代入法消元——解二元一次方程组评课稿
《加减消元——解二元一次方程组》评课稿

《加减消元——解二元一次方程组》评课稿授课人评课人《加减消元——解二元一次方程组》评课稿聆听了王老师的课。
下面就王老师的《加减消元——解二元一次方程组》这一课谈谈自己的看法。
王老师这堂课充满了活力,渗透了新的教育理念,教法灵活,趣味盎然。
学生在课堂中能认真地倾听,自由地表达,灵活地运用,整堂课如行云流水,步步流畅,充分地达到了知识的渗透,能力的培养,情感的交流,有效地训练了学生敏锐地观察力,发展了学生的思维能力,激发了学生的想象力和创造力。
从教师个人素质上看,教师的教学水平,组织课堂教学的能力,激发学生兴趣的手段都非常高,正因为有王老师的指导,学生在课堂中肯学,乐学,老师教态自然、亲切,明朗活泼,富有感染力;仪表端庄,举止从容;课堂语言准确清楚,快慢适度,条理性强。
老师的一举手,一投足,一个眼神,都深深地感染着学生,给学生极大的鼓舞,让学生充满了朝气。
从教学程序上看,王老师首先复习回顾了用代入消元法解决二元一次方程组,然后抛出不用代入法能不能解决方程组这个问题。
学生探究这个过程,发现消元的根本,然后之前有了找小系数的经验,本节课继续找系数相对合适的进行消元。
最后学生总结方法的基本步骤,师生交流确定口诀。
教学思路清晰,结构较严谨,环环相扣,过渡自然。
当然,数学是一门逻辑性较强的科目,任何好的理念和设计在实际的教学过程中总会留下一些遗憾:这节课也不例外,授人以鱼,不如授人以渔。
教学过程中有两点,王老师没有注意到。
有些方程组需要经过变换才能正常使用口诀,比如带字母的、含有比例的、含有小数系数的。
不用求出xy分别等于几,就能求出关于xy的代数式的最终值,这就是整体代入的技巧。
用加减消元法解二元一次方程组也有技巧,能用加法的最好不用减法,因为容易出现去括号等错误。
当然,金无足赤,课无完美。
但瑕不掩玉,王老师这节课仍是一堂体现新课程理念的成功案例,具有一定的借鉴意义。
课堂教学无论怎样改,教师都应该以学生能力发展为重点,把促进学生终身发展放在首位,一切与之相悖的做法和想法都摒弃。
《二元一次方程组的解法(代入法)》教学评点

二元一次方程组的解法(代入法)教学评点引言在初中数学的学习过程中,解一元一次方程组已经成为了一个基本技能。
而解二元一次方程组则是更进一步的内容。
其中,代入法是解二元一次方程组最常用的一种方法之一。
本文将从教学评点的角度,对二元一次方程组的解法中的代入法进行分析和评价。
一、简明扼要•名称:二元一次方程组的解法(代入法)•目标学生:初中学生,如七年级或八年级的学生•内容概述:本教学内容主要介绍了二元一次方程组的解法中的代入法。
通过具体的例子和解题步骤的讲解,引导学生掌握代入法的基本思路和应用方法。
二、优点评价1. 简单易懂代入法作为解二元一次方程组的一种方法,与其他方法相比,具有简单易懂的特点。
学生只需要将其中一个方程中的变量用另一个方程中相同的变量代替,然后进行方程的简化和计算,即可求得解。
相比于消元法和等式法,代入法更直观,学生容易接受和理解。
2. 直接实用代入法在解决实际问题中具有广泛的应用。
许多实际问题可以用二元一次方程组来表示,而代入法正是解决这些问题的有效方法之一。
因此,通过学习代入法,学生可以更好地理解并解决与二元一次方程组相关的实际问题,提高数学应用能力。
3. 引导学生形成问题意识在代入法的教学过程中,教师可以设计一些具体的实际问题,引导学生自主思考和解决。
通过实际问题的引导,学生可以逐渐形成对问题的敏感性和思考能力,培养其解决问题的能力和兴趣。
4. 与其他解法互补在二元一次方程组的解法中,代入法与其他解法(如消元法和等式法)相互补充。
通过综合运用不同的解法,学生可以更全面地理解和掌握解法的特点和应用。
同时,代入法也为学生提供了一种备选的解题思路,方便学生在解决问题时灵活选择。
三、不足改进1. 局限性代入法解二元一次方程组的基本思路是将其中一个方程作为目标方程,然后将另一个方程中的变量用目标方程中的变量代替,从而得到一个只包含一个未知数的方程。
这个方法对于一些特殊的二元一次方程组可能不适用,或者解的过程会比较冗长。
初中数学_8.2 代入法消元—解二元一次方程组教学设计学情分析教材分析课后反思

8.2代入法消元解二元一次方程【教师准备】例题演示的详细板书.【学生准备】复习二元一次方程组解的概念.导入一:体育节要到了.拔河是七年级(1)班的优势项目.为了取得好名次,他们想在全部22场比赛中得到40分.已知每场比赛都要分出胜负,胜队得2分,负队得1分.那么七年级(1)班应该胜、负各几场?你会用二元一次方程组解决这个问题吗?根据问题中的等量关系设胜x场,负y场,可以更容易地列出方程组那么有哪些方法可以求得二元一次方程组的解呢?[设计意图]导入情境是学生喜闻乐见的体育活动,可以增强学生的求知欲,使学生对所学知识产生亲切感.导入二:在8.1节中我们已经看到,直接设两个未知数:胜x场、负y场,可以列方程组表示本章引言问题中的数量关系.如果只设一个未知数:胜x场,那么这个问题也可以用一元一次方程2x+(10- x)=16来解.思路上面的二元一次方程组和一元一次方程有什么关系?[设计意图]比较方程2x+(10- x)=16和方程组之间的关系,是引入代入法的关键所在.一、代入法[过渡语](针对导入二)建立二元一次方程组求未知数,目的是求适合两个方程的未知数,也就是说两个方程的未知数取值是一样的.我们从这个认识出发,探究怎样解二元一次方程组?问题1能否借助于一元一次方程解二元一次方程组?〔解析〕我们发现,二元一次方程组中第一个方程x+y=10可以写为y=10- x.由于两个方程中的y 都表示负的场数,因此我们把第二个方程2x+y=16中的y换为10- x,这个方程就化为一元一次方程2x+(10- x)=16.解这个方程,得x=6.把x=6代入y=10- x,得y=4.从而得到这个方程组的解.问题2在上面的方程组中,第一个方程x+y=10是否可以写为x =10- y,然后再把x=10- y代入到方程2x+y=16中?〔解析〕从思路上讲,问题1和问题2的思路是一样的,只是选择哪个字母代入的问题.总结:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就可以把二元一次方程组转化为我们熟悉的一元一次方程.我们可以先求出一个未知数,然后再求另一个未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.(2)代入法.问题3在上述的消元过程中,是怎样实现消元的?这种消元的方法叫什么?总结:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.二、例题讲解用代入法解方程组〔解析〕方程①中x的系数是1,用含y的式子表示x,比较简便.解:由①,得x=y+3③,把③代入②,得3(y+3)- 8y=14.解这个方程,得y=- 1.把y=- 1代入③,得x=2.所以这个方程组的解是追问1:把③代入①可以吗?试试看.提示:不可以,因为方程③是由方程①变形而来的,把③代入①后,只能得到一个恒等式.追问2:把y =- 1代入①或②都可以吗?提示:可以.二元一次方程组消元后化为一元一次方程,求出一个未知数的解,代入方程①、方程②或方程③都可以求出另一个未知数的值,但代入变形后的方程③更简便一些.[知识拓展]1.当方程组中含有用一个未知数表示另一个未知数的关系式时,用代入法比较简单.2.若方程组中未知数的系数为1(或- 1),选择系数为1(或- 1)的方程进行变形,用代入法也比较简便.3.如果未知数系数的绝对值不是1,一般选择未知数系数的绝对值最小的方程变形.(补充)用代入消元法解方程组〔解析〕求方程组的解的过程叫做解方程组.由方程组的解的概念,可知解方程组就是要求出同时满足此方程组中的两个方程的x和y的值.解:由①得x=y- 5.③把③代入②,得3(y- 5)+2y=10,解这个一元一次方程,得y=5,把y=5代入③,得x=0,所以原方程组的解为[知识拓展]用代入消元法解二元一次方程组时,一般用含一个未知数的代数式表示另一个未知数,但并非绝对.如解方程组由①得2x- 3y=2③,将③代入②得+2y=9,解得y=4,再将y=4代入③得2x- 3×4=2,解得x=7,故方程组的解为这种整体代入的方法显然比常规方法简单很多,但无论是用哪一种方法进行代入消元,都应该达到同一个目的——消元.代入法解二元一次方程组的一般步骤为:(1)从方程组中选一个未知数系数比较简单的方程,将这个方程中的一个未知数,例如y,用含x的式子表示出来,也就是化成y=ax+b的形式;(2)将y=ax+b代入方程组中的另一个方程中,消去y,得到关于x的一元一次方程;(3)解这个一元一次方程,求出x的值;(4)把求得的x值代入方程y=ax+b中(或方程组中的任意一个方程中),求出y的值,再写成方程组解的形式;(5)检验得到的解是不是原方程组的解.1.把方程2x- 4y=1改写成用含x的式子表示y的形式是.解析:用含x的式子表示y,相当于把y看成未知数,把x看成已知数,解关于y的一元一次方程,结果为y= .故填y=.2.方程组的解是()A.B.C.D.解析:将方程y=2x代入3y+2x=8得x=1,将x=1代入y=2x得y=2.故选B.3.用代入法解方程组代入后化简比较容易的变形是()A.由①得x=B.由①得y=C.由②得x=D.由②得y=5x- 2解析:根据代入法解方程组的方法结合方程组的特征即可作出判断.由题意得代入后化简比较容易的变形是由②得y=5x- 2.故选D.4.用代入法解下列方程组:(1)(2)解:(1) 把①代入②得3x- 2(2x- 3)=8,解得x=- 2.把x=- 2代入①得y=2×(- 2)- 3=- 7.所以原方程组的解为(2) 由①得x=y+3③,把③代入②得3(y+3)- 8y=14,解得y=- 1,把y=- 1代入③得x=2.所以原方程组的解为第1课时1.代入法(1)消元思想(2)代入法2.例题讲解例1例2一、教材作业【必做题】教材第93页练习第1,2题.【选做题】教材第97页习题8.2第2题.8.2学情分析七年级学生的抽象思维能力和逻辑思维能力较差,这也导致在课堂教学中,显得枯燥、乏味,加上学生的运算能力不强,使得这章内容的教学难度增大,但是他们的好奇心强,具有一定的探究能力。
初中数学教学课例《用代入消元法求解二元一次方程组》教学设计及总结反思

述
容。
1.引入自然.二元一次方程组的解法是学习二元一
次方程组的重要内容.教材通过上一小节的实际问题, 比较一元一次方程的列法和解法,从而自然引入二元一 次方程组的代入消元解法.
2.探究有序.回顾一元一次方程的解法,借此探索 二元一次方程组的解法,使得学生的探究有了很好的认 知基础,探究显得十分自然流畅.
今后,我将更加努力,虚心求教,多向有经验的教 师学习,掌握数学教学方法,找到合适自己的教学风格。 专业理念及时更新。创设情境引入贴近生活实例,让学 生更加容易理解。努力提升自己教学能力,做一名合格 并且优秀的教师。
初中数学教学课例《用代入消元法求解二元一次方程组》教 学设计及总结反思
学科
初中数学
教学课例名
《用代入消元法求解二元一次方程组》
称
《二元一次方程组的解法》是义务教育课程标准北
师大版实验教科书八年级(上)第五章《二元一次方程
教材分析 组》的第二节,本节课的教学重点是:用代入消元法解
二元一次方程组.本节课的教学难点是:在解题过程中
生积累经验。根据学生学习基础及新课标的要求,本节
课我将采用情景创设引入新课,让学以小组合作的形式
展开教学,将课堂主动权交给学生,老师起引导的作用。
第二环节:探索新知
回顾七年级第一学期学习的一元一次方程,是不是
也曾碰到过类似的问题,能否利用一元一次方程求解该
问题?(由学生独立思考解决,教师注意指导学生规范
体会“消元”思想和“化未知为已知”的化归思想.
1、会用代入消元法求解二元一次返程组
教学目标
2、了解解二元一次方程组的消元思想,初步体会
化未知为已知的化归思想
在学习本节之前,学生已经掌握了有理数、整式的
消元—解二元一次方程组(加减消元法)教学设计与反思

教学设计 8.2 消元—解二元一次方程组(加减消元法)
教学反思:
“解二元一次方程组”是“二元一次方程组”一章中很重要的知识,占有重要的地位。
通过本节课的教学,使学生会用加减消元法解二元一次方程组,进一步了解“消元”的思想。
加减法解二元一次方程组的基本思想与代入法相同,仍是“消元”化归思想,通过代入法、加减法这些手段,使二元方程转化为一元方程,从而使“消元”化归这一转化思想得以实现。
因此在设计教学过程时,注重化归意识的点拨与渗透,使学生在学习中逐步体会理解这种具有普遍意义的分析问题、解决问题的思想方法。
在小组展示中,学生说出自己的思路,展示过程中,我仅用极少的时间进行点拨,引导学生学习重点知识,进行追问。
如:“(1)-(2)的目的什么?”“(1)×3,(2)×5的目的是什么”“解决本道题重要的一步是什么?”“这么好的办法,你是怎么想到的?”
教学后发现,大部分学生能够通过加减消元法解二元一次方程组,教学一开始给出了一个二元一次方程组,先让学生用代入法求解,既复习了旧知识,又引出了新课题,引发学生探究的兴趣。
通过学生的观察、发现,理解加减消元法的原理和方法,使学生明确使用加减法的条件,体会在一定条件下使用加减法的优越性。
之后,通过两个例题来帮助学生规范书写,同时明确用加减法解二元一次方程组的步骤。
接下来,通过一系列的练习来巩固加减消元法的应用,并在练习中摸索运算技巧,培养能力,训练学生思维的灵活性及分析问题、解决问题的综合能力。
有个别同学在运算上比较容易出错,运用的灵活性掌握得不太好,解答起来速度较慢,我想只要多加练习,一定会又快又准确的。
《代入法解二元一次方程组》教学设计(推荐五篇)[修改版]
![《代入法解二元一次方程组》教学设计(推荐五篇)[修改版]](https://img.taocdn.com/s3/m/016b891daeaad1f347933fa9.png)
第一篇:《代入法解二元一次方程组》教学设计消元——二元一次方程组的解法(代入消元法)学情分析: 因为学生已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
三维目标知识与技能1、会用代入法解二元一次方程组2、初步体会二元一次方程组的基本思想---“消元”过程与方法: 通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养学生观察能力,体会化归思想。
情感态度与价值观:通过研究解决问题的方法,培养学生合作交流意识和探究精神。
教学重点:用加减消元法解二元一次方程组。
教学难点:理解加减消元思想和选择适当的消元方法解二元一次方程组。
教学过程(一)创设情境,激趣导入在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场),x y22可以列方程组2x y40 表示本章引言中问题的数量关系。
如果只设一个未知数(设胜x场),这个问题也可以用一元一次方程________________________[1]来解。
分析:[1]2x+(22-x)=40。
观察上面的二元一次方程组和一元一次方程有什么关系?[2] [2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。
这正是下面要讨论的内容。
(二)新课教学可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。
解这个方程,得x=18。
把x=18代入y=22-x,得y=4。
从而得到这个方程组的解。
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。
《消元—代入法解二元一次方程组》观课报告

《消元—代入法解二元一次方程组》观课报告在这次教师远程培训中,我认真学习观看了三个课例。
这些优课都充分体现了:教师评价及时到位,热情鼓励学生。
学生学习主动,交流积极,课堂气氛活跃。
在授课过程中,三位教师都能充分发挥学生的主体地位,创设民主和谐的课堂氛围,使学生无拘无束的学习,每位学生都有成功感,充分的调动了学生学习的积极性,使每一堂课真正做到和谐高效。
庞老师的《消元—解二元一次方程组》这节课,是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其它数学知识的基础。
同是又是系统学习二元一次方程组知识的前提和基础,其化归思想为以后的学习等打下基础。
总体感到庞老师这节课教学思路清晰,流程顺畅自然,课堂气氛和谐,突出了情感教育,学生的主体作用教师的主导作用得到了较好发挥。
教学设计环环相扣,通过老师引导,师生共同分析,小组合作探究,拓展应用等一系列环节,抓住了重点,分解突破了难点,教学中注重学习方法的指导、规范习惯的培养,目标达成度高,教学效果较好。
本节课的主要任务就是让学生学会运用代入消元法解二元一次方程组,所以教学中通过观察、比较、分析给学生的材料,逐步引入,层层推进,符合学生的认知规律,培养了学生的观察、概括等能力。
同时整节课遵照“坚持启发式,反对注入式”的原则,让学生自觉动手动脑,积极参与学习活动,尊重学生的意见,让学生成为课堂的主体,在愉悦的氛围中发现和掌握消元的化归思想。
本节课上,教师充分发挥教师的主导作用和学生的主体作用,运用多媒体、电子白板等现代教学技术和手段,采用参与式高效课堂等先进教学理念,使学生在获得知识的同时,也感受到课堂教学的乐趣。
体验成功,分享快乐。
在课堂中,教师注意聆听学生的表达,认真观察学生的各种学习动态及时调控教学状况。
努力让每个学生获得成功体验。
通过这次观课评课,我觉得在以后的教学中应注重以下几点的培养:1、体现学生是学习的主体,无论哪节课,教师都应面向全体学生,尊重差异,让全体学生参与,体验成功,成功是学生的权利,帮助学生成功是教师的义务。
解二元一次方程组的评课稿

解二元一次方程组----加减法一、说教材分析1、教材的地位和作用二元一次方程组安排在学生已经学过代数式和一元一次方程的知识之后,它是学习三元一次方程组的重要基础,同时也是以后学习函数、平面解析几何等知识以及物理、化学中的运算等不可缺少的工具。
对于学生理解并掌握方程思想、转化思想、消元法等重要的数学思想方法有着重要的意义。
本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。
教材的编写目的是通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,体会代数的一些特点和优越性;理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础.2、教学目标通过对新课程标准的的学习,结合我班学生的实际情况,我把本节课的三维教学目标确定如下:(一)知识与技能目标:1、会用加减消元法解简单的二元一次方程组。
2、理解加减消元法的基本思想,体会化未知为已知的化归思想方法。
(二)过程与方法目标:通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。
(三)情感态度及价值观:通过交流学习获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。
3、教学重点、难点:由于七年级的学生年龄较小,在学习解二元一次方程组的过程中容易进行简单的模仿,往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。
而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下重点:用加减法解二元一次方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
评课稿
代入法消元——解二元一次方程组
点评教师:新课改教学组调研员刘赟贤
二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其它数学知识的基础。
同是又是系统学习二元一次方程组知识的前提和基础,而且是解二元一次方程组的常用方法,其化归思想为以后的学习等打下基础。
总体感到张娟娟的这节课教学思路清晰,流程顺畅自然,课堂气氛和谐,突出了情感教育,学生的主体作用教师的主导作用得到了较好发挥。
突出了教学来源于生活应用与生活的特点,其亮点如下:
1、学案的设计由浅入深,由易到难,层层推进,符合学生的认知规律。
例如:先要求学生将x+y=22用含x的代数式表示出y,再用含y 的式子表示x。
2、理论联系实际,创设情境,激发学生的学习兴趣,张老师首先播放了NBA篮球赛中的图片,最后提出篮球赛中的相关问题,让学生自学从而激发了学生强烈的求知欲。
3、学生的主体作用教师的主导作用得到了较好发挥,整节课能够把知识问题化,使学生学有目标,引导学生通过自学,合作交流,学生展示,纠错教师点拨来进行教学。
基本上做到了先学后教,边学边教,彰显了学生的主体作用,把课堂还给了学生。
4、通过本节课培养了学生的基本数学素养和探究解决问题的能力。
这和张老师扎实的功底和渊博的数学知识是分不开的。
5、体现了学生的差异,作业能够分层布置,这也是难能可贵的。
需要改进的地方:在以后的教学中能够让所有的学生参与进来。