 2-1=0在[-1,1]上有解,所以{Δ=4a 2-8(2a 2-1)≥0,-1≤-a 2≤1,2-2a +2a 2-1≥0,2+2a +2a 2-1≥0,解得a ≤√63,即a 的最大值是√63.17.(2014浙江,文17)设直线x-3y+m=0(m ≠0)与双曲线x 2a 2−y 2b2=1(a>0,b>0)的两条渐近线分别交于点A ,B.若点P (m ,0)满足|PA|=|PB|,则该双曲线的离心率是 . 答案:√52解析:双曲线x 2a 2−y 2b2=1的两条渐近线方程分别是y=b a x 和y=-b ax.由{y =ba x ,x -3y +m =0,解得A (-am a -3b ,-bm a -3b),由{y =-ba x ,x -3y +m =0,解得B (-am a+3b ,bm a+3b).设AB 中点为E ,则E (-a 2ma 2-9b2,-3b 2m a 2-9b2).由于|PA|=|PB|,所以PE 与直线x-3y+m=0垂直,而k PE =3b 2m a 2-9b 2m --a 2m a 2-9b2=3b22a 2-9b2,于是3b22a 2-9b2·13=-1.所以a 2=4b 2=4(c 2-a 2). 所以4c 2=5a 2,解得e=c a=√52.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)(2014浙江,文18)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知4sin 2A -B2+4sin A sin B=2+√2.(1)求角C 的大小;(2)已知b=4,△ABC 的面积为6,求边长c 的值.分析:(1)利用二倍角的余弦公式及两角和的余弦公式,将已知条件化简.由A+B 的余弦值,求出A+B 的值,从而得出角C 的大小.(2)利用三角形的面积公式求出a 值,再由余弦定理即可求出c 值. 解:(1)由已知得2[1-cos(A-B )]+4sin A sin B=2+√2,化简得-2cos A cos B+2sin A sin B=√2, 故cos(A+B )=-√22.所以A+B=3π4,从而C=π4.(2)因为S △ABC =12ab sin C ,由S △ABC =6,b=4,C=π4,得a=3√2.由余弦定理c 2=a 2+b 2-2ab cos C ,得c=√10.19.(本题满分14分)(2014浙江,文19)已知等差数列{a n }的公差d>0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36. (1)求d 及S n ;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m+1+a m+2+…+a m+k =65.分析:(1)利用等差数列前n 项和公式与已知进行基本量运算,即可求出公差d ,进而求出S n .(2)利用等差数列的通项公式或前n 项和公式可得出m ,k 的关系式,再由m ,k ∈N *,通过2m+k-1=13,k+1=5,求出m ,k 的值.解:(1)由题意知(2a 1+d )(3a 1+3d )=36,将a 1=1代入上式解得d=2或d=-5. 因为d>0,所以d=2.从而a n =2n-1,S n =n 2(n ∈N *).(2)由(1)得a m +a m+1+a m+2+…+a m+k =(2m+k-1)(k+1). 所以(2m+k-1)(k+1)=65. 由m ,k ∈N *知2m+k-1>k+1>1, 故{2m +k -1=13,k +1=5,所以{m =5,k =4.20.(本题满分15分)(2014浙江,文20)如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=√2.(1)证明:AC⊥平面BCDE;(2)求直线AE与平面ABC所成的角的正切值.分析:(1)先由勾股定理的逆定理,证出线线垂直,再利用面面垂直的性质定理,推出线面垂直,即得结论.(2)由面面垂直的性质可得线面垂直,利用线面垂直的转化,可求作并证明所求线面角(为∠EAF).将空间角转化为平面角,再利用解直角三角形,求出线面角的正切值.(1)证明:连接BD.在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=√2,由AC=√2,AB=2,得AB2=AC2+BC2,即AC⊥BC.又平面ABC⊥平面BCDE,从而AC⊥平面BCDE.(2)解:在直角梯形BCDE中,由BD=BC=√2,DC=2,得BD⊥BC,又平面ABC⊥平面BCDE,所以BD⊥平面ABC.作EF∥BD,与CB延长线交于F,连接AF,则EF⊥平面ABC.所以∠EAF是直线AE与平面ABC所成的角.在Rt△BEF中,由EB=1,∠EBF=π4,得EF=√22,BF=√22.在Rt△ACF中,由AC=√2,CF=3√22,得AF=√262.在Rt△AEF中,由EF=√22,AF=√262,得tan∠EAF=√1313.所以直线AE与平面ABC所成的角的正切值是√1313.21.(本题满分15分)(2014浙江,文21)已知函数f(x)=x3+3|x-a|(a>0).若f(x)在[-1,1]上的最小值记为g(a).(1)求g(a);(2)证明:当x∈[-1,1]时,恒有f(x)≤g(a)+4.分析:(1)由于f(x)解析式中含绝对值,因此要去绝对值符号.化简解析式必须对a>0分情况讨论,并对x所属区间讨论.再通过求导数判断函数的单调性,利用函数单调性求出函数f(x)的最小值g(a).(2)令h(x)=f(x)-g(a),问题转化为h(x)≤4在x∈[-1,1]上恒成立.对恒成立问题,常转化为函数最值问题处理,即只需求出函数h(x)在[-1,1]上的最大值为4.因此,根据g(a)分情况讨论h(x)的最大值,借助于导数,利用函数单调性法求最值即可得解.(1)解:因为a>0,-1≤x≤1,所以①当0<a<1时,若x∈[-1,a],则f(x)=x3-3x+3a,f'(x)=3x2-3<0,故f(x)在(-1,a)上是减函数;若x∈[a,1],则f(x)=x3+3x-3a,f'(x)=3x2+3>0,故f(x)在(a,1)上是增函数.所以g(a)=f(a)=a3.②当a≥1时,有x≤a,则f(x)=x3-3x+3a,f'(x)=3x2-3<0.故f(x)在(-1,1)上是减函数,所以g(a)=f(1)=-2+3a.综上,g(a)={a3,0<a<1,-2+3a,a≥1.(2)证明:令h(x)=f(x)-g(a),①当0<a<1时,g(a)=a3.若x ∈[a ,1],h (x )=x 3+3x-3a-a 3,得h'(x )=3x 2+3,则h (x )在(a ,1)上是增函数, 所以,h (x )在[a ,1]上的最大值是h (1)=4-3a-a 3,且0<a<1,所以h (1)≤4. 故f (x )≤g (a )+4.若x ∈[-1,a ],h (x )=x 3-3x+3a-a 3,得h'(x )=3x 2-3,则h (x )在(-1,a )上是减函数,所以,h (x )在[-1,a ]上的最大值是h (-1)=2+3a-a 3.令t (a )=2+3a-a 3,则t'(a )=3-3a 2>0. 知t (a )在(0,1)上是增函数. 所以,t (a )<t (1)=4,即h (-1)<4. 故f (x )≤g (a )+4.②当a ≥1时,g (a )=-2+3a ,故h (x )=x 3-3x+2,得h'(x )=3x 2-3, 此时h (x )在(-1,1)上是减函数,因此h (x )在[-1,1]上的最大值是h (-1)=4. 故f (x )≤g (a )+4.综上,当x ∈[-1,1]时,恒有f (x )≤g (a )+4.22.(本题满分14分)(2014浙江,文22)已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M为AB 的中点,PF ⃗⃗⃗⃗⃗ =3FM ⃗⃗⃗⃗⃗⃗ . (1)若|PF|=3,求点M 的坐标;(2)求△ABP 面积的最大值.分析:(1)设出P 点坐标,由于PF 为焦半径,因此由抛物线定义,可求出P 点坐标,再利用已知向量关系,即可求出点M 的坐标.(2)△ABP 的面积可由底边AB 与其边上的高确定.求相交弦长|AB|只需设出直线AB 的斜截式方程,与抛物线方程联立,利用弦长公式即可.但要注意用Δ>0,确定参数范围.利用PF ⃗⃗⃗⃗⃗ =3FM ⃗⃗⃗⃗⃗⃗ 可得S △ABP =4S △ABF .所以AB 边上的高转化为焦点F 到直线AB 的距离.从而得出只含一个参数的目标函数S △ABP ,再利用导数判断函数的单调性,利用函数单调性,即可求出S △ABP 的最大值. 解:(1)由题意知焦点F (0,1),准线方程为y=-1.设P (x 0,y 0).由抛物线定义知|PF|=y 0+1,得到y 0=2,所以P (2√2,2)或P (-2√2,2).由PF ⃗⃗⃗⃗⃗ =3FM ⃗⃗⃗⃗⃗⃗ ,分别得M (-2√23,23)或M (2√23,23).(2)设直线AB 的方程为y=kx+m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0). 由{y =kx +m ,x 2=4y ,得x 2-4kx-4m=0.于是Δ=16k 2+16m>0,x 1+x 2=4k ,x 1x 2=-4m , 所以AB 中点M 的坐标为(2k ,2k 2+m ). 由PF ⃗⃗⃗⃗⃗ =3FM ⃗⃗⃗⃗⃗⃗ ,得(-x 0,1-y 0)=3(2k ,2k 2+m-1).所以{x 0=-6k ,y 0=4-6k 2-3m ,由x 02=4y 0得k 2=-15m+415. 由Δ>0,k2≥0,得-13<m ≤43.又因为|AB|=4√1+k 2√k 2+m , 点F (0,1)到直线AB 的距离为d=√1+k ,所以S △ABP =4S △ABF =8|m-1|√k 2+m =√15√3m 3-5m 2+m +1.记f (m )=3m 3-5m 2+m+1(-13<m ≤43).令f'(m)=9m2-10m+1=0,解得m1=19,m2=1.可得f(m)在(-13,19)上是增函数,在(19,1)上是减函数,在(1,43)上是增函数.又f(19)=256243>f(43).所以,当m=19时,f(m)取到最大值256243,此时k=±√5515.所以,△ABP面积的最大值为256√5135.。
2014年浙江省高考数学试卷(理科)(含解析版)

2014 年浙江省高考数学试卷(理科)一、选择题(每小题 5 分,共 50 分).(分)设全集U={ x∈N| x≥2},集合 A={ x∈ N| x 2≥5} ,则?U()1 5A=A.?B.{ 2}C.{ 5}D.{ 2,5} 2.(5分)已知 i 是虚数单位, a,b∈R,则“ a=b=1是”“( a+bi)2=2i ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5 分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5 分)为了得到函数y=sin3x+cos3x 的图象,可以将函数y=cos3x 的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位.(分)在()6(1+y)4的展开式中,记 x m n项的系数为 f( m,n),则 f5 51+x y(3,0)+f( 2, 1) +f(1,2)+f(0,3)=()A.45B.60C.120D.210 6.(5 分)已知函数 f( x)=x3+ax2+bx+c.且 0<f(﹣ 1)=f(﹣ 2)=f(﹣ 3)≤3,则()A.c≤3B.3<c≤ 6C.6<c≤9D.c>9 7.(5 分)在同一直角坐标系中,函数f(x)=x a( x> 0),g(x)=log a x 的图象可1能是()A.B.C.D.8.(5 分)记 max{ x,y} =,min{ x,y} =,设,为平面向量,则()A.min{|+ |,|﹣ |}≤min{|| ,||}B.min{|+ |,|﹣ |}≥min{|| ,||}.+ |2,|﹣ |2}≤| |2+| |2C max{|.+ |2, |﹣ |2}≥| |2+| |2D max{|9.( 5 分)已知甲盒中仅有 1 个球且为红球,乙盒中有 m 个红球和 n 个蓝球( m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.( a)放入 i 个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入 i 个球后,从甲盒中取 1 个球是红球的概率记为 p i(i=1,2).则()A.p1> p2,E(ξ1)< E(ξ2)B.p1< p2,E(ξ1)> E(ξ2).1>p2,E(ξ1)> E(ξ2)D.p1<p2,E(ξ1)< E(ξ2)C p10.(5 分)设函数 f1(x)=x2,f2( x)=2( x﹣ x2),,,,,,,.记k=| f k(a1)﹣f k(a0)|+| f k(a2)﹣f k(a1)丨+ +| f ki=0 1 299I(a99)﹣ f k( a98)| ,k=1, 2, 3,则()A.I1<I2<I3.2<I1<I3.1<I3<I2.3<I2<I1B IC ID I2二、填空题11.( 4 分)在某程序框图如图所示,当输入50 时,则该程序运算后输出的结果是.12.( 4 分)随机变量ξ的取值为 0,1,2,若 P(ξ =0) = , E(ξ)=1,则 D(ξ)=.13.(4 分)当实数 x,y 满足时,1≤ax+y≤ 4恒成立,则实数a的取值范围是.14.( 4 分)在 8 张奖券中有一、二、三等奖各 1 张,其余 5 张无奖.将这 8 张奖券分配给 4 个人,每人 2 张,不同的获奖情况有种(用数字作答).15.( 4 分)设函数 f(x)=,若f(f(a))≤ 2,则实数a的取值范围是.16.( 4 分)设直线 x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点 P( m,0)满足 | PA| =| PB| ,则该双曲线的3离心率是.17.(4 分)如图,某人在垂直于水平地面ABC的墙面前的点 A 处进行射击训练.已知点 A 到墙面的距离为 AB,某目标点 P 沿墙面上的射线 CM 移动,此人为了准确瞄准目标点 P,需计算由点 A 观察点 P 的仰角θ的大小.若 AB=15m,AC=25m,∠ BCM=30°,则 tan θ的最大值是.(仰角θ为直线AP与平面 ABC所成角)三、解答题18.( 14 分)在△ ABC中,内角 A, B, C 所对的边分别为 a,b,c.已知 a≠b,c= ,cos2A﹣cos2 B= sinAcosA﹣sinBcosB(1)求角 C 的大小;(2)若 sinA= ,求△ ABC的面积.4.(分)已知数列{ a n } 和{ b } 满足 a a(n∈N*).若 { a } 为等19 14n1a2a3n=n比数列,且 a1=2, b3=6+b2.(Ⅰ)求 a n和 b n;(Ⅱ)设 c(∈N *).记数列 { c } 的前 n 项和为 S .n=n n n(i)求 S n;(i i)求正整数 k,使得对任意 n∈N*均有 S k≥ S n.20(.15 分)如图,在四棱锥 A﹣BCDE中,平面 ABC⊥平面 BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= .(Ⅰ)证明: DE⊥平面 ACD;(Ⅱ)求二面角B﹣AD﹣ E 的大小.521.( 15 分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点 P,且点 P 在第一象限.(Ⅰ)已知直线l 的斜率为 k,用 a,b,k 表示点 P 的坐标;(Ⅱ)若过原点O 的直线 l1与 l 垂直,证明:点 P 到直线 l1的距离的最大值为 a ﹣b.22.( 14 分)已知函数 f (x)=x3+3| x﹣ a| (a∈R).(Ⅰ)若 f(x)在 [ ﹣ 1,1] 上的最大值和最小值分别记为M(a),m(a),求 M(a)﹣ m(a);(Ⅱ)设 b∈R,若 [ f(x)+b] 2≤4 对 x∈[ ﹣1,1] 恒成立,求 3a+b 的取值范围.62014 年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(每小题 5 分,共 50 分)1.(5 分)设全集 U={ x∈N| x≥2} ,集合 A={ x∈ N| x2≥ 5} ,则 ?U A=()A.?B.{ 2}C.{ 5}D.{ 2,5}【考点】 1F:补集及其运算.【专题】 5J:集合.【分析】先化简集合 A,结合全集,求得 ?U A.【解答】解:∵全集 U={ x∈N| x≥2} ,集合 A={ x∈N| x2≥5} ={ x∈ N| x≥3} ,则 ?U A={ 2} ,故选: B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.2.(5 分)已知 i 是虚数单位, a,b∈R,则“ a=b=1是”“( a+bi)2=2i ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】 29:充分条件、必要条件、充要条件; A1:虚数单位 i、复数.【专题】 5L:简易逻辑.【分析】利用复数的运算性质,分别判断“a=b=1?”“( a+bi )2=2i ”与“”a=b=1?“(a+bi)2=2i ”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1时”,“(a+bi)2=(1+i)2=2i ”成立,故“a=b=1是”“(a+bi)2=2i ”的充分条件;当“(a+bi)2 =a2﹣ b2+2abi=2i 时”,“a=b=1或”“a=b=﹣1”,故“a=b=1是”“(a+bi)2=2i ”的不必要条件;综上所述,“a=b=1是”“(a+bi)2=2i ”的充分不必要条件;7故选: A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.3.(5 分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【考点】 L!:由三视图求面积、体积.【专题】 5Q:立体几何.【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为 3,底面是直角边长分别为 3、4 的直角三角形,四棱柱的高为 6,底面为矩形,矩形的两相邻边长为 3 和 4,∴几何体的表面积S=2×4× 6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138( cm2).故选: D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.84.(5 分)为了得到函数y=sin3x+cos3x 的图象,可以将函数y=cos3x 的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【考点】 HJ:函数 y=Asin(ωx+φ)的图象变换.【专题】 57:三角函数的图像与性质.【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数 y=sin3x+cos3x=,故只需将函数y=cos3x 的图象向右平移个单位,得到 y==的图象.故选: C.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5 分)在( 1+x)6(1+y)4的展开式中,记 x m y n项的系数为 f( m,n),则 f(3,0)+f( 2, 1) +f(1,2)+f(0,3)=()A.45B.60C.120D.210【考点】 DA:二项式定理.【专题】 5P:二项式定理.【分析】由题意依次求出 x3y0,x2y1, x1y2,x0y3,项的系数,求和即可.【解答】解:( 1+x)6( 1+y)4的展开式中,含 x3y0的系数是:=20.f(3,0)=20;含 x2y1的系数是=60, f(2,1)=60;含 x1y2的系数是=36, f(1,2)=36;含 x0y3的系数是=4,f( 0, 3) =4;9∴f(3,0)+f( 2, 1) +f (1,2)+f(0,3)=120.故选: C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5 分)已知函数 f( x)=x3+ax2+bx+c.且 0<f(﹣ 1)=f(﹣ 2)=f(﹣ 3)≤3,则()A.c≤3B.3<c≤ 6C.6<c≤9D.c>9【考点】 7E:其他不等式的解法.【专题】 11:计算题; 51:函数的性质及应用.【分析】由 f(﹣ 1)=f(﹣ 2)=f(﹣ 3)列出方程组求出a,b,代入 0<f(﹣ 1)≤3,即可求出 c 的范围.【解答】解:由 f(﹣ 1)=f(﹣ 2)=f(﹣ 3)得,解得,则 f( x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即 6<c≤ 9,故选: C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5 分)在同一直角坐标系中,函数f(x)=x a( x> 0),g(x)=log a x 的图象可能是()A.B.10C.D.【考点】 3A:函数的图象与图象的变换.【专题】 51:函数的性质及应用.【分析】结合对数函数和幂函数的图象和性质,分当0< a< 1 时和当 a>1 时两种情况,讨论函数f(x)=x a(x≥0),g(x)=log a x 的图象,比照后可得答案.此时答案 D 满足要求,当 a>1 时,函数 f(x)=x a(x≥0),g(x)=log a x 的图象为:无满足要求的答案,11综上:故选 D,故选: D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5 分)记 max{ x,y} =,min{ x,y} =,设,为平面向量,则()A.min{|+ |,|﹣ |} ≤min{| | ,||}B.min{| + | ,| ﹣ |} ≥min{|| ,||}.max{|+ |2,|﹣ |2}≤| |2+| |2.max{| + |2,| ﹣ |2} ≥C D| |2+|| 2【考点】 98:向量的加法; 99:向量的减法.【专题】 5A:平面向量及应用.【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+ 和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项 A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项 B,取,是非零的相等向量,则不等式左边min{|+ | ,|﹣|} =0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{| + | 2, |﹣| 2} =| + | 2=4,而不等式右边=|| 2+| | 2=2,故C不成立,D选项正确.故选: D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放12在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.( 5 分)已知甲盒中仅有 1 个球且为红球,乙盒中有 m 个红球和 n 个蓝球( m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.( a)放入 i 个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入 i 个球后,从甲盒中取 1 个球是红球的概率记为 p i(i=1,2).则()> p ,E(ξ)< E(ξ)A.p1 212 C.p1>p2,E(ξ1)> E(ξ2)B.p < p ,E(ξ)> E(ξ)1212 D.p1<p2,E(ξ1)< E(ξ2)【考点】 CH:离散型随机变量的期望与方差.【专题】 5I:概率与统计.【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以 P1>P2;由已知ξ的取值为 1、2,ξ的取值为 1、2、 3,12所以,==,13)﹣ E(ξ)=.E(ξ12故选: A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令 m=n=3,也可以很快求解..(分)设函数1(x)=x2,f2(x)=2(x﹣x2),,,10 5fi=0, 1,2,, 99.记 I k=| f k(a1)﹣ f k(a0)|+| f k(a2)﹣ f k(a1)丨 + +| f k (a99)﹣ f k( a98)| ,k=1, 2, 3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【考点】 57:函数与方程的综合运用.【专题】 51:函数的性质及应用.【分析】根据记 I k=| f k(a1)﹣ f k(a0)|+| f k(a2)﹣ f k(a1)丨 + +| f k( a99)﹣ f k (a98)| ,分别求出 I1, I2,I3与 1 的关系,继而得到答案【解答】解:由,故==1,由,故×= ×<1,+=,故 I2<I1<I3,故选: B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1 的关系,属于难题.14二、填空题11.( 4 分)在某程序框图如图所示,当输入50 时,则该程序运算后输出的结果是 6 .【考点】 E7:循环结构; EF:程序框图.【专题】 5K:算法和程序框图.【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的 i 的值.【解答】解:由程序框图知:第一次循环 S=1,i=2;第二次循环 S=2×1+2=4,i=3;第三次循环S=2×4+3=11, i=4;第四次循环 S=2×11+4=26,i=5;第五次循环 S=2×26+5=57,i=6,满足条件 S> 50,跳出循环体,输出i=6.故答案为: 6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.1512.( 4 分)随机变量ξ的取值为 0,1,2,若 P(ξ =0) = , E(ξ)=1,则 D(ξ)=.【考点】 CH:离散型随机变量的期望与方差.【专题】 5I:概率与统计.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设 P(ξ=1)=p,P(ξ=2)=q,则由已知得 p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4 分)当实数 x,y 满足时,1≤ax+y≤ 4恒成立,则实数a的取值范围是[].【考点】 7C:简单线性规划.【专题】 59:不等式的解法及应用.【分析】由约束条件作出可行域,再由1≤ax+y≤ 4 恒成立,结合可行域内特殊点 A, B, C 的坐标满足不等式列不等式组,求解不等式组得实数 a 的取值范围.【解答】解:由约束条件作可行域如图,联立,解得 C(1,).联立,解得 B(2,1).16在 x﹣y﹣ 1=0 中取 y=0 得 A(1,0).要使 1≤ax+y≤4 恒成立,则,解得: 1.∴实数 a 的取值范围是.解法二:令 z=ax+y,当 a>0 时, y=﹣ax+z,在 B 点取得最大值, A 点取得最小值,可得,即 1≤a≤;当 a<0 时, y=﹣ax+z,在 C 点取得最大值,① a<﹣ 1 时,在 B 点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣ 1<a< 0 时,在 A 点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即: 1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化17思想方法,训练了不等式组得解法,是中档题.14.( 4 分)在 8 张奖券中有一、二、三等奖各 1 张,其余 5 张无奖.将这 8 张奖券分配给 4 个人,每人 2 张,不同的获奖情况有60种(用数字作答).【考点】 D9:排列、组合及简单计数问题.【专题】 5O:排列组合.【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有 1 人获得2张,1人获得 1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24 种;一、二、三等奖,有 1 人获得 2 张, 1 人获得 1 张,共有=36 种,共有 24+36=60 种.故答案为: 60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.( 4 分)设函数 f(x)=,若f(f(a))≤ 2,则实数a的取值范围是(﹣∞,].【考点】 5B:分段函数的应用.【专题】 59:不等式的解法及应用.【分析】画出函数 f (x)的图象,由f(f( a))≤ 2,可得 f( a)≥﹣ 2,数形结合求得实数 a 的取值范围.【解答】解:∵函数 f (x)=,它的图象如图所示:由 f(f( a))≤ 2,可得 f( a)≥﹣ 2.当 a<0 时, f (a)=a2+a=(a+)2﹣≥﹣2恒成立;18当 a≥0 时, f (a)=﹣a2≥﹣ 2,即 a2≤2,解得 0≤ a≤,则实数 a 的取值范围是a≤,故答案为:(﹣∞,] .【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.( 4 分)设直线 x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点 P( m,0)满足 | PA| =| PB| ,则该双曲线的离心率是.【考点】 KC:双曲线的性质.【专题】 5D:圆锥曲线的定义、性质与方程.【分析】先求出 A,B 的坐标,可得AB 中点坐标为(,),利用点 P( m,0)满足 | PA| =| PB| ,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则19与直线 x﹣3y+m=0 联立,可得 A(,),B(﹣,),∴ AB中点坐标为(,),∵点 P(m, 0)满足 | PA| =| PB| ,∴=﹣3,∴ a=2b,∴= b,∴e= = .故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4 分)如图,某人在垂直于水平地面ABC的墙面前的点 A 处进行射击训练.已知点 A 到墙面的距离为 AB,某目标点 P 沿墙面上的射线 CM 移动,此人为了准确瞄准目标点 P,需计算由点 A 观察点 P 的仰角θ的大小.若 AB=15m,AC=25m,∠BCM=30°,则 tan θ的最大值是.(仰角θ为直线AP与平面 ABC所成角)【考点】 HO:三角函数模型的应用;HU:解三角形.【专题】 58:解三角形.20【分析】过 P 作 PP′⊥ BC,交 BC于 P′,连接 AP′,则 tan θ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵ AB=15m,AC=25m,∠ ABC=90°,∴ BC=20m,过 P 作 PP′⊥ BC,交 BC于 P′,连接 AP′,则 tan θ=,设 BP′=x,则 CP′=20﹣ x,由∠ BCM=30°,得 PP′=CP′tan30 °=(20﹣ x),在直角△ ABP′中, AP′=,∴ tan θ= ?,令 y=,则函数在x∈[ 0,20]单调递减,∴ x=0 时,取得最大值为=.若 P′在 CB的延长线上, PP′=CP′tan30 °=(20+x),在直角△ ABP′中, AP′=,∴ tan θ= ?,令 y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分21析解决问题的能力,属于中档题.三、解答题18.( 14 分)在△ ABC中,内角 A, B, C 所对的边分别为 a,b,c.已知 a≠b,c= ,cos2A﹣cos2 B= sinAcosA﹣sinBcosB(1)求角 C 的大小;(2)若 sinA= ,求△ ABC的面积.【考点】 GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】 58:解三角形.【分析】( 1)利用倍角公式、两角和差的正弦公式可得,由 a≠ b 得, A≠B,又 A+B∈( 0,π),可得,即可得出.(2)利用正弦定理可得 a,利用两角和差的正弦公式可得 sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由 a≠b 得, A≠ B,又 A+B∈( 0,π),得,即,∴;( 2)由,利用正弦定理可得,得,由 a<c,得 A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.22.(分)已知数列{ a n } 和{ b } 满足 a a(n∈N*).若 { a } 为等19 14n1a2a3n=n比数列,且 a1=2, b3=6+b2.(Ⅰ)求 a n和 b n;(Ⅱ)设 c(∈N *).记数列 { c } 的前 n 项和为 S .n=n n n(i)求 S n;(i i)求正整数 k,使得对任意 n∈N*均有 S k≥ S n.【考点】 8E:数列的求和; 8K:数列与不等式的综合.【专题】 54:等差数列与等比数列.【分析】(Ⅰ)先利用前n 项积与前( n﹣1)项积的关系,得到等比数列 { a n } 的第三项的值,结合首项的值,求出通项 a n,然后现利用条件求出通项 b n;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵ a1 23 a n(∈*)①,a a=n N当 n≥2,n∈N*时,②,由①②知:,令 n=3,则有.∵b3=6+b2,∴ a3=8.∵{ a n} 为等比数列,且 a1=2,∴ { a n} 的公比为 q,则=4,由题意知 a n>0,∴ q> 0,∴ q=2.∴( n∈ N*).又由 a a(∈N * )得:1a2a3n=n,23,∴b n=n(n+1)(n∈N*).(Ⅱ)(i)∵ c n ===.∴S n=c1+c2+c3+ +c n====;(ii)因为 c1=0,c2>0,c3> 0, c4>0;当 n≥5 时,,而=>0,得,所以,当 n≥5 时, c n< 0,综上,对任意 n∈ N*恒有 S4≥S n,故 k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15 分)如图,在四棱锥 A﹣BCDE中,平面 ABC⊥平面 BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明: DE⊥平面 ACD;(Ⅱ)求二面角B﹣AD﹣ E 的大小.24【考点】 LW:直线与平面垂直; MJ:二面角的平面角及求法.【专题】 5F:空间位置关系与距离;5G:空间角; 5Q:立体几何.【分析】(Ⅰ)依题意,易证AC⊥平面 BCDE,于是可得 AC⊥ DE,又 DE⊥DC,从而 DE⊥平面 ACD;(Ⅱ)作 BF⊥AD,与 AD 交于点 F,过点 F 作 FG∥ DE,与 AE交于点 G,连接 BG,由(Ⅰ)知 DE⊥AD,则 FG⊥AD,所以∠ BFG就是二面角 B﹣AD﹣ E 的平面角,利用题中的数据,解三角形,可求得 BF=,AF= AD,从而 GF= ,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形 BCDE中,由 DE=BE=1,CD=2,得 BD=BC=,由 AC=222,AB=2得 AB=AC+BC ,即 AC⊥BC,又平面 ABC⊥平面 BCDE,从而 AC⊥平面 BCDE,所以 AC⊥DE,又 DE⊥DC,从而 DE⊥平面 ACD;(Ⅱ)作 BF⊥AD,与 AD 交于点 F,过点 F 作 FG∥ DE,与 AE交于点 G,连接 BG,由(Ⅰ)知 DE⊥AD,则 FG⊥AD,所以∠ BFG就是二面角 B﹣AD﹣ E 的平面角,222在直角梯形 BCDE中,由 CD =BC+BD ,得 BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于 AC⊥平面 BCDE,得 AC⊥ CD.在 Rt△ACD中,由 DC=2,AC= ,得 AD= ;在Rt△AED中,由 ED=1,AD= 得 AE= ;在 Rt△ABD 中,由 BD=,AB=2,AD=得BF=,AF= AD,从而GF=,在△ ABE,△ ABG中,利用余弦定理分别可得 cos∠BAE=,BG=.在△ BFG中, cos∠BFG==,25所以,∠ BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.21.( 15 分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点 P,且点 P 在第一象限.(Ⅰ)已知直线l 的斜率为 k,用 a,b,k 表示点 P 的坐标;(Ⅱ)若过原点O 的直线 l1与 l 垂直,证明:点 P 到直线 l1的距离的最大值为 a ﹣b.【考点】 KH:直线与圆锥曲线的综合.【专题】 5D:圆锥曲线的定义、性质与方程;5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设直线 l 的方程为 y=kx+m( k< 0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△ =0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线 l1过原点 O 且与直线 l 垂直,设直线 l1的方程为 x+ky=0,利用点26到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点 P 到直线 l 1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线 l 的方程为 y=kx+m(k<0),由,消去 y得(b2+a2k2) x2+2a2kmx+a2m2﹣a2b2=0.由于直线 l 与椭圆 C 只有一个公共点P,故△ =0,即 b2﹣ m2+a2 k2=0,此时点 P 的横坐标为﹣,代入y=kx+m得点 P 的纵坐标为﹣ k?+m=,∴点 P 的坐标为(﹣,),又点 P 在第一象限,故m>0,故 m=,故点 P 的坐标为 P(,).(Ⅱ)由于直线 l1过原点 O 且与直线 l 垂直,故直线 l1的方程为 x+ky=0,所以点P 到直线 l1的距离d=,整理得: d=,27因为a2k2 +≥ 2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点 P 到直线 l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.22.( 14 分)已知函数 f (x)=x3+3| x﹣ a| (a∈R).(Ⅰ)若 f(x)在 [ ﹣ 1,1] 上的最大值和最小值分别记为M(a),m(a),求 M (a)﹣ m(a);(Ⅱ)设 b∈R,若 [ f(x)+b] 2≤4 对 x∈[ ﹣1,1] 恒成立,求 3a+b 的取值范围.【考点】 6E:利用导数研究函数的最值.【专题】 53:导数的综合应用.【分析】(Ⅰ)利用分段函数,结合 [ ﹣ 1,1] ,分类讨论,即可求 M( a)﹣ m( a);(Ⅱ)令 h(x)=f( x)+b,则 h( x)=,h′(x)=,则[ f( x)+b] 2≤4 对 x∈ [ ﹣ 1,1] 恒成立,转化为﹣ 2≤h(x)≤2 对 x∈[ ﹣1,1] 恒成立,分类讨论,即可求 3a+b 的取值范围.【解答】解:(Ⅰ)∵ f(x)=x3+3| x﹣a| =,28∴ f (′ x)=,①a≤﹣ 1 时,∵﹣ 1≤x≤1,∴ x≥a,f( x)在(﹣ 1, 1)上是增函数,∴ M(a)=f(1)=4﹣3a, m(a)=f(﹣ 1) =﹣4﹣3a,∴M(a)﹣ m( a) =8;②﹣ 1<a< 1 时, x∈( a, 1),f (x)=x3+3x﹣ 3a,在( a,1)上是增函数;x∈(﹣ 1, a),f(x) =x3﹣ 3x+3a,在(﹣ 1,a)上是减函数,∴M(a)=max{ f(1),f(﹣ 1)} ,m(a)=f(a)=a3,∵ f(1)﹣ f(﹣ 1) =﹣ 6a+2,∴﹣ 1<a≤时, M(a)﹣ m( a)=﹣a3﹣3a+4;<a< 1 时, M ( a)﹣ m(a)=﹣a3+3a+2;③a≥ 1 时,有 x≤ a, f(x)在(﹣ 1,1)上是减函数,∴ M(a)=f(﹣ 1) =2+3a,m( a)=f(1)=﹣2+3a,∴ M(a)﹣ m( a) =4;(Ⅱ)令 h(x)=f( x)+b,则 h( x)=,h′(x)=,∵[ f(x)+b] 2≤ 4 对 x∈[ ﹣1,1] 恒成立,∴﹣ 2≤h(x)≤ 2 对 x∈ [ ﹣ 1, 1] 恒成立,由(Ⅰ)知,① a≤﹣ 1 时, h( x)在(﹣ 1,1)上是增函数,最大值 h(1)=4﹣3a+b,最小值 h(﹣ 1)=﹣4﹣3a+b,则﹣ 4﹣3a+b≥﹣ 2 且 4﹣3a+b≤2 矛盾;②﹣ 1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣ 3a+b,∴ a3+b≥﹣ 2且 4﹣ 3a+b≤ 2,令 t( a) =﹣ 2﹣ a3+3a,则 t ′( a)=3﹣3a2>0,t (a)在( 0,)上是增函数,∴t (a)> t (0)=﹣2,∴﹣ 2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值 h(﹣ 1)=3a+b+2,则 a3+b≥﹣ 229且 3a+b+2≤2,∴﹣< 3a+b≤0;④a≥ 1 时,最大值 h(﹣ 1)=3a+b+2,最小值 h(1)=3a+b﹣2,则 3a+b﹣2≥﹣2 且 3a+b+2≤2,∴ 3a+b=0.综上, 3a+b 的取值范围是﹣ 2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.30。
2014年 浙江省 高考数学 试卷及解析(文科)

2014年浙江省高考数学试卷(文科)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(5分)设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(﹣∞,5]B.[2,+∞)C.(2,5) D.[2,5]2.(5分)设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.72cm3B.90cm3C.108cm3D.138cm34.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A .向左平移个单位B .向右平移个单位1C .向左平移个单位D .向右平移个单位5.(5分)已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.﹣2 B.﹣4 C.﹣6 D.﹣86.(5分)设m、n是两条不同的直线,α,β是两个不同的平面,则()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α7.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3 B.3<c≤6 C.6<c≤9 D.c>98.(5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A .B .C .D .9.(5分)设θ为两个非零向量,的夹角,已知对任意实数t,|+t|的最小值为1.()A.若θ确定,则||唯一确定B.若θ确定,则||唯一确定C.若||确定,则θ唯一确定D.若||确定,则θ唯一确定210.(5分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练,已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小(仰角θ为直线AP 与平面ABC所成的角).若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是()A .B .C .D .二、填空题(本大题共7小题,每小题4分,满分28分)11.(4分)已知i 是虚数单位,计算=.12.(4分)若实数x,y满足,则x+y的取值范围是.13.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.314.(4分)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是.15.(4分)设函数f(x)=,若f(f(a))=2,则a=.16.(4分)已知实数a,b,c满足a+b+c=0,a2+b2+c2=1,则a的最大值是.17.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.三、解答题(本大题共5小题,满分72分。
浙江省学考数学试题汇编 第3章三角函数与三角恒等变换

2010-2014学考真题汇编---第三章 三角函数与三角恒等变换班级 姓名一、选择题1、函数()sin(2)()3f x x x R π=+∈的最小正周期为 ( )(A)2π(B)π (C)2π (D)4π 2、在ABC ∆中,若2,1,30BC AC A ==∠=,则ABC ∆是 ( ) (A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)形状不能确定 3、已知[,]123x ππ∈-,则函数44sin cos y x x =-的最小值是 ( )(A)1- (B) (C)12(D)1 4、56π是 ( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限5、函数()cos2f x x =,x ∈R 的最小正周期是 ( )(A)4π(B)2π(C) π (D)2π6、sin y x =的图象向右平移3π个单位长度后,得到的图象所对应的函数是 ( )(A))3sin(π-=x y (B))3sin(π+=x y (C)3sin π-=x y (D)3sin π+=x y7、∆ABC 中角,,A B C 所对边分别为,,a b c ,若b =2,c =1,B =45º,则sin C =( ) (A)42 (B)21 (C)22 (D)18、已知α为钝角,1sin()43πα+=,则sin()4πα-的值是 ( ) (A)31- (B)322- (C) 31(D)322 9、sin 4π= ( )(A)21 (B)22 (C)23 (D) 110、函数)6cos(2)(π+=x x f ,x ∈R 的最小正周期为 ( )(A)4π (B)2π (C)π (D)2π11、若1tan 2α=,1tan 3β=,则tan()αβ+= ( ) (A)75 (B)65(C)1 (D)212、将函数)3sin(π-=x y 的图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所对应的函数是 ( )(A))32sin(π-=x y (B))322sin(π-=x y (C))321sin(π-=x y (D))621sin(π-=x y13、若0cos ,0sin <>αα,则角α为 ( ) (A) 第一象限角 (B )第二象限角 (C) 第三象限角 (D) 第四象限角 14、函数R x x x f ∈+=),42sin()(π的最小正周期为 ( )(A)4π (B )2π(C)π (D)π2 15、在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知0060,45,3===B A b ,则a = ( ) (A)2 (B )3 (C)223 (D) 616、为得到)42sin(2π+=x y 的图像,须把x y 2sin 2=的图像上所有点( )(A) 向左平行移动8π个单位长度 (B )向右平行移动8π个单位长度 (C) 向左平行移动4π个单位长度 (D) 向右平行移动4π个单位长度17、与角-6π终边相同的角是 ( )A.56πB.3πC.116πD.23π18、设函数()sin cos f x x x =,x ∈R ,则函数()f x 的最小值是( )A.14-B.12-C.D.-119、在△ABC 中,若2AB =,3AC =,60A ∠=,则BC 的长为( )C.3二、填空题20、sin 22cos38cos 22sin38+= . 21、若55cos =α,20πα<<,则)62sin(πα-= 三、解答题22、在锐角∆ABC 中,角A , B , C 所对的边分别为a , b , c . 已知b =2,c =3,sin A =322. 求∆ABC 的面积及a 的值.23、已知3sin ,052παα=<<,求cos α和sin()4πα+的值.答案:BAACC AABBD CABCA ACBD22、解:1sin 2ABC S bc A ∆==由题意知,ABC ∆为锐角三角形,则1cos 3A =有余弦定理知,2222cos 9a b c bc A =+-=,则3a =23、解:∵3sin ,052παα=<<∴4cos 5α===∴34sin()sin cos cos sin 44455πππααα+=+=+=。
[精品]2014年浙江省普通高中学业水平考试及答案
![[精品]2014年浙江省普通高中学业水平考试及答案](https://img.taocdn.com/s3/m/dff2bb050722192e4436f60d.png)
2014年浙江省普通高中业水平考试模拟试卷考生须知:1全卷分试卷Ⅰ、Ⅱ和答卷Ⅰ、Ⅱ,试卷共 页,有五大题,满分为100分。
考试时间90分钟。
2试卷Ⅰ、Ⅱ的答案必须做在答卷Ⅰ、Ⅱ的相应位置上,做在试卷上无效。
3请用蓝、黑墨水或圆珠笔将姓名、准考证号分别填写在答卷Ⅰ、Ⅱ的相应位置上,用铅笔将答卷Ⅰ上的准考证号和名称所对应的括号和方框内涂黑。
4本卷可能用到的相对原子质量: H-1 H-4 -12 N-14 O-16 F-56 N-23 -355 I-127试 卷 I一、选择题(本题有24小题,每小题只有一个选项正确,每题2分,共48分)1. 2012年7月,瑞士一家研究机构称在前巴勒斯坦国总统阿拉法特的遗物中发现了钚元素的痕迹,钚是一种毒性很强的元素,该机构称阿拉法特很有可能死于钚中毒。
Pu 23994是钚的一种具有放射性的核素,下列关于Pu 23994的说法中正确的是A .质量是239B .核外电子239 .质子是145 D .中子是94 2.电子的发现是以下哪位家A .阿伏伽德罗B .卢瑟福 .门捷列夫 D .汤姆孙3.下列用语表达不正确的是A .氟离子的结构示意图:B .二氧碳的结构式:O==O. 氯钠的电子式:D .硫酸钠的电离方程式:N 2SO 4=2N ++SO 42-4.分类法是一种行之有效、简单易行的方法,人们在认识事物时可以采取多种分类方。
下列关于“H 3OON”的分类不正确的是A .合物B .氧物 .有机物 D .钠盐5.当光束通过鸡蛋清水溶液时,从侧面观察到一条光亮的“通路”,说明鸡蛋清水溶液是A.溶液 B.胶体.悬浊液 D.乳浊液6.电解质有强弱之分,以下物质属于强电解质的是A.H2O B.2.NH3·H2O D.N7.在某酸性无色透明溶液中能大量共存的离子组是A. A3+、Ag+、NO3-、- B.Mg2+、NH4+、NO3-、-. B2+、+、O32-、- D.2+、N+、NO3-、SO42-8.下列说法正确的是A.L、N、元素的原子核外电子层随着核电荷的增加而减少B.第二周期元素从L到F,非金属性逐渐减弱.因为比N容易失去电子,所以比N的还原性强D.O与S为同主族元素,且O比S的非金属性弱9.用固体N配制250L 1/L的N溶液,下列仪器中不需要使用的是A.250L容量瓶 B.烧瓶.玻璃棒 D.胶头滴管10.下列物质中,分子的空间结构为正四面体的是A.甲烷 B.乙烯.乙炔D.苯11.下列物质中属于共价合物的是A.H B.NOH .MgO D.I212.下图表示某有机反应过程的示意图,该反应的类型是A.取代反应B.加成反应.聚合反应 D.酯反应13.下列物质和新制(OH)2共热,有红色沉淀产生的是A.油脂B.乙醇.葡萄糖 D.乙酸14.下列方程式中,正确的是A .实验室用浓盐酸与MO 2反应制2:MO 2 +2H ++2-=2↑+M 2+ +H 2OB .氢氧钡溶液与稀硫酸反应:B 2++SO 42-=BSO 4↓.2氢气和1 氧气合生成2 液态水,放出5716J 热量的热方程式2H 2(g) +O 2(g)= 2H 2O() ΔH=- 5716 J·-1D .醋酸溶液与水垢中的O 3反应:O 3+2H +=2++H 2O +O 2↑ 15.用N A 表示阿伏加德罗常的值,下列叙述正确的是A .224 L O 2中含有氧分子的个为2N AB .56g F 与足量氯气反应转移的电子为2N A .4 g 氦气中含有氦原子的个为N A D .1 ·L -1 Mg 2溶液中含有氯离子个为2N A16.、b 、c 、d 均为短周期元素,它们在周期表中的位置如图所示。
2014年普通高等学校招生全国统一考试(浙江卷)数学(文)试卷及解析

22.本题主要考查抛物线几何性质、直线与抛物线的 位置关系、三角形面积公式、平面向量等基础知识,同时考查解析几何的基本思想方法和运算求解能力。满分14分。
(1)由题意知,焦点为 ,准线方程为 ,
设 ,由抛物线的定义知, ,得到 ,
代入 求得 或 ,
所以 或 ,由 得 或 ,
(2)设直线 的方程为 , , , ,
(1)因为 ,
①当 时,
若 ,则 , ,故 在 上是减函数;
若 ,则 , ,故 在 上是增函数;
所以, .
②当 ,则 , , ,故 在 上是减函数,
所以 ,
综上所述, .
(2)令 ,
①当 时, ,
若 , 得 ,所以 在 上是增函数,所以 在 上的最大值是 ,且 ,所以 ,
故 .
若 , ,则 ,所以 在 上是减函数,
14.在三张奖劵中有一、二等各一张,另有一张无奖,甲乙两人各抽取一张,两人都中奖的概率为
.
15.设函数 ,若 ,则 .
16.已知实数 、 、 满足 , ,则 的最大值为为_______.
17. 设直线 与双曲线 的两条渐近线分别交于 、 ,若 满足 ,则双曲线的离心率是.
三.解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。
(1)连结 ,在直角梯形 中,由 , 得 ,
由 得 ,即 ,
又平面 平面 ,从而 平面 .
(2)在直角梯形 中,由 , 得 ,
又平面 平面 ,所以 平面 .
作 于 的延长线交于 ,连结 ,则 平面 ,
所以 是直线 与平面 所成的角.
在 中,由 , ,得 , ,
在 中, , ,得 ,
在 中,由 , 得 ,
2014年全国初中数学联合竞赛初一试题(浙江卷)参考答案

2014 年全国初中数学联合竞赛初一试题(浙江卷)参考答案第一试一、选择题:(本题满分 42 分,每小题 7 分)1. 1.设,则 abcd < 0a| a | + b | b | + c | c | + d | d | + abcd | abcd | 的大于 0 的值等于( ) A. 1 B. 2 C. 3 D.4【答案】A【解析】因为 ,所以其中有一个,三个小于 0.由于大于 0, 所以,一个小于abcd < 00.2.已知 a =20142013 ,b = 20132014 , c = 20132014 d = 20142013 ,则 a ,b , c ,2013 2014 2013 2014d 大小关系是( )A .a >b >c >dB .c >a >d >bC .a >d >c >bD .a >c >d >b【答案】D【解析】因为 20142013 > 20132014 ,所以a = 20142013 > c =20132014 ,20132013同理: b < d 又因为c =2013⨯10000 + 2014 = 10000 + 2014 , d = 2014⨯10000 + 2013 = 10000 +20132013 2013 2014 2014所以c > d .故选D3、 12 + 1 -11 + 2 1 31 + 4 1 - 5 1 + 6 1 - 7 1 + 8 1 - 9 1 +10 1 -111的值为( )23 2 3 2 32 3 2 3 2 3A. 5B. 6C. 7D. 8【答案】C【解析】12 + 1 -11 + 2 1 - 31 + 4 1 - 5 1 + 6 1 - 7 1 + 8 1 - 9 1 +10 1 -1112 3 2 3 2 3 2 3 2 3 2 3= 12 + 1 - (1 + 1) + (2 + 1) - (3 + 1) + (4 + 1) - (5 + 1) + (6 + 1)2 3 2 3 2 3 2- (7 + 1) + (8 + 1) - (9 + 1) + (10 + 1) - (11+ 1) = (1+ 1 - 1) ⋅ 6 = 73 2 3 2 3 2 34. 有 2014 个数排成一行,其中任意相邻三个数中,中间的数等于它前后两数的和, 若第一个数和第二个数都是 1,则这 2014 个数的和等于( )A.2014 B.1 C.0 D.-1 【答案】B.【解析】由已知可知,前n 个数的排列顺序为1,1,0,-1,-1,0,1,1,0,…由此可见,从第7个数开始循环,即每隔6个数循环,这6个数的和等于0.又因为2014=6×335+4,所以这2014 个数的和等于1,故选B.5.假设时间用十进制表示,即每天有10 个小时,每小时有100 分钟.按照十进制生产出来的新电子闹钟读数为:午夜前为9:99;午夜对应0:00;1:25 对应凌晨3:00;7:50 对应下午6:00.在十进制下,如果一个人想在早上6:36 醒来,那么他应该将新电子闹钟定时在()A.2:00 B.2:25 C.2:50 D.2:75【答案】D.【解析】正常情况下,每天有60⨯ 24 =1440 分钟.早上6:36 表示午夜后396 分钟.在十进制下,每天有1000 分钟,因此早上6:36 对应午夜后396 ⨯1000 = 275 分钟.从而,1440新电子闹钟应该设定的时间为2:75,故选D.6、甲、乙、丙、丁的衬衫上各印有一个号码,甲说“我是2号,乙是3号”;乙说“我是2号,丙是4号”;丙说“我是3号,丁是2号”;丁说“我是1号,乙是3号”;他们四人都只说对一半,则甲是()A. 4 号B. 3 号C. 2 号D. 1 号【答案】D【解析】如果甲说“我是2 号,乙是3 号”中乙是3 号为真,由乙说丙是4 号为真,则由丙说丁是2 号为真,则乙是3 号,丙是4 号,丁为2 号,所以甲为1 号。
2014年普通高等学校招生全国统一考试(浙江卷)

2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A =( ) A .∅ B .{2} C .{5} D .{2,5}2.已知i 是虚数单位,a ,b ∈R ,则“a =b =1”是“(a +b i)2=2i ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A 当a =b =1时,(a +b i)2=(1+i)2=2i ,反之,若(a +b i)2=2i ,则有a =b =-1或a =b =1,因此选A.3.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A .90 cm 2B .129 cm 2C .132 cm 2D .138 cm 24.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( ) A .向右平移π4个单位B .向左平移π4个单位C .向右平移π12个单位D .向左平移π12个单位5.在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A .45B .60C .120D .2106.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >97.在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是( )8.记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( ) A .min{|a +b |,|a -b |}≤min{|a |,|b |} B .min{|a +b |,|a -b |}≥min{|a |,|b |} C .max{|a +b |2,|a -b |2}≤|a |2+|b |2 D .max{|a +b |2,|a -b |2}≥|a |2+|b |29.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(m ≥3,n ≥3),从乙盒中随机抽取i (i =1,2)个球放入甲盒中.(1)放入i 个球后,甲盒中含有红球的个数记为ξi (i =1,2);(2)放入i 个球后,从甲盒中取1个球是红球的概率记为p i (i =1,2). 则( )A .p 1>p 2,E (ξ1)<E (ξ2)B .p 1<p 2,E (ξ1)>E (ξ2)C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2)10.设函数f 1(x )=x 2,f 2(x )=2(x -x 2),f 3(x )=13|sin 2πx |,a i =i99,i =0,1,2,…,99.记I k=|f k (a 1)-f k (a 0)|+|f k (a 2)-f k (a 1)|+…+|f k (a 99)-f k (a 98)|,k =1,2,3.则( )A .I 1<I 2<I 3B .I 2<I 1<I 3C .I 1<I 3<I 2D .I 3<I 2<I 1二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运行后输出的结果是________.12.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.13.当实数x ,y 满足{ x +2y -4≤0, x -y -1≤0, x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).15.设函数f (x )={ x 2+x ,x <0, -x 2,x ≥0,若f (f (a ))≤2,则实数a 的取值范围是________.16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足|P A |=|PB |,则该双曲线的离心率是________.17.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15 m ,AC =25 m ,∠BCM =30°,则tan θ的最大值是________.(仰角θ为直线AP 与平面ABC 所成角)三、解答题(本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤) 18.(本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B .(1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.19.(本题满分14分)已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2.(1)求a n 与b n ;(2)设c n =1a n -1b n (n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *,均有S k ≥S n .20.(本题满分15分)如图,在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2.(1)证明:DE ⊥平面ACD ;(2)求二面角B -AD -E 的大小.21.(本题满分15分)如图,设椭圆C :x 2a 2+y 2b 2=1(a >b >0),动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(1)已知直线l 的斜率为k ,用a ,b ,k 表示点P 的坐标;(2)若过原点O 的直线l 1与l 垂直,证明:点P 到直线l 1的距离的最大值为a -b .22.(本题满分14分)已知函数f (x )=x 3+3|x -a |(a ∈R ).(1)若f (x )在[-1,1]上的最大值和最小值分别记为M (a ),m (a ),求M (a )-m (a ); (2)设b ∈R ,若[f (x )+b ]2≤4对x ∈[-1,1]恒成立,求3a +b 的取值范围.答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.解析:选B 由题意知U ={x ∈N |x ≥2},A ={x ∈N |x ≥5},所以∁U A ={x ∈N |2≤x <5}={2}.故选B.2.解析:选A 当a =b =1时,(a +b i)2=(1+i)2=2i ,反之,若(a +b i)2=2i ,则有a =b =-1或a =b =1,因此选A.3.解析:选D 由三视图画出几何体的直观图,如图所示,则此几何体的表面积S =S 1-S正方形+S 2+2S 3+S斜面,其中S 1是长方体的表面积,S 2是三棱柱的水平放置的一个侧面的面积,S 3是三棱柱的一个底面的面积,则S =(4×6+3×6+3×4)×2-3×3+3×4+2×12×4×3+5×3=138(cm 2),选D.4.解析:选C 因为y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4=2cos 3⎝⎛⎭⎫x -π12,所以将函数y =2cos 3x 的图象向右平移π12个单位后,可得到y =2cos ⎝⎛⎭⎫3x -π4的图象,故选C. 5.解析:选C 由题意知f (3,0)=C 36C 04,f (2,1)=C 26C 14,f (1,2)=C 16C 24,f (0,3)=C 06C 34,因此f (3,0)+f (2,1)+f (1,2)+f (0,3)=120,选C.6.解析:选C 由题意,不妨设g (x )=x 3+ax 2+bx +c -m ,m ∈(0,3],则g (x )的三个零点分别为x 1=-3,x 2=-2,x 3=-1,因此有(x +1)(x +2)(x +3)=x 3+ax 2+bx +c -m ,则c -m =6,因此c =m +6∈(6,9].7.解析:选D 当a >1时,函数f (x )=x a (x >0)单调递增,函数g (x )=log a x 单调递增,且过点(1,0),由幂函数的图象性质可知C 错;当0<a <1时,函数f (x )=x a (x >0)单调递增,函数g (x )=log a x 单调递减,且过点(1,0),排除A ,又由幂函数的图象性质可知C 错,因此选D.8.解析:选D 对于min{|a +b |,|a -b |}与min{|a |,|b |},相当于平行四边形的对角线长度的较小者与两邻边长的较小者比较,它们的大小关系不定,因此A ,B 均错;而|a +b |,|a -b |中的较大者与|a |,|b |可构成非锐角三角形的三边,因此有max{|a +b |2,|a -b |2}≥|a |2+|b |2,因此选D.9.解析:选A 解法一(特值法) 取m =n =3进行计算、比较即可.解法二(标准解法) 从乙盒中取1个球时,取出的红球的个数记为ξ,则ξ的所有可能取值为0,1,则P (ξ=0)=n m +n =P (ξ1=1),P (ξ=1)=m m +n =P (ξ1=2),所以E (ξ1)=1·P (ξ1=1)+2·P (ξ1=2)=m m +n +1,所以p 1=E (ξ1)2=2m +n2(m +n );从乙盒中取2个球时,取出的红球的个数记为η,则η的所有可能取值为0,1,2,则P (η=0)=C 2n C 2m +n =P (ξ2=1),P (η=1)=C 1n C 1mC 2m +n=P (ξ2=2),P (η=2)=C 2mC 2m +n =P (ξ2=3),所以E (ξ2)=1·P (ξ2=1)+2P (ξ2=2)+3P (ξ2=3)=2m m +n +1,所以p 2=E (ξ2)3=3m +n3(m +n ),所以p 1>p 2,E (ξ1)<E (ξ2),故选A.10.解析:选B 显然f 1(x )=x 2在[0,1]上单调递增,可得f 1(a 1)-f 1(a 0)>0,f 1(a 2)-f 1(a 1)>0,…,f 1(a 99)-f 1(a 98)>0,所以I 1=|f 1(a 1)-f 1(a 0)|+|f 1(a 2)-f 1(a 1)|+…+|f 1(a 99)-f 1(a 98)|=f 1(a 1)-f 1(a 0)+f 1(a 2)-f 1(a 1)+…+f 1(a 99)-f 1(a 98)=f 1(a 99)-f 1(a 0)=⎝⎛⎭⎫99992-0=1.f 2(x )=2(x -x 2)在⎣⎡⎦⎤0,4999上单调递增,在⎣⎡⎦⎤5099,1上单调递减,可得f 2(a 1)-f 2(a 0)>0,…,f 2(a 49)-f 2(a 48)>0,f 2(a 50)-f 2(a 49)=0,f 2(a 51)-f 2(a 50)<0,…,f 2(a 99)-f 2(a 98)<0,所以I 2=|f 2(a 1)-f 2(a 0)|+|f 2(a 2)-f 2(a 1)|+…+|f 2(a 99)-f 2(a 98)|=f 2(a 1)-f 2(a 0)+…+f 2(a 49)-f 2(a 48)-[f 2(a 51)-f 2(a 50)+…+f 2(a 99)-f 2(a 98)]=f 2(a 49)-f 2(a 0)-[f 2(a 99)-f 2(a 50)]=2f 2(a 50)-f 2(a 0)-f 2(a 99)=4×5099×⎝⎛⎭⎫1-5099=9 8009 801<1.f 3(x )=13|sin 2πx |在⎣⎡⎦⎤0,2499,⎣⎡⎦⎤5099,7499上单调递增,在⎣⎡⎦⎤2599,4999,⎣⎡⎦⎤7599,1上单调递减,可得f 3(a 1)-f 3(a 0)>0,…,f 3(a 24)-f 3(a 23)>0,f 3(a 25)-f 3(a 24)>0,f 3(a 26)-f 3(a 25)<0,…,f 3(a 49)-f 3(a 48)<0,f 3(a 50)-f 3(a 49)=0,f 3(a 51)-f 3(a 50)>0,…,f 3(a 74)-f 3(a 73)>0,f 3(a 75)-f 3(a 74)<0,f 3(a 76)-f 3(a 75)<0,…,f 3(a 99)-f 3(a 98)<0,所以I 3=|f 3(a 1)-f 3(a 0)|+|f 3(a 2)-f 3(a 1)|+…+|f 3(a 99)-f 3(a 98)|=f 3(a 25)-f 3(a 0)-[f 3(a 49)-f 3(a 25)]+f 3(a 74)-f 3(a 50)-[f 3(a 99)-f 3(a 74)]=2f 3(a 25)-2f 3(a 49)+2f 3(a 74)=232sin 49π99-sin π99>232sin 5π12-sin π12=2326+224-6-24=6+326>1.因此I 2<I 1<I 3.二、填空题:本大题共7小题,每小题4分,共28分.11.解析:S =0,i =1;S =1,i =2;S =4,i =3;S =11,i =4;S =26,i =5;S =57,i =6,此时S >n ,所以i =6.答案:612.解析:由题意设P (ξ=由E (ξ)=1,可得p =35,所以D (ξ)=12×15+02×35+12×15=25.答案:2513.解析:由线性规划的可行域,求出三个交点坐标分别为(1,0),⎝⎛⎭⎫1,32,(2,1),都代入1≤ax +y ≤4,可得1≤a ≤32.答案:⎣⎡⎦⎤1,32 14.解析:分情况:一种情况将有奖的奖券按2张、1张分给4个人中的2个人,种数为C 23C 11A 24=36;另一种将3张有奖的奖券分给4个人中的3个人,种数为A 34=24,则获奖情况总共有36+24=60(种).答案:6015.解析:结合图形(图略),由f (f (a ))≤2可得f (a )≥-2,可得a ≤ 2. 答案:(-∞,2)16.解析:联立直线方程与双曲线渐近线方程y =±b a x 可解得交点为⎝⎛⎭⎫am 3b -a ,bm 3b -a ,⎝ ⎛⎭⎪⎫-am 3b +a ,bm 3b +a ,而k AB=13,由|P A |=|PB |,可得AB 的中点与点P 连线的斜率为-3,即bm 3b -a +bm3b +a2-0am3b -a +-am 3b +a2-m=-3,化简得4b 2=a 2,所以e =52.答案:5217.解析:作PH ⊥BC ,垂足为H ,设PH =x ,则CH =3x ,由余弦定理AH =625+3x 2-403,tan θ=tan ∠P AH =PHAH =1625x 2-403x+3⎝⎛⎭⎫1x >0,故当1x=43125时,tan θ取得最大值,最大值为539.答案:539三、解答题(本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤) 18.解析:(1)由题意得1+cos 2A 2-1+cos 2B 2=32sin 2A -32sin 2B ,即32sin 2A -12cos 2A =32sin 2B -12cos 2B , sin ⎝⎛⎭⎫2A -π6=sin ⎝⎛⎭⎫2B -π6. 由a ≠b ,得A ≠B ,又A +B ∈(0,π),得2A -π6+2B -π6=π,即A +B =2π3,所以C =π3.(2)由c =3,sin A =45,a sin A =c sin C ,得a =85.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C =4+3310,所以,△ABC 的面积为S =12ac sin B =83+1825.19.解析:(1)由题意a 1a 2a 3…a n =(2)b n ,b 3-b 2=6,知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2,舍去), 所以数列{a n }的通项为a n =2n (n ∈N *). 所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *). (2)①由(1)知c n =1a n -1b n =12n -⎝⎛⎭⎫1n -1n +1(n ∈N *),所以S n =1n +1-12n (n ∈N *).②因为c 1=0,c 2>0,c 3>0,c 4>0; 当n ≥5时, c n =1n (n +1)⎣⎡⎦⎤n (n +1)2n-1, 而n (n +1)2n -(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0, 得n (n +1)2n≤5·(5+1)25<1, 所以,当n ≥5时,c n <0.综上,对任意n ∈N *恒有S 4≥S n ,故k =4.20.解析:(1)在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC = 2. 由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC . 又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE . 所以AC ⊥DE .又DE ⊥DC ,从而DE ⊥平面ACD .(2)法一:作BF ⊥AD ,与AD 交于点F .过点F 作FG ∥DE ,与AE 交于点G ,连接BG ,由(1)知DE ⊥AD ,则FG ⊥AD .所以∠BFG 是二面角B -AD -E 的平面角. 在直角梯形BCDE 中,由CD 2=BC 2+BD 2,得BD ⊥BC , 又平面ABC ⊥平面BCDE ,得BD ⊥平面ABC ,从而BD ⊥AB . 由于AC ⊥平面BCDE ,得AC ⊥CD .在Rt △ACD 中,由DC =2,AC =2,得AD = 6. 在Rt △AED 中,由ED =1,AD =6,得AE =7.在Rt △ABD 中,由BD =2,AB =2,AD =6,得BF =233,AF =23AD .从而GF =23.在△ABE ,△ABG 中,利用余弦定理分别可得cos ∠BAE =5714,BG =23.在△BFG 中,cos ∠BFG =GF 2+BF 2-BG 22BF ·GF =32.所以,∠BFG =π6,即二面角B -AD -E 的大小是π6.法二:以D 为原点,分别以射线DE ,DC 为x ,y 轴的正半轴,建立空间直角坐标系D -xyz ,如图所示.由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0),A (0,2,2),B (1,1,0). 设平面ADE 的法向量为m =(x 1,y 1,z 1),于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33·2=32. 由题意可知,所求二面角是锐角,故二面角B -AD -E 的大小是π6.21.解析:(1)设直线l 的方程为y =kx +m (k <0),由消去y 得(b 2+a 2k 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0.由于l 与C 只有一个公共点,故Δ=0,即b 2-m 2+a 2k 2=0,解得点P 的坐标为⎝⎛⎭⎫-a 2km b 2+a 2k 2,b 2m b 2+a 2k 2.又点P 在第一象限,故点P 的坐标为P -a 2kb 2+a 2k 2,b 2b 2+a 2k 2.(2)由于直线l 1过原点O 且与l 垂直,故直线l 1的方程为x +ky =0,所以点P 到直线l 1的距离d =⎪⎪⎪⎪⎪⎪-a 2k b 2+a 2k2+b 2k b 2+a 2k 21+k2,整理得d =a 2-b 2b 2+a 2+a 2k 2+b2k2,因为a 2k 2+b 2k2≥2ab ,所以a 2-b 2b 2+a 2+a 2k 2+b 2k2≤a 2-b 2b 2+a 2+2ab=a -b ,当且仅当k 2=ba时等号成立.所以,点P 到直线l 1的距离的最大值为a -b . 22.由于-1≤x ≤1,①当a ≤-1时,有x ≥a ,故f (x )=x 3+3x -3a ,此时f (x )在(-1,1)上是增函数,因此,M (a )=f (1)=4-3a ,m (a )=f (-1)=-4-3a ,故M (a )-m (a )=(4-3a )-(-4-3a )=8.②当-1<a <1时,若x ∈(a,1),f (x )=x 3+3x -3a ,在(a,1)上是增函数;若x ∈(-1,a ),f (x )=x 3-3x +3a ,在(-1,a )上是减函数,所以,M (a )=max{f (1),f (-1)},m (a )=f (a )=a 3. 由于f (1)-f (-1)=-6a +2,因此,当-1<a ≤13时,M (a )-m (a )=-a 3-3a +4;当13<a <1时,M (a )-m (a )=-a 3+3a +2. ③当a ≥1时,有x ≤a ,故f (x )=x 3-3x +3a ,此时f (x )在(-1,1)上是减函数,因此,M (a )=f (-1)=2+3a ,m (a )=f (1)=-2+3a ,故M (a )-m (a )=(2+3a )-(-2+3a )=4.因为[f (x )+b ]2≤4对x ∈[-1,1]恒成立,即-2≤h (x )≤2对x ∈[-1,1]恒成立, 所以由(1)知,①当a ≤-1时,h (x )在(-1,1)上是增函数,h (x )在[-1,1]上的最大值是h (1)=4-3a +b ,最小值是h (-1)=-4-3a +b ,则-4-3a +b ≥-2且4-3a +b ≤2,矛盾;②当-1<a ≤13时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (1)=4-3a +b ,所以a 3+b ≥-2且4-3a +b ≤2,从而-2-a 3+3a ≤3a +b ≤6a -2且0≤a ≤13. 令t (a )=-2-a 3+3a ,则t ′(a )=3-3a 2>0,t (a )在⎝⎛⎭⎫0,13上是增函数,故t (a )≥t (0)=-2,因此-2≤3a +b ≤0;③当13<a <1时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (-1)=3a +b +2,所以a 3+b ≥-2是3a +b +2≤2,解得-2827<3a +b ≤0; ④当a ≥1时,h (x )在[-1,1]上的最大值是h (-1)=2+3a +b ,最小值是h (1)=-2+3a +b ,所以3a +b +2≤2且3a +b -2≥-2,解得3a +b =0.综上,得3a +b 的取值范围是-2≤3a +b ≤0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第 21题图)
2 ..2
22.在平面直角坐标系^O 3; 中 ,设双曲线 2
l ( a > 0 ,6 > 0 ) 的左焦点为F ,© M 的圆心M
在 y 轴正半轴上,半 径 为 双 曲 线 的 实 轴 长 2 a .若 © M 与 双 曲 线 的 两 渐 近 线 均 相 切 ,且直线 M F 与双曲线的一条渐近线垂直,则该双曲线的离心率为
I- 已知集合八= { 2 ,3,4},5 = { 3 ,4 ,5} ,则 A f lB =
尤⑶
B. {3,4}
C. {2,3,4}
D. {2,3 ,4 ,5}
2 .函数/(X )
的定义域为 \fx
A. (- 0 0 ,+ 0 0 )
C [0,+oo)
( —° ° ,o) U (0,+ °°)
D, ( 0 ,+ oo)
任意一点P O r j ) 满足IP A 卜 AlPBI (A > 0 且 A关I).
( I ) 求 曲 线 C 的 方 程 ,并指出此曲线的形状; ( n ) 对 a 的两个不同取值入: ,a2,记 对 应 的 曲 线 分 别 为 C ^ C 2.
( 丨)若 两 曲 线 C ^ C 2 关于某直线对称,求 A1 与 A2 的积; ( ii ) 若 判 断 两 曲 线 的 位 置 关 系 ,并说明理由.
3 . 已 知 等 比 数 列 {〜 } 的 通 项 公 式 为 a rt= 3 # 2
) ,则该数列的公比是
B. 9
D .3
4 . 下 列 直 线 中 倾 斜 角 为 45°的是
y
5.下列算式正确的是
A. Ig8 + lg2 = lg l0
C. Ig8+ lg2 = lgl6
D. I
B/lg8 + lg2 = lg6 D. Ig8 + lg2 = lg4
2 8 .已 知 函 数 / ( x ) = 2Sin(o;x + 寻)(o>>0)的 最 小 正 周 期 为 Ti,则
29.如 图 ,在 矩 形 A B C D 中 ,£:为 边 A D 的 中 点 ,AB = 1,B C = 2 ,分 别 以 A ,D
为 圆 心 ,I 为 半 径 作 圆 弧 若 由 两 圆 弧 E B ,£:C及 边 B C 所围成的平 面图形绕直线A D 旋转一周,则 所 形 成 的 几 何 体 的 表 面 积 为 ▲ .
麝
3^/2
a
(第 25题图)
数 学 试 题 第 4 页 (共 6 页 )
非选择题部分
、填 空 题(本 大 题 共 5 小题,每 小 题 2 分 ,共 1 0 分)
26.设 函 数 / ( X )
2x — 2 ,:r〈 l ,
则 / ( —I )的值为
2X
,
2 7 .已 知 直 线 h :x ~ y + l = 09l2:x —y —3= 0 ,则 两 平 行 直 线 I1,Z2 间的距离为
( I )求该数列的公差d 和通项公式a„; ( E ) 设 Sn 为 数 列 {a„}的 前 n 项和. 若 S „> 2n+ 12,求 n 的取值范围
32.(本题 7 分 ) 如图,三棱柱 ABC—A 1B1C1 中,Z C A A 1= Z A 1A B = Z B A C = S O ^AB=AAi = 1 ,
则该椭圆的方程为
2
A.
2+
2
Il
2
D. -+^y2- I
18.设 P (a ,W是函数/ O c ) = y 图象上的任意一点,则下列各点中一定在该函数图象上的是
A. P i ( a ,_ b)
P 2( _ a ,一 b)
C. P 3C- Ul
D. P 4(|a|,一W
I 9• 在空间中,设 m ,n 是不同的直线,《,/?是不同的平面,且 m d a jC Z A 则下列命题正确的是
A•若m ///i,则 a///?
B• 若 m ,n 异面,则 a ,/?相交
• 若 m丄n ,则 a丄
D .若 m ,n 相交,则 a ,/?相交
.r+2^- 3^0?
20.若 实 数 x ,:y 满足不等式组彳2a:—:y—1 > 0 ,贝Ij
的最大值为
r —3:y—3 < 0 ,
A.
B. 0
C -I
D. —3
数 学 试 题 第 3 页 (共 6 页 )
21•如图,在 三 棱 锥 S — A B C 中,£:为 棱 5(:的中点.若焱〔= 2 > ^ ,3八= (^ = 3 < := ^ 8 = 汉 > = 2 ,则
异面直线A C 与 B E 所成的角为
A.30 o
B.45 O
C
C. 60O
a 90O
AC= 2.
( I ) 求 证 :A 1B 丄 平 面 AJB1C;
C
( H ) 求 直 线 氏 C 与平 面 ACC1A i 所成角的正弦值.
数 学 试 题 第 5 页 (共 6 页 )
B (第 32题图)
3 3 .(本 题 8 分) 在 平 面 直 角 坐 标 系 x O y 中 ,点 A ,B 的坐标分别为(一1 ,0 ) ,(I ,0 ) .设 曲 线 C 上
数 学 试 题 第 I 页 (共 6 页 )
6. 某 圆 台 如 图 所 示 放 置 ,则 该 圆 台 的 俯 视 图 是
✓
// /
/
A
、
/ ✓//I
B.
7* cos(7t+a)
A. cos a
B. —cos
D. _ sin
若函数/ U ) = ( a _ l ) 工一I 为 R 上的增函数,则实数a 的取值范围是
A. a < l
B.a>l
C. a<C0
D. a > 0
9. 2 cos2 —— I
A.
42
D. 42
10.直 线 :y= a ( a G R ) 与 抛 物 线 :y2= zX 交点的个数是
A.
a2
D,0 或 I
11.将 函 数 /O c )= s in (x —f ) 图象上的所有点向左平移f 个 单 位 长 度 ,则所得图象的函数解
机密★考试结束前
2014 7 月浙江省普通高中学业水平考试
数学试题
考生须知 . 本试 题卷分选择题和非选择题两部分,共 6 页 ,满 分 1 0 0 分 ,考 试 时 间 1 1 0 分钟 O
2 . 考 生 答 题 前 ,务 必 将 自 己 的 姓 名 、准 考 证 号 用 黑 色 字 迹 的 签 字 笔 或 钢 笔 填 写 在 答 题 纸 上O
的取值范围是
A .[—
C. [—3,5]
[I —2a/3^,1+ 2v^"]
25.在 棱 长 为 I 的正方体A B C D - A 1B1C1D 1 中 ,E ,F 分别为棱A 1D 1, C1D 1 的中点,iV 为线段
B1C 的中点. 若 点 P ,M 分别 为 线 段 D 1B , E F 上 的 动 点 ,则 P M + P iV 的最小值为 AI
围•
数 学 试 题 第 6 页 (共 6 页 )
3 .选 择 题 的 答 案 须 用 2 B 铅 笔 将 答 题 纸 上 对 应 题 目 的 答 案 标 号 涂 黑 ,如 要 改 动 ,须将原填 涂处用橡皮擦净。
4 . 非 选 择 题 的 答 案 须 用 黑 色 字 迹 的 签 字 笔 或 钢 笔 写 在 答 题 纸 上 相 应 区 域 内 ,作图时可先 使 用 2 B 铅 笔 ,确定后须用黑色字迹的签字笔或钢笔描黑,答 案写 在本试题卷上无效。
5 .参考公式
球的)
选择题部分
― 、选 择 题 (本 大 题 共 2 5 小题,I —15每 小 题 2 分 ,16 —2 5 每 小 题 3 分 ,共 6 0 分 。每小题给出
*
9
的选项中只有一个是符合题目要求的,不 选 、多选、错选均不得分。)
A.
2^3
D.V5
23.两 直 立 矮 墙 成 135°二面角.现利用这两面矮墙和篱笆围成一个面积为54m2 的直角梯形菜
园 ( 墙 足 够 长 ),则 所 用 篱 笆 总 长 度 的 最 小 值 为
A. 16m
• 18m
. 22. 5m D. 15^3
(第 23题图)
2 4 .已 知 R tA A B C 的斜边A B 的 长 为 4 .设 P 是 以 C 为 圆 心 I 为 半 径 的 圆 上 的 任 意 一 点 ,则
X — 丄 3 4 . ( 本 题 8 分 ) 设 函 数 / ( X ) = x 12 x — a I r g ( x ) = - ~ ^ ,a > 0 .
( I ) 当 a = s 时 ,求 / U ) 在 区 间 [ 3 ,5 ] 上 的 值 域 ; ( I I ) 若 V K [ 3 ,5 ] , 3 々 e [ 3 ,5 ] ( f = l ,2 ) ,且 :C1 ^ x 2 ,使 / U ) = g ⑴ ,求 实 数 a 的 取 值 范
析式是 A. 3/==sin X
sm
D, y^= —cos
12.命题多:3 x0G R^Xo +2x0—2= 0,则命题f 的否定是
A. V
X2^ 2 x — 27^0
B. V R?-r2~^r2x—2>0
C . 彐:C0G R ,x?+2:c0—2#0
D. 彐X06 化,工5+2工0_ 2〉>0