与旋转有关的计算与证明.

合集下载

旋转在几何计算、证明中的运用

旋转在几何计算、证明中的运用

旋转在几何计算、证明中的运用一、旋转在解三角形中的应用(一)正三角形类型在正ΔABC 中,P 为ΔABC 内一点,将ΔABP 绕A 点按逆时针方向旋转600,使得AB 与AC 重合。

经过这样旋转变化,将图(1-1-a )中的PA 、PB 、PC 三条线段集中于图(1-1-b )中的一个ΔP'CP 中,此时ΔP'AP也为正三角形。

例.1. ..如图:(....1.-.1.):设...P .是等边...Δ.ABC ...内的一点,.....PA=3....,. PB=4....,.PC=5....,∠..APB ...的度数是....________........... 练习,二等腰直角三角形类型在等腰直角三角形ΔABC 中, ∠C=Rt ∠ , P 为ΔABC 内一点,将ΔAPC 绕C 点按逆时针方向旋转900,使得AC 与BC 重合。

经过这样旋转变化,在图(3-1-b )中的一个ΔP' CP 为等腰直角三角形。

1.如图1所示,P 是等边三角形ABC 内的一个点,PA=2,PB=32,PC=4,求△ABC 的边长。

例2.如图,在ΔABC 中,∠ ACB =900,BC=AC ,P 为ΔABC 内一点,且PA=3,PB=1,PC=2。

求∠ BPC 的度数。

11.如图,在△ABC中,∠C=90°,AC=BC ,M 、N 是斜边AB 上的点,且∠MCN=45°,AM=3,BN=5,则MN= .三、旋转在正方形中的运用类比练习:如图,在△ABC 中,∠BAC=90°,AB=AC ,D 是BC 上的任意一点,求证:BD 2+CD 2=2AD 2.D CBA例.如图4,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转能与'CBP 重合,若PB=3,求'PP 的长。

如图5, P 是正方形ABCD 内一点,且满足PA :PD :PC=1:2:3,则∠APD= .图5、家庭作业1(青岛市)如图,P 是正三角形 ABC 内的一点,且PA =6,PB =8,PC =10.若将△PAC 绕点A 逆时针旋转后,得到△P'AB ,则点P 与点P' 之间的距离为多少,∠APB ?2、如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD = 2,将腰CD 以D 为中心逆时针旋转90°至DE ,连接AE 、CE ,△ADE 的面积为3,则BC 的长为 .3如图,E 、F 分别是正方形ABCD 的边BC 、CD 上一点,且BE +DF =EF ,求∠EAF 、4、如图,有边长为1的等边三角形ABC 和顶角为120°的等腰△DBC ,•以D 为顶点作∠MDN=60°角,两边分别交AB 、AC 于M 、N 的三角形,连结MN ,(1)、求证MN=BM+CN ;(2)、试说明△AMN 的周长为2.(3)、若M,N 分别在AB,CA 的延长线上,则(1)中结论还成立吗?如果不成立,MN,BM,CN 又满足什么关系?A B C D 图9CA5如图,已知正方形ABCD ,点E 、F 分别在BC 、CD 上,且AE=BE+FD ,请说出AF 平分∠DAE 的理由。

专题08旋转中的最值问题

专题08旋转中的最值问题

专题08旋转中的最值问题考点一费马点问题求最值【方法点拨】费马点证明都長依据旋转思想.构造三角形全等.然后将三条线段之和转化到是否在一条直线上来决定最小值。

这个思路一走要掌握,因为它会应用在实际的考试题目中。

【典例剖析】1・(经典例题)已知:P是边长为1的正方形2ECD内的一点,求Rl+PB^PC的最小值.B ---------------------- C【点拨】顺时针旋转△EPC60度,可得为等边三角形,若R#PB-PC=AP+PE+EF要使最小只要AP, PE, EF在一条直线上,求岀.妒的值即可.【解析】解:顺时针旋转△BPC60度,可得恥为等边三角形.即得M+PB+PC=AP+PE+EF要使最小只要-IP, PE, M在一条直线上,即如下图:可得最小R1+PB-PC=.4F.此时ZEBC+ZCBP= ZFBE+ZEBC=6L = ZFBC.所以ZABF=90° +60° =150° ,ZMBF=3L ,/Q 1BW=BF・cos3(T =5C>cos30°=分MF=〒则务寺1在△zB/F中,勾股圧理得:3+仃=,护HF== J(坯2 + 2x 字x 尊+(坯 2 = J(学)2 =竿.2.(朝阳区二模)阅读下列材料:小华遇到这样一个问题,如图1,HABC中,ZACB=30° , BC=6, AC=5,在ZU5C内部有一点P,连接EL PB、PC,求R1+PB+PC的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为左点,这样依据“两点之间,线段最短”,就可以求岀这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将ZUPC绕点C顺时针旋转60°,得到连接PD、BE,则EE的长即为所求.(1)请你写出图2中,Ri+PB+PC的最小值为_质_;(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,ZABC=60° ,在菱形.13CD内部有一点P,请在图3中画岀并指明长度等于R1+PB+PC最小值的线段(保留画图痕迹,画岀一条即可);②若①中菱形ABCD的边长为4,请直接写出当PA+PB+PC值最小时PB的长.图3【点拨】(1)先由旋转的性质得出△ APC^/XEDC.则ZACP=ZECD、AC=EC=5, ZPCD=60° , 再证明Z5CE=90° ,然后在RtABCF中,由勾股迫理求出恥的长度,即为PA+PB-rPC的最小值:(2)①将ZUPC绕点C顺时针旋转60。

计算旋转曲面面积的公式及几种证法

计算旋转曲面面积的公式及几种证法
3.期刊论文 徐龙封 关于曲线积分和曲面积分教学中几个难点的突破 -安徽工业大学学报(社会科学版)2003,20(3)
加强曲线、曲面积分概念讲解,标准化曲线、曲面积分的计算程序,沟通有关积分之间关系,以消除学生对斯托克斯等公式的深奥感,有效地突破了曲 线、曲面积分教学中的几个难点.
4.期刊论文 赵清波.李文潮.赵东涛.张辉 曲线积分与曲面积分的一题多解 -数理医药学杂志2008,21(3)
8.期刊论文 纪荣芳.娄本平 对称性在曲线积分及曲面积分计算中的应用 -泰山学院学报2004,26(3)
给出了利用对称性简化曲线积分和曲面积分计算的一些定理和方法,并对定理的结论予以证明.
9.期刊论文 彭一鸣.马新科.宁荣健 第一型曲面积分转为第一型曲线积分的算法 -高等数学研究2010,13(2)
2.期刊论文 刘富贵.鲁凯生.Liu Fugui.Lu Kaisheng 利用对称性计算第二类曲线积分与曲面积分的方法 -武汉理
工大学学报(交通科学与工程版)2006,30(6)
由于第二类曲线积分与曲面积分涉及到方向性问题,因此利用对称性来计算较为困难.文中给出了利用对称性计算第二类曲线积分与曲面积分的方法 ,并证明了方法的可行性,并通过实例表明,此方法有时能起到简化计算的作用.
=l。ira石乏{[,(参)+,(最)】√l+,”(参)△xi+
∑口f A x。}
砌烛喜聪)F丽
=2n e,(x)√l+,“∽dx=2兀ef(x)ds.
1.2用微元法证明计算旋转曲面面积公式 证:在[a.b】上的任意小区间【x,x+dx]的
小截锥面积近似于小旋转曲面的面积. 从而得面积元素dA=2矽(石)ds所以旋
6.期刊论文 李育强.石瑞民 曲线积分在曲面积分中的应用 -大学数学2003,19(3)

有关旋转的证明题

有关旋转的证明题
容,以确保旋转轴在各种工况下的安全性和可靠性。
物理学中的旋转运动
要点一
总结词
涉及旋转运动在物理学中的应用,包括角动量守恒定律、 科里奥利力等。
要点二
详细描述
在物理学中,旋转运动是一种重要的运动形式,涉及到许 多物理定律和效应。例如,角动量守恒定律是描述旋转系 统的一个重要定律,它指出在没有外力矩作用的情况下, 系统的角动量保持不变。此外,科里奥利力是描述旋转参 考系中物体运动受到的力,它在地球自转的影响下会导致 大气和洋流的偏转。
示例
在三角形ABC和三角形DEF中,已知AB=DE, BC=EF, 且角BAC=角EDF。证明三角形ABC 全等于三角形DEF。可以通过将三角形DEF绕点D逆时针旋转一定的角度,使得角EDF与 角BAC重合,然后利用边角边全等定理证明三角形ABC全等于三角形DEF。
圆形的旋转证明题
要点一
总结词
通过旋转圆形,利用圆周角定理和圆 的性质进行证明。
在四边形ABCD中,已知AB=CD, AD=BC, 且角BAD=角BCD。证明四 边形ABCD是平行四边形。可以通过 将四边形ABCD绕点A逆时针旋转一 定的角度,使得角BAD与角BCD重合 ,然后利用平行四边形的性质和旋转 的性质进行证明。
Part
05
练习题与答案
基础练习题
题目
证明三角形绕其重心旋转180度后与原图 形重合。
VS
答案
设三角形为$triangle ABC$,其重心为 $G$。将$triangle ABC$绕$G$旋转180度, 得到$triangle A'B'C'$。由于旋转中心是 重心,根据旋转性质,线段$AG=A'G$、 $BG=B'G$、$CG=C'G$。由于重心将中 线分为2:1的比例,因此$triangle ABC$和 $triangle A'B'C'$的三边对应相等,从而 证明两个三角形重合。

第四章2第2课时与旋转有关的计算与证明课堂练习题含2021中考题

第四章2第2课时与旋转有关的计算与证明课堂练习题含2021中考题
为(
B )
A.15° B.30°
C.45° D.60°
3.如图所示,在 Rt△ABC 中,∠C=90°,∠ABC=30°,AC=1 cm,将 Rt△ABC 绕点 A 逆时针旋转得到
Rt△AB′C′,使点 C′落在 AB 边上,连接 BB′,则 BB′的长度是(
A.1 cm
B.2 cm
C. cm D.2 cm
(1)三角形在平面直角坐标系中的位置如图①所示,简称G,G关于y轴的对称图形为G1,关于x轴的对
称图形为G2.则将图形G1绕点
顺时针旋转
度,可以得到图形G2.

解:(1)O
180
数学
(2)在图②中分别画出G关于y轴和直线y=x+1的对称图形G1,G2.将图形G1绕点
顺时针旋转
度,可以得到图形G2.
G1,关于直线l2的对称图形为G2,那么将图形G1绕点
(用坐标表示)顺时针旋转
(用α表示),可以得到图形G2.


解:(3)( , )



数学
10.如图①所示,正方形ABCD的边AB,AD分别在等腰直角三角形AEF的腰AE,AF上,点C在△AEF内,则有
DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连接BE,DF.请在图
B )
数学
4.点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图
案(如图所示).如果绕点O旋转此图案与原来的图案互相重合 ,那么这个图案绕点 O至少旋转
72
°.
5.如图所示,将△ABC绕点A逆时针旋转150°得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度

旋转的计算与证明

旋转的计算与证明

旋转的计算与证明旋转是几何学中非常重要的一个概念,它可以用来描述物体绕一些中心轴或中心点旋转的过程。

在计算与证明旋转相关的问题时,我们需要使用到一系列的数学工具和方法。

本文将从旋转的定义开始,逐步介绍旋转的计算与证明过程。

旋转的定义旋转可以定义为平面上一个点或一个物体绕一些中心点或中心轴旋转的过程。

旋转可以使点或物体的位置、形状或方向发生变化。

旋转可以分为顺时针旋转和逆时针旋转两种。

旋转的中心旋转的中心可以是平面上的一个点或一个物体。

以点为中心进行旋转时,可以通过计算旋转中心与待旋转点之间的距离和角度来确定旋转后的新位置。

以物体为中心进行旋转时,可以通过计算物体自身的几何信息(例如边界点、顶点等)和旋转角度来确定旋转后的新形状。

旋转的角度旋转的角度通常用弧度来表示。

弧度是一种角度的计量单位,定义为角度所对应的弧长与半径的比值。

旋转的角度可以是正值、负值或零。

旋转的方向旋转的方向可以是顺时针或逆时针。

顺时针旋转是指从从正方向看旋转的物体顺时针方向旋转;逆时针旋转是指从从正方向看旋转的物体逆时针方向旋转。

在计算旋转时,需要根据具体的问题条件确定旋转的方向。

点的旋转是指一个点绕旋转中心进行旋转。

点的旋转可以通过以下公式进行计算:x' = x * cos(θ) - y * sin(θ)y' = x * sin(θ) + y * cos(θ)其中,(x,y)为原始点的坐标,(x',y')为旋转后点的坐标,θ为旋转角度。

物体的旋转是指一个物体绕旋转中心进行旋转。

物体的旋转可以通过以下步骤进行计算:1.将物体的每个点(顶点或边界点)的坐标通过点的旋转公式计算旋转后的位置。

2.根据计算得到的新位置,重新构建物体的形状。

旋转的证明旋转的证明可以通过使用向量和矩阵的方法进行推导。

以下是旋转的一般证明方法:1.定义旋转矩阵旋转矩阵是一个正交矩阵,用于描述旋转的变换。

旋转矩阵可以通过旋转角度来确定,其中旋转角度可以是弧度或角度。

2020届中考数学总复习课件:微专题十五 巧用旋转进行证明与计算 (共29张PPT)

2020届中考数学总复习课件:微专题十五 巧用旋转进行证明与计算 (共29张PPT)

(2)MN2=ND2+DH2.理由如下: 由旋转可知,∠BAM=∠DAH, ∵∠BAM+∠DAN=45°, ∴∠HAN=∠DAH+∠DAN=45°. ∴∠HAN=∠MAN. 在△AMN 与△AHN 中,A∠MM=AANH=,∠HAN,
AN=AN,
∴△AMN≌△AHN(SAS),∴MN=HN. ∵∠BAD=90°,AB=AD, ∴∠B=∠ADB=45°, ∴∠HDN=∠HDA+∠ADB=90°, ∴NH2=ND2+DH2,∴MN2=ND2+DH2;
(3)如答图①,∵∠AEB=∠ACB=90°, ∴A,B,C,E 四点共圆, ∴∠CEB=∠CAB=30°,∠ABD=∠ACE, ∵∠DAE=∠BAC=30°,∴∠BAD=∠CAE, ∴△BAD∽△CAE,∴BEDC=AACB=cos30°= 23, ∴EC= 23BD, 在 Rt△ABE 中,∵AB=5,AE=3,
∴PP′2+P′D2=PD2,∴∠PP′D=90°,
中考变形4答图
∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,
∴∠APB=∠AP′D=135°. ∵∠APB+∠AP′P=135°+45°=180°, ∴P′,P,B 三点共线. 过点 A 作 AE⊥PP′于点 E,则 AE=PE=12PP′=2, ∴BE=PE+PB=2+1=3, 在 Rt△ABE 中,AB= AE2+BE2= 22+32= 13.
3.如图 Z15-4,已知 AC⊥BC,垂足为 C,AC=4,BC=3 3,将线段 AC 绕点 A 按 逆时针方向旋转 60°,得到线段 AD,连结 DC,DB. (1)线段 DC=__4__; (2)求线段 DB 的长度.
图 Z15-4
解:(1)∵AC=AD,∠CAD=60°, ∴△ACD 是等边三角形,∴DC=AC=4; (2)如答图,作 DE⊥BC 于点 E. ∵△ACD 是等边三角形, ∴∠ACD=60°,又∵AC⊥BC, ∴∠DCE=∠ACB-∠ACD=90°-60°=30°. 在 Rt△CDE 中,DE=12DC=2,CE= 23DC=2 3, ∴BE=BC-CE=3 3-2 3= 3. 在 Rt△BDE 中,BD= DE2+BE2= 22+( 3)2= 7.

旋转的证明与计算(等边三角形)

旋转的证明与计算(等边三角形)

旋转的证明与计算模块一:旋转应用之等边旋转类型二:正方形中的旋转 例题1.正方形ABCD 内一点到三顶点距离分别是1,2,3,则正方形的面积等于考点:旋转的性质;正方形的性质分析:把△PAB 绕A 点逆时针旋转90°得△EAD ,把△CPB 绕C 点顺时针旋转90°得△CFD ,连PE ,PF ,则∠1=∠2,∠3=∠4,得到∠2+∠4=90°,∠EDF=180°,即E ,D ,F 共线,且ED=PB=2,DF=PB=2,△APE ,△CPF 均为等腰直角三角形,所以211121=⨯⨯=∆APE S ;293321=⨯⨯=∆CPF S ,再在△PEF 中,PE=2,PF=23,EF=4,利用勾股定理的逆定理得到△PEF 为直角三角形,∠PEF=90°,则22422121=⨯⨯=⨯⨯=∆EF EP S PEF 最后利用S 正方形A B C D =S 五边形A P C F E =S △P E F +S △A P E +S △C P F ,即可得到答案.跟踪训练:2,PC=4,则∠APC的大小是多1、如图点P是等边三角形ABC内部一点,且PA=2,PB=3少度?考点:旋转的性质;勾股定理的逆定理分析:由于△ABC为等边三角形,所以将△ABP绕A点逆时针旋转60°得△ACP′,根据旋转的性质得到AB与AC重合,∠PAP′=60°,2AP′=AP=2,P′C=PB=3,则△APP′是等边三角形,得到PP′=2;在△PPC中,利用勾股定理的逆定理可得到∠PP′C=90°,同时得到∠P′CP=30°,因此∠P′PC=60°,即可得APC=∠APP′+∠P′PC.2、把两块边长为4的等边三角板ABC和DEF先如图1放置,使三角板DEF的顶点D与三角板ABC的AC边的中点重合,DF经过点B,射线DE与射线AB相交于点M,接着把三角形板ABC 固定不动,将三角形板DEF由图11-1所示的位置绕点D按逆时针方向旋转,设旋转角为α.其中0°<α<90°,射线DF与线段BC相交于点N(如图2示).(1)当0°<α<60°时,求AM•CN的值;(2)当0°<α<60°时,设AM=x,两块三角形板重叠部分的面积为y,求y与x的函数解析式并求定义域;(3)当BM=2时,求两块三角形板重叠部分的面积.考点:相似三角形的判定与性质;三角形的面积;等边三角形的性质;旋转的性质分析:(1)根据等边三角形的性质得到∠A=∠C=∠EDF=60°,则∠AMD+∠ADM=120°,∠ADM+∠NDC=120°,可得∠AMD=∠NDC ,根据相似三角形的判定定理得到△AMD ∽△CDN ,有相似的性质得到AM :DC=AD :CN ,即AM •CN=DC •AD ,然后把DC=AD=2代入计算即可;(2)分别过D 点作DP ⊥AB 于P ,DQ ⊥BC 于Q ,连DB ,根据等边三角形的性质得∠A=∠C=60°,而DA=DC=2,根据含30°的直角三角形三边的关系得到AP=CQ=1,DP=DQ=3,由AM=x ,得CN=x 4,MB=4-x ,BN=x44 ,两块三角形板重叠部分为四边形DMBN ,则y=S △D B M +S △D B N ,然后根据三角形的面积公式计算即可,易得到当0°<α<60°时,x 的取值范围为1<x <4;(3)当M 在线段AB 上,BM=2时,x=4-2=2,把x=2代入(2)的关系式中计算即可.当M 点在线段AB 的延长线上,过D 作DH ∥BC 交AB 于H ,BP=21DH=1,由△AMD ∽△CDN ,则AM :DC=AD :CN ,即AM •CN=DC •AD ,可计算出CN ,然后根据三角形的面积公式可计算出S △D P N ,即两块三角形板重叠部分的面积.3、如图,已知△ABC为等边三角形,M为三角形外任意一点.(1)请你借助旋转知识说明AM≤BM+CM;(2)线段AM是否存在最大值?若存在,请指出存在的条件;若不存在,请说明理由.考点:旋转的性质;三角形三边关系;等边三角形的性质.分析:(1)应把AM和BM所在的三角形旋转,与AM组成三角形,将△BMC绕B点逆时针方向旋转,使C点与A点重合,得△BM′A,易得△BMM′为正三角形,根据三角形三边关系即可证明.(2)由(1)得线段AM存在最大值,M′在AM上时4、如图,P是正△ABC内一点,PA=3,PB=4,PC=5,将线段PA以点A为旋转中心逆时针旋转60°得到线段AP1,连结P1C.(1)判断△APB与△AP1C是否全等,请说明理由;(2)求∠APB的度数;(3)求△APB 与△APC的面积之和;(4)直接写出△BPC的面积,不需要说理.考点:旋转的性质;全等三角形的判定与性质;等边三角形的性质;勾股定理.分析:(1)根据正三角形的性质求出AB=AC,∠BAC=60°,再根据旋转的性质可得AP1=AP,然后求出∠CAP1=∠BAP,再利用“边角边”证明△APB与△AP1C全等即可;(2)连结PP1,求出△PAP1是等边三角形,根据等边三角形的性质可得PP1=AP=3,∠AP1P=60°,再利用勾股定理逆定理求出∠CP1P=90°,然后计算即可得解;(3)根据全等三角形的面积相等求出△APB与△APC的面积之和等于四边形APCP1的面积,然后根据等边三角形的面积与直角三角形的面积列式计算即可得解;(4)同理求出△ABP和△BPC的面积的和,△APC和△BPC的面积的和,从而求出△ABC的面积,然后根据△BPC的面积=△ABC的面积-△APB与△APC的面积的和计算即可得解.参考答案:1、解:四边形ABCD为正方形,PA=1,PB=2,PC=3,把△PAB绕A点逆时针旋转90°得△EAD,把△CPB绕C点顺时针旋转90°得△CFD,连PE,PF,如图,∴∠1=∠2,∠3=∠4,而∠1+∠3=90°,∴∠2+∠4=90°,而∠ADC=90°,∴∠EDF=180°,即E,D,F共线;由旋转的性质得到△APE,△CPF均为等腰直角三角形,并且ED=PB=2,DF=PB=2,2、3、解答:(1)∵△ABC和△DEF都是边长为4的等边三角形,∴∠A=∠C=∠EDF=60°,∴∠AMD+∠ADM=120°,∠ADM+∠NDC=120°,∴∠AMD=∠NDC,∴△AMD∽△CDN,∴AM:DC=AD:CN,即AM•CN=DC•AD,而D点为AC的中点,∴DC=AD=2,∴AM•CN=4;(2)分别过D点作DP⊥AB于P,DQ⊥BC于Q,连DB,如图∵∠A=∠C=60°,DA=DC=2,∴AP=CQ=1,∴DP=DQ=3,∵BD为等边三角形的高,∴点D到EF的距离为DB,∴两块三角形板重叠部分为四边形DMBN,在图(1)中,AM=1,∴当0°<α<60°时,x的取值范围为1<x<4;(3)当M 在线段AB 上,BM=2时,x=4-2=2,当M 点在线段AB 的延长线上,如图(备用图),过D 作DH ∥BC 交AB 于H ,∴DH=21BC=2,BH=2, ∵BM=2,∴BP=21DH=1,与①一样可证得△AMD ∽△CDN , ∴AM :DC=AD :CN ,即AM •CN=DC •AD ,4、解答:(1)将△BMC 绕B 点逆时针方向旋转,使C 点与A 点重合,得△BM ′A , ∵∠MBM ′=60°,BM=BM ′,AM ′=MC .∴△BMM ′为正三角形.∴MM ′=BM .①若M ′在AM 上,则AM=AM ′+MM ′=BM+MC ,②若M ′不在AM 上,连接AM ′、MM ′,在△AMM ′中,根据三角形三边关系可知:AM <AM ′+MM ′,∴AM <BM+MC ,综上所述:AM ≤BM+CM ;(2)线段AM 有最大值.当且仅当M ′在AM 上时,AM=BM+MC ;存在的条件是:∠BMC=120°.5、解答:解:(1)∵△ABC 是正三角形,∴AB=AC ,∠BAC=60°,∵线段AP 以点A 为旋转中心逆时针旋转60°得到线段AP 1,∴AP=AP 1,∠PAP 1=60°,∵∠BAP+∠PAC=∠BAC=60°,∠CAP 1+∠PAC=∠PAP 1=60°,∴∠BAP=∠CAP 1,∵在△APB 与△AP 1C 中,∴△APB≌△AP1C(SAS);(2)连结PP1,∴AP=AP1,∠PAP1=60°,∴△PAP1是等边三角形,∴PP1=AP=3,∠AP1P=60°,∵△APB≌△AP1C,∴CP1=BP=4,∵CP=5,∴PP12+CP12=CP2,∴△CP1P是直角三角形,∠CP1P=90°,∴∠APB=∠AP1P+∠CP1P=60°+90°=150°;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与旋转有关的计算与证明
(体悟思想规律方法)
1、已知,如图:正方形ABCD中,E和F分别为BC、CD上的点,
且∠EAF=45°。

求证:BE+CF=EF
2、已知,点E为正方形ABCD内一点,且AE=1,BE=2,CE=3.求∠AEB的度数
3、如图,P是正方形ABCD的边AB上一点(不与A,B重合),连接PD 将PD绕P顺时针旋转90°,得到PE,连接BE,求∠CBE的度数
4、如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)求证:AE=EP;(2)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由
5、在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由;
6、(B)如图,在边长为2ABCD中,E是AB边上一点,
G是AD延长线上一点,BE=DG,连接EG,CF⊥EG于点H,交AD于点F,连接CE、BH。

若BH=8,求FG的长。

7、(A)如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,求OF的长。

8、正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD 的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,求证:AF+BF=2OE (2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.
9、通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,
∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.
(1)思路梳理
∵AB=CD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据,易证△AFG≌,得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系_______时,仍有EF=BE+DF.(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.
10、如图四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,说明理由;(3)当AM+BM+CM的最小值为3+1时,求正方形的边长。

相关文档
最新文档