怎样分析气相色谱图

合集下载

第2章 气相色谱分析法

第2章 气相色谱分析法

将两者混合起来进行色谱实验,如果发现有 新峰或在未知峰上有不规则的形状(例如峰略 有分叉等)出现,则表示两者并非同一物质; 如果混合后峰增高而半峰宽并不相应增加, 则表示两者很可能是同一物质. 3.多柱法:在一根色谱柱上用保留值鉴定组分有 时不一定可靠,因为不同物质有可能在同一色 谱柱上具有相同的保留值.所以应采用双柱或多 柱法进行定性分析.即采用两根或多根性质(极 性)不同的色谱柱进行分离,观察未知物和标 准试样的保留值是否始终重合.
§2.5 GC检测器 一、概述 1.作用:将经色谱柱分离后的各组分按其特性及含 量转换为相应的电讯号。 2.分类: 浓度型:测量的是载气中某组分浓度瞬间的变化, 即检测器的响应值和组分的浓度成正比。 热导TCD ; 电子捕获ECD; 质量型:测量的是载气中某组分进入检测器的速 度变化。即检测器响应值和组分的质量成正比。 氢焰FID; 火焰光度FPD;
二、根据色谱保留值进行定性 定性方法的可靠性与色谱柱的分离效率有密切的 关系,为了提高可靠性,应该采用重现性较好 和较少受到操作条件影响的保留值. 由于保留时间(或保留体积)受柱长、固定液 含量、载气流速等操作条件的影响比较大,因 此一般适宜采用仅与柱温有关,而不受操作条 件影响的相对保留值r21作为定性指标. 1.对于比较简单的多组分混合物,如果其中所有 待测组分均为已知,它们的色谱峰也能一一分 离,那么为了确定各个色谱峰所代表的物质, 可将各个保留值与各相应的标准试样在同一条 件下所测得的保留值进行对照比较,确定各个 组分.
§2.6 气相色谱定性方法
一、概述:各种物质在一定色谱条件下都有确定不 变的保留值,因此保留值可作为一种定性指标 . 现状:GC定性分析还存在一定问题.其应用仅限 于当未知物通过其它方面的考虑(如来源,其它 定性方法的结果等)后,已被确定可能为某几个 化合物或属于某种类型时作最后的确证;其可靠 性不足以鉴定完全未知的物质。 近年,GC/MS、GC/光谱联用技术的开发,计算机 的应用,打开了广阔的应用前景。

气相色谱原理和分析方法图解

气相色谱原理和分析方法图解

19-1 气相色谱仪
一.GC工作过程
二.气路系统
三.进样系统
四.分离系统
分离系统由色谱柱组成,它是色谱仪的核心部件,其作用 是分离样品。色谱柱主要有两类:填充柱和毛细管柱。 1)填充柱 填充柱由不锈钢或玻璃材料制成,内装固定相, 一般内径为2~4 mm,长1~3m。填充柱的形状有U型和螺旋型 二种。
一.
(2).液体固定相
气液色谱固定相
载体(担体)和固定液组成气液色谱固定相 1. 载体(担体)
(l)对载体的要求 具有足够大的表面积和良好的孔穴结 构,使固定液与试样的接触面较大,能均匀地分布成一薄 膜,但载体表面积不宜太大,否则犹如吸附剂,易造成峰 拖尾;表面呈化学惰性,没有吸附性或吸附性很弱,更不 能与被测物起反应;热稳定性好;形状规则,粒度均匀, 具有一定机械强度。
-.热导检测器 (TCD) 热导检测器 是根据不同的物 质具有不同的热 导系数原理制成 的。热导检测器 由于结构简单, 性能稳定,几乎 对所有物质都有 响应,通用性好, 而且线性范围宽, 价格便宜,因此 是应用最广,最 成熟的一种检测 器。其主要缺点 是灵敏度较低。
2)毛细管柱 毛细管柱又叫空心柱,分为涂壁,多孔层和 涂载体空心柱。涂壁空心柱是将固定液均匀地涂在内径0.l~ 0.5mm的毛细管内壁而成,毛细管材料可以是不锈钢,玻璃或 石英。毛细管色谱柱渗透性好,传质阻力小,而柱子可以做到 长几十米。与填充往相比,其分离效率高(理论塔板数可达 106)、分析速度块、样品用量小,但柱容量低、要求检测器的 灵敏度高,并且制备较难。
二.气固色谱固定相
1.常用的固体吸附剂 主要有强极性的硅胶,弱极性的氧化铝,非 极性的活性炭和特殊作用的分子筛等。使用时, 可根据它们对各种气体的吸附能力不同,选择 最合适的吸附剂 .(见表19-6) 2.人工合成的固定相

气相色谱的定性分析方法

气相色谱的定性分析方法


fm'

Ms Mi
(3)、相对响应值
相对响应值是物质 i 与标准物质 S 的响应值(灵敏度)
之比,单位相同时,与校正因子互为倒数,即
Si
1 fi
和只与试样、标准物质以及检测器类型有关,而与操
作条件和柱温、载气流速、固定液性质等无关,不受
操作条件的影响,因而具有一定的通用性,是一个能
二、气相色谱的定量分析方法
定量分析就是要确定样品中组分的准确含量。气相 色谱的定量分析与大多数的仪器分析方法一样,是一 种相对定量方法,而不是绝对定量方法。
气相色谱定量分析的依据是:在一定的条件下,被
测谱本组峰公分的式峰为i 通面:过积检A测i 成器正的比数。量因(或此浓气度相)色w谱i定与量该分组析分的色基 W i = fi Ai 析再必用式须适中测当的量的f 其 定i称峰量为面计组积算分方A的法i校和,正确将因定色子组谱。分峰由的面式校积可正换知因算,子为定f试量i ,样分
的组分的量 mi ,另一方面要准确测量出峰面积或峰高,
并要求严格控制色谱操作条件,这在实际工作中有一 定困难。因此,实际测量中通常不采用绝对校正因子, 而采用相对校正因子。
(2)、相对校正因子
相对校正因子是指组分 i 与另一标准物 S 的绝
对校正因子之比,用表示:
fi'
fi fs
mi / Ai ms / As
中组分的含量。
1、峰面积的测量
在使用积分仪和色谱工作站测量蜂高和峰面积时,仪器可根据 人为设定积分参数(半峰宽、峰高和最小峰面积等)和基线来计算 每个色谱峰的峰高和峰面积。然后直接打印出峰高和峰面积的结 果,以供定量计算使用。
当使用一般的记录仪记录色谱峰时,则需要用手工测量的方法 对色谱峰和峰面积进行测量。虽然目前已很少采用手工测量法去 测量色谱峰的峰高和峰面积。但是了解手工测量色谱峰峰高和峰 面积的方法对理解积分仪和色谱工作站的工作原理及各种积分参 数的设定是大有裨益的。所以,以下简单介绍两种常用的手工测 量法。

仪器分析气相色谱分析

仪器分析气相色谱分析

甲醇淋洗、烘干
酸。一些拖尾,可加 H3PO4 或 KOH 添加剂解决。
碱洗
5-10%NaOH 甲醇液回流, 水、甲醇淋洗、烘干
除 Al2O3 酸性作用点。用于胺类等碱性物质。
硅烷化 釉化
加入 DMCS 或 HMDS 等硅 烷化试剂,使与-SiOH 反应 2%Na2CO3 浸泡担体,过滤 得滤液再水稀 3 倍,用稀滤 液淋洗担体,烘干后再高温 处理
气固色谱:利用不同物质在固体吸附剂上的物理 吸附——脱吸能力不同实现物质的分离。只适于 较低分子量和低沸点气体组分的分离分析。
气液色谱:利用待测物在气体流动相和固定在惰 性固体表面的液体固定相之间的分配原理实现分 离。
第一节 气相色谱仪
102G型气相色谱仪
102型气相色谱仪 常用于学生实验
GC-7890气相色谱仪
350~550oC 活化
永久气体�
不同极性 170oC
除水、通气活化
水+气体氧 +CH4+低级醇


二 气液色谱固定相——载体+固定液 由载体和固定液构成; 载体为固定液提供大的惰性表面,以承担固定
液,使其形成薄而匀的液膜。 1. 载体 也称担体
惰性的,多孔性固体颗粒。 对载体的要求:稳、匀、大。 载体类型:分为硅藻土型和非硅藻土型,后硅藻土型
第3章 气相色谱分析
3.1、气相色谱仪 3.2、气相色谱流动相与固定相 3.3、气相色谱检测器 3.4、 气相色谱分离分析条件 3.5、气相色谱定性方法 3.6、气相色谱定量方法 3.7、 毛细管柱气相色谱法简介 3.8、气相色谱的应用
气相色谱过程:待测物样品被被蒸发为气体 并注入到色谱分离柱柱顶,以惰性气体 指不与 待测物反应的气体,只起运载蒸汽样品的作用, 也称载气 将待测物样品蒸汽带入柱内分离。 其分离原理是基于待测物在气相和固定相之 间的吸附——脱附 气固色谱 和分配 气液色 谱 来实现的。因此可将气相色谱分为气固色 谱和气液色谱。

气相色谱分析-定性分析方法

气相色谱分析-定性分析方法

气相色谱分析-定性分析方法气相色谱的定性分析就是要确定色谱图中每个色谱峰毕竟代表什么组分,因此必需了解每个色谱峰位置的表示办法及定性分析的办法。

(一)常用的保留值简介在气相色谱分析中,常用的保留值为保留时光tR、调节保留时光t'R、保留体积VR、调节保留体积V'R、相对保留值ris、比保留体积从和保留指数Ix。

各种保留值的计算公式如下: 1.保留时光tR 2.调节保留时光t'R t'R=tR-tM 死时光tM与被测组分的性质无关。

因此以保留时光与死时光的差值,即调节保留时光t'R,作为被测组分的定性指标,具有更本质的含义。

t'R反映了被测组分和固定相的热力学性质,所以用调节保留时光t'R比用保留时光tR作为定性指标要更好一些。

3.保留体积VR VR=tRFc 4.调节保留体积V'R V'R =(tR-tM)Fc=t'RFc=VR-VM 5.相对保留值ris 为了抵消色谱操作条件的变幻对保留值的影响,可将某一物质的调节保留时光:t'R(i)与一标准物(如正壬烷)的调节保留时光:t'R(s)相比,即为相对保留值(如相对壬烷值) 相对保留值ris仅与固定相的性质和柱温有关,与色谱分析的其它操作因素无关,因此具有通用性。

6.比保留体积Vg 比保留体积是气相色谱分析中的另一个重要保留值,其可按下式计算:式中t'R(i)—i组分的调节保留时光,min; m—固定液的质量,g;—在柱温、柱压下,柱内载气的平均体积流速; F'0—室温下由皂膜流量计测得的载气流速,ML/min; Tc—柱温,K; T0—室温,K; p0—室温下的大气压力,Pa; pw—室温下的饱和水蒸气压,pa; j—压力校正因子。

7.科瓦茨(Kovats)保留指数Ix 科瓦茨保留指数是气相色谱领域现已被广泛采纳的一定性指标,其规定为:在任一色谱分析操作条件下,对碳数为n的任何正构烷烃,其保留指数为100n。

气相色谱法色谱图分析化学课件

气相色谱法色谱图分析化学课件
原理
基于样品中各组分在固定相和流动相 之间的分配平衡,利用不同组分在色 谱柱中的保留时间差异实现分离。
发展历程及应用领域
发展历程
自20世纪50年代问世以来,气相色谱法经历了从填充柱到毛细管柱、从热导检 测到各种高灵敏度检测器的发展历程。
应用领域
广泛应用于环境、食品、医药、化工等领域中挥发性有机物、气体样品的分析 。
进样口温度设置
根据样品的性质和色谱柱的要求设置进样口温度 ,避免样品分解或色谱柱过载。
ABCD
自动进样
使用自动进样器进行进样,需设置合适的进样参 数和序列。
进样量控制
根据色谱柱的容量和检测器的灵敏度控制进样量 ,避免色谱峰过宽或检测不到目标化合物。
案例分析:实际样品前处理与进样过程演示
样品前处理
以某农药残留检测为例,首先使用溶 剂萃取法将农药从农产品中萃取出来 ,然后使用固相萃取法进一步净化样 品。
内标法
在样品中加入已知量的内标物质,通过测量 内标物质和待测组分的色谱峰面积之比,计 算待测组分的含量。内标法可以消除实验操 作过程中可能引入的误差,提高定量分析的
准确性。
07
实验操作规范与安全注意事项
实验室安全规章制度解读
实验室准入制度
进入实验室前需接受安全培训,了解实验室安全规章制度和应急 处理措施。
01
数据采集
使用专业色谱数据工作站进行数 据采集,确保数据的准确性和完 整性。
数据存储
02
03
数据导出
将采集到的数据以特定格式存储 在计算机中,以便后续处理和分 析。
根据需要,将数据导出为常见的 数据格式,如CSV、Excel等,方 便数据共享和交换。
定性分析方法:保留时间法、峰面积法等

气相色谱流程图及一般分析步骤

气相色谱流程图及一般分析步骤

气相色谱
流程图:
气相色谱分析典型步骤:
1.不是经常使用的仪器使用前检查,柱子是否合适,安装?进样隔膜是否老化?载气?恒温箱性能?合适检测器?
2.开始通气,调整。

高压气瓶开(减压阀)→~15psi(流速:填充柱2-5mL/min,毛细管柱0.5mL/min现在一般仪器可自行控制),检漏;
3.柱温设定,初始温度恒温;
4.注射器及检测器温度设定,一般比柱温高10~25℃, 100℃以下使用时注意水分;
5.增加通过柱的载气流量,3mm i.d.填充柱25~30 mL/min,检测器之出口处用皂膜流量计测流速;
6. 打开检测器,调整相关参数
TCD 电流100~200mA,稳定后开记录仪
FID 注意H2,空气量10倍H2 ,点火,稳定;
7. 进样分析,注意进样量,挥发性溶剂使用
TCO 10µ L
FID 1~5µ L
毛细管GC加分流器<1µ L
8. 峰记录与处理,微机化后自动获得积分面积、高、保留时间等数据。

第12章气相色谱分析

第12章气相色谱分析

死体积(dead volume)Vm 指色谱柱在填完后柱管内固定相颗粒间所剩
留的空间。色谱仪中管路和连接头间的空间以及 检测器的空间的总和。当后两项很小忽略不计时,
Vm=tmF0 F0——载气体积流速,mL·min-1
保留体积(retention volume)VR
VR= tRF0
载气流速大,保留时间相应降低,两者乘积仍为 常数,因此VR与F0无关。
2、按固定相使用的形式:柱色谱,纸色谱,薄层色谱。 3、色谱分离过程的机制
吸附色谱 分配色谱 离子交换色谱 排阻色谱(凝胶色谱)
色谱法的特点
1、分离效能高 2、灵敏度高。 3、分析速度快。 4、应用范围广泛。 5、装置简单,操作方便。 缺点:在缺乏标准样品的情况下,定性分析较困难,
对于高沸点,不能气化和热不稳定的物质不能 用气相色谱法分离和测定。
§12-2 气相色谱法的基本原理
一、气相色谱流程:
1、高压钢瓶 2、减压阀 3、载气净化干燥管 4、针形阀 5、流量剂 6、压力表 7、进样器 8、色谱柱 9、检测器 10、记录仪
图2.1 气相色谱流程图
二、气相色谱仪的组成及各部分的作用:
1、载气系统(包括气源、气体净化、气体流速 控制和 测 量) 常用的载气,氨气、氮气
不动的一相。 流动相:携带混合物流过此固定相的流体相。 分离原理: 依据不同物质在流动相中与固定相的相互 作用的不同而产生不同的分配率,经过多次分 配而达 到混合物的分离的目的。
色谱法分类:
1、按流动相的物态:气相色谱法,液相色谱法 按固定相的物态:气固色谱(固定相为固定吸附剂) 气液色
谱(固定相为涂在固体担体上的或毛细管壁上的液体) 液固色谱 液液色谱
调整保留体积(adjusted retention volume)VR’ VR’=tR’F0 或 VR’=VR-Vm VR’与载气流速无关
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在实际工作中,当我们拿到一个样品,我们该怎样定性和定量,建立一套完整的分析方法是关键,下面介绍一些常规的步骤:
1、样品的来源和预处理方法
GC能直接分析的样品通常是气体或液体,固体样品在分析前应当溶解在适当的溶剂中,而且还要保证样品中不含GC不能分析的组分(如无机盐),可能会损坏色谱柱的组分。

这样,我们在接到一个未知样品时,就必须了解的来源,从而估计样品可能含有的组分,以及样品的沸点范围。

如果样品体系简单,试样组分可汽化则可直接分析。

如果样品中有不能用GC直接分析的组分,或样品浓度太低,就必须进行必要的预处理,如采用吸附、解析、萃取、浓缩、稀释、提纯、衍生化等方法处理样品。

2、确定仪器配置
所谓仪器配置就是用于分析样品的方法采用什么进样装置、什么载气、什么色谱柱以及什么检测器。

一般应首先确定检测器类型。

碳氢化合物常选择FID检测器,含电负性基团(F、Cl等)较多且碳氢含量较少的物质易选择ECD检测器;对检测灵敏度要求不高,或含有非碳氢化合物组分时,可选择TCD检测器;对于含硫、磷的样品可选择FPD检测器。

对于液体样品可选择隔膜垫进样方式,气体样品可采用六通阀或吸附热解析进样方法,一般色谱仅配置隔膜垫进样方式,所以气体样品可采用吸附-溶剂解析-隔膜垫进样的方式进行分析。

根据待测组分性质选择适合的色谱柱,一般遵循相似相容规律。

分离非极性物质时选择非极性色谱柱,分离极性物质时选择极性色谱柱。

色谱柱确定后,根据样本中待测组分的分配系数的差值情况,确定色谱柱工作温度,简单体系采用等温方式,分配系数相差较大的复杂体系采用程序升温方式进行分析。

常用的载气有氢气、氮气、氦气等。

氢气、氦气的分子量较小常作为填充柱色谱的载气;氮气的分子量较大,常作为毛细管气相色谱的载气;气相色谱质谱用氦气作为载气。

3、确定初始操作条件
当样品准备好,且仪器配置确定之后,就可开始进行尝试性分离。

这时要确定初始分离条件,主要包括进样量、进样口温度、检测器温度、色谱柱温度和载气流速。

进样量要根据样品浓度、色谱柱容量和检测器灵敏度来确定。

样品浓度不超过10mg/mL时填充柱的进样量通常为1-5uL,而对于毛细管柱,若分流比为50:1时,进样量一般不超过2uL。

进样口温度主要由样品的沸点范围决定,还要考虑色谱柱的使用温度。

原则上讲,进样口温度高一些有利,一般要接近样品中沸点最高的组分的沸点,但要低于易分解温度。

4、分离条件优化
分离条件优化目的就是要在最短的分析时间内达到符合要求的分离结果。

在改变柱温和载气流速也达不到基线分离的目的时,就应更换更长的色谱柱,甚至更换不同固定相的色谱柱,因为在GC中,色谱柱是分离成败的关键。

5、定性鉴定
所谓定性鉴定就是确定色谱峰的归属。

对于简单的样品,可通过标准物质对照来定性。

就是在相同的色谱条件下,分别注射标准样品和实际样品,根据保留值即可确定色谱图上哪个峰是要分析的组分。

定性时必须注意,在同一色谱柱上,不同化合物可能有相同的保留值,所以,对未知样品的定性仅仅用一个保留数据是不够的,双柱或多柱保留指数定性是GC中较为可靠的方法,因为不同的化合物在不同的色谱柱上具有相同保留值的几率要小得多。

条件允许时可采用气相色谱质谱联机定性。

6、定量分析
要确定用什么定量方法来测定待测组分的含量。

常用的色谱定量方法不外乎峰面积(峰高)百分比法、归一化法、内标法、外标法和标准加入法(又叫叠加法)。

峰面积(峰高)百分比法最简单,但最不准确。

只有样品由同系物组成、或者只是为了粗略地定量时该法才是可选择的。

相比而言,内标法的定量精度最高,因为它是用相对于标准物(叫内标物)的响应值来定量的,而内标物要分别加到标准样品和未知样品中,这样就可抵消由于操作条件(包括进样量)的波动带来的误差。

至于标准加入法,是在未知样品中定量加入待测物的标准品,然后根据峰面积(或峰高)的增加量来进行定量计算。

其样品制备过程与内标法类似但计算原理则完全是来自外标法。

标准加入法定量精度应该介于内标法和外标法之间。

7、方法的验证
所谓的方法验证,就是要证明所开发方法的实用性和可靠性。

实用性一般指所用仪器配置是否全部可作为商品购得,样品处理方法是否简单易操作,分析时间是否合理,分析成本是否可被同行接受等。

可靠性则包括定量的线性范围、检测限、方法回收率、重复性、重现性和准确度等。

相关文档
最新文档