高中数学空间几何体知识点总结
高中数学立体几何与空间向量知识点归纳总结

高中数学立体几何与空间向量知识点归纳总结立体几何与空间向量知识点归纳总结一、立体几何知识点1、柱、锥、台、球的结构特征1) 棱柱的定义:有两个面是对应边平行的全等多边形,其余各面都是四边形,且相邻四边形的公共边都平行,由这些面围成的几何体叫棱柱。
棱柱的侧面都是平行四边形,侧棱平行且长度相等。
若侧棱垂直于底面,则为直棱柱;若底面是正多边形,则为正棱柱。
2) 棱锥的定义:有一个面是多边形,其余各面都是三角形,由这些面围成的几何体叫棱锥。
平行于底面的截面与底面相似,其相似比等于顶点到截面的距离与高的比。
3) 棱台的定义:用平行于底面的平面截棱锥,截面与底面的部分叫棱台。
上下底面平行且是相似的多边形,侧面是梯形,侧棱交于原棱锥的顶点。
4) 圆柱的定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所围成的几何体叫圆柱。
底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。
5) 圆锥的定义:以直角三角形的一条直角边为旋转轴,旋转一周所围成的几何体叫圆锥。
底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。
6) 圆台的定义:以直角梯形的垂直于底边的腰为旋转轴,旋转一周所围成的几何体叫圆台。
上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个扇环形。
7) 球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形围成的几何体叫球。
球的截面是圆,球面上任意一点到球心的距离等于半径。
2、柱体、锥体、台体的表面积与体积1) 几何体的表面积为各个面的面积之和。
2) 特殊几何体表面积公式:直棱柱侧面积=底面周长×高圆锥侧面积=π×底面半径×母线正棱台侧面积=(上底+下底+侧棱)×高/2圆柱侧面积=2π×底面半径×高正棱锥侧面积=(底面周长1+底面周长2+侧棱)×高/2圆台侧面积=(上底半径+下底半径)×母线×π/2圆柱表面积=2π×底面半径×(底面半径+高)圆锥表面积=π×底面半径×(底面半径+母线)圆台表面积=π×(上底半径²+下底半径²+上底半径×下底半径×(上底半径-下底半径)/母线)3) 柱体、锥体、台体的体积公式:直棱柱体积=底面积×高圆柱体积=底面积×高=π×底面半径²×高圆锥体积=底面积×高/3=π×底面半径²×高/3圆台体积=底面积×高/3=(上底半径²+下底半径²+上底半径×下底半径)×高/3圆台的体积公式为V=(S+S'+√(SS'))h/3,其中S和S'分别为圆台的上下底面积,h为圆台的高。
高中数学 必修二-第一章 立体几何初步 知识点整理

底面为三角形、四边形、五边形„„的棱锥分别叫做三棱锥、四棱锥、五棱锥„„,
其中三棱锥又叫四面体。
4
必修二
正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心, 这样的棱锥叫做正棱锥。
正棱锥的性质: ①各侧棱相等,各侧面都是全等的等腰三角形; ②棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形,棱锥的高、侧棱和侧 棱在底面上的射影也组成一个直角三角形。 (4)棱台的结构特征 用一个平行于棱锥底面的平面去截棱 锥,底面与截面之间的部分叫做棱台。 原棱锥的底面和截面分别叫做棱台的 下底面和上底面;其它各面叫做棱台的侧 面;相邻侧面的公共边叫做棱台的侧棱; 底面与侧面的公共顶点叫做棱台的顶点; 当棱台的底面水平放置时,铅垂线与两底 面交点间的线段叫做棱台的高。 由正棱锥截得的棱台叫做正棱台。正棱台的性质: ①各侧棱相等,侧面是全等的等腰梯形;②两底面以及平行于底面的截面是相似多边 形;③两底面中心连线、相应的边心距和斜高组成一个直角梯形;④两底面中心连线、侧 棱和两底面外接圆相应半径组成一个直角梯形;⑤正棱台的上下底面中心的连线是棱台的 一条高;⑥正四棱台的对角面是等腰梯形。
8
必修二
②在已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x′轴或 y′ 轴的线段。
③在已知图形中平行于 x 轴的线段,在直观图中保持原长度不变,平行于 y 轴的线段, 长度变为原来的一半。
用斜二测法画直观图,关键是掌握水平放置的平面图形的直观图的画法,而画水平放 置的平面图形的关键是确定多边形的顶点。因为多边形顶点的位置一旦确定,依次连接这 些顶点就可画出多边形。
在一束平行光线照射下形成的投影,叫做平行投影。平行投影的投影线是平行的。在 平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。
高中立体几何知识点总结

高中立体几何知识点总结高中立体几何知识点总结1点在线面用属于,线在面内用包含。
四个公理是基础,推证演算巧周旋。
空间之中两条线,平行相交和异面。
线线平行同方向,等角定理进空间。
判定线和面平行,面中找条平行线。
已知线与面平行,过线作面找交线。
要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。
已知面与面平行,线面平行是必然;若与三面都相交,则得两条平行线。
判定线和面垂直,线垂面中两交线。
两线垂直同一面,相互平行共伸展。
两面垂直同一线,一面平行另一面。
要让面与面垂直,面过另面一垂线。
面面垂直成直角,线面垂直记心间。
一面四线定射影,找出斜射一垂线,线线垂直得巧证,三垂定理风采显。
空间距离和夹角,平行转化在平面,一找二证三构造,三角形中求答案。
引进向量新工具,计算证明开新篇。
空间建系求坐标,向量运算更简便。
知识创新无止境,学问思辨勇攀登。
多面体和旋转体,上述内容的延续。
扮演载体新角色,位置关系全在里。
算面积来求体积,基本公式是依据。
规则形体用公式,非规形体靠化归。
展开分割好办法,化难为易新天地。
高中立体几何知识点总结2三角函数。
注意归一公式、诱导公式的正确性数列题。
1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
高中数学必修2空间几何体知识点归纳总结

中学数学必修2空间几何体学问点归纳总结中学数学空间几何体的学习始终是中学数学教学的重、难点,学生要重点驾驭相关学问点,下面给大家带来中学数学必修2空间几何体学问点,希望对你有帮助。
中学数学必修2空间几何体学问点考点要求:1.几何体的绽开图、几何体的三视图仍是高考的(热点).2.三视图和其他的学问点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势.3.重点驾驭以三视图为命题背景,探讨空间几何体的结构特征的题型.4.要熟识一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.学问结构:1.多面体的结构特征(1)棱柱有两个(面相)互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)棱锥的底面是随意多边形,侧面是有一个公共顶点的三角形.正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特殊地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相像多边形.2.旋转体的结构特征(1)圆柱可以由矩形绕一边所在直线旋转一周得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到.3.空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形态和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.三视图的长度特征:"长对正,宽相等,高平齐',即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要留意实、虚线的画法.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取相互垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x轴、y轴,两轴相交于点O,且使xOy=45或135,已知图形中平行于x轴、y轴的线段,在直观图中平行于x轴、y轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z轴,也垂直于xOy平面,已知图形中平行于z轴的线段,直观图中仍平行于z 轴且长度不变.中学数学必修2学问点1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。
高中数学---空间几何体讲义

空间几何体1、 多面体的定义:由几个多边形围成的封闭立体叫多面体。
2、 棱柱定义:两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体叫做棱柱。
棱柱的互相平行的两个面叫做棱柱的底面,其余各面叫做棱柱的侧面,相邻的两个侧面的公共边叫做棱柱的侧棱,两个底面间的距离叫做棱柱的高。
基本性质:侧面都是平行四边形;两个底面及平行于底面的截面都是全等的多边形;过不相邻的两条侧棱的截面是平行四边形。
棱柱的分类:侧棱与底面不垂直的的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱。
直棱柱侧面都是矩形;直棱柱侧棱与高相等;正棱柱的侧面都是全等的矩形。
底面是平行四边形的棱柱叫做平行六面体;底面是矩形的直棱柱是长方体。
祖暅原理:夹在两个平行平面间的两个几何体,如果被平行于这两个平面的任何平面所截得的两个截面的面积都相等,那么这两个几何体的体积相等。
侧面积和体积公式:S Cl =侧(C 为垂直于侧棱的直截面的周长,l 为侧棱长),V Sh =(S 为底面面积,h 为高)3、 棱锥(1) 定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
棱锥的这个多边形的面叫做底面,其余各个三角形的面叫做侧面。
相邻的两个侧面的公共边叫做棱锥的侧棱。
各个侧面的公共顶点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高。
(2) 基本性质:如果一个棱锥被平行于底面的一个平面所截,那么侧棱和高被这个平面分成比例线段;截面与底面都是相似多边形;截面面积与底面面积之比,等于顶点到截面与顶点到底面的距离平方之比。
4、 正棱锥(1) 定义:如果一个棱锥的底面是多边形,且顶点在诺面的射影是底面的中心,这个棱锥叫做正棱锥; (2) 基本性质:各侧棱相等,各侧面都是全等的等腰三角形;正棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;正棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。
高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=222r rl S ππ+=第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。
高中解析几何知识点

高中解析几何知识点几何是数学里的一个重要概念,它用于描述和分析物体形状、大小、空间变化和构成之间的关系。
以下是高中的几何知识点:一、几何变换几何变换是几何学中的重要概念,它指的是将一个物体变换为另一个物体的数学过程。
几何变换可以分为平移、旋转、缩放和镜像。
1、平移:平移又称平移变换,指的是把物体从一个位置移动到另一个位置的变换,其主要特征是保持物体的形状和大小不变。
2、旋转:旋转又称旋转变换,指把物体沿某一轴线(中心轴)顺时针或逆时针方向旋转一定角度的变换。
3、缩放:缩放又称缩放变换,指的是以某一点为原点,把物体沿着某一方向大小缩放的变换。
4、镜像:镜像又称对称变换,指以某一条对称轴为轴心,把物体以这条轴对称的变换。
二、平面图形平面图形是指在平面上的图形,也就是说,这些图形的点的集合都在同一个平面上。
平面图形可以分为点、直线、圆和多边形。
1、点:点是位于平面上的某一个位置,每一个点都有它特定的坐标,这些坐标可以用来定义它的位置。
2、直线:直线是指在平面上两点之间的连线,即连贯的点之间的线段。
3、圆:圆是指平面上一线段的终点经过一定半径长度所围成的圆形图形。
4、多边形:多边形是指由一条或多条直线构成的几何图形,它是由若干点构成的封闭空间图形,多边形最少为三角形,最多为正多边形。
三、立体图形立体图形也叫“立体几何”,它是在三维空间中描述和分析物体体积、大小和空间变化的科学。
立体图形可以分为正多面体、圆柱体、圆锥体和几何体。
1、正多面体:正多面体是一种五边以上的多面体,它由一个正方形和多个三角形相组合而成。
2、圆柱体:圆柱体是由一个圆的底面和高的空心柱子组成的几何体,它可以分为侧面圆柱体和上下面圆柱体。
3、圆锥体:圆锥体是由圆的底面和另一端的圆弧组成的几何体,它的形状像杯子一样,也叫“尖圆锥”或“圆台”。
4、几何体:几何体指形状有一定规则的三维物体,它有一个或多个空间坐标,分别可以表示它在空间中的特征。
空间几何体的结构 知识表格 高中数学知识点

3.棱柱、棱锥、棱台的结构特征 多面体 棱柱 几何特征 有两个面互相平行,其余 各面都是四边形,并且每 相邻两个四边形的公共边 都互相平行 有一个面是多边形,其余 各面都是有一个公共顶点 的三角形 用一个平行于棱锥底面的 平面去截棱锥,底面与截 面之间的部分,叫做棱台 图形 Nhomakorabea棱锥
棱台
4.圆柱、圆锥、圆台和球的结构特征 旋转体 圆柱 几何特征 图形
5.棱(圆)台、棱(圆)柱、棱(圆)锥之间的关系
上、下底面一样 棱(圆)柱
棱(圆)台
棱(圆)锥
上底面变成一个点
以矩形的一边所在的直线为旋
转轴,其余三边旋转形成的面 所围成的旋转体叫做圆柱 以直角三角形的一直角边所在 圆锥 的直线为旋转轴,其余两边旋
转形成的面所围成的旋转体叫
做圆锥
旋转体 圆台
几何特征 用一个平行于圆锥底面的平面 去截圆锥,底面与截面之间的 部分,叫做圆台 以半圆的直径所在的直线为旋
图形
球
转轴,半圆面旋转一周形成的 旋转体叫做球体
1.棱锥与棱台
名称 棱锥 正棱锥 棱台 正棱台
图形
有一个面是多 边形,其余各 定义 面是有一个公 共顶点的三角
底面是正多边形, 且顶点在底面的射 影是底面的中心的 多面体
用一个平行于 棱锥底面的平 面去截棱锥, 底面和截面之 由正棱锥截得 的棱台
形的多面体
侧棱
间的部分
延长线交于一点 相等且延长线 交于一点
与底面相似的多 边形
与底面相似的 正多边形
两底中心连线 即高;侧棱与 底面、侧面与 底面、相邻两 侧面所成角都 相等
其他 性质
2.空间几何体的分类
类别 定 义 多面体 由若干个平面多边形围成的 旋转体 由一个平面图形绕它所在平面 内的一条定直线旋转所形成的 封闭几何体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体知识点总结
一、空间几何体的结构特征
1 .柱、锥、台、球的结构特征
由若干个平面多边形围成的几何体称之为多面体。
围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公
共边叫做多面体的棱,棱与棱的公共点叫做顶点。
把一个平面图形绕它所在平面内的一条定直线旋转形成的圭寸闭几何体称之为旋转体,其中定直线称为旋转体的
轴。
(1)柱
棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的
侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。
底面是三角形、四边形、五边形,,的棱柱分别叫做三棱柱、四棱柱、五棱柱
注:相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:
四棱柱I底面为平行四边形怦行六面体I侧棱垂直于底面IB平行⅛硕本I底面为矩形
■------------------------------ Bh. ------------
①侧棱都相等,侧面是平行四边形;
②两个底面与平行于底面的截面是全等的多边形;
③过不相邻的两条侧棱的截面是平行四边形;
④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
斜棱柱棱柱:
κ=≡τ¾tr J車""理》正棱柱
按方体底面为正方形正四棱柱恻棱与底面边栓相萨IlE方体I
棱柱的性质:
圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形。
棱柱与圆柱统称为柱体;
(2)锥
棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公
底面是三角锥、四边锥、五边锥,,的棱柱分别叫做三棱锥、四棱锥、五棱锥,,
正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。
注:棱锥的性质:
①平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;
②正棱锥各侧棱相等,各侧面是全等的等腰三角形;
③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。
圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面。
圆锥的性质:
①平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;
②轴截面是等腰三角形;
棱锥与圆锥统称为锥体。
(3)台
棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点。
正棱台的性质:
①各侧棱相等,各侧面都是全等的等腰梯形;
②正棱台的两个底面以及平行于底面的截面是正多边形;
③棱台经常补成棱锥研究。
圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴。
圆台的性质:
①圆台的上下底面,与底面平行的截面都是圆;
②圆台的轴截面是等腰梯形;
③圆台经常补成圆锥来研究。
圆台和棱台统称为台体。
(4)球
以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。
注:球的有关问题转化为圆的问题解决。
(5)组合体
由柱、锥、台、球等几何体组成的复杂的几何体叫组合体。
2.空间几何体的三视图
三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形。
具体包括:
(1)正视图:物体前后方向投影所得到的投影图;
它能反映物体的高度和长度;
(2)侧视图:物体左右方向投影所得到的投影图;
它能反映物体的高度和宽度;
(3)俯视图:物体上下方向投影所得到的投影图;
它能反映物体的长度和宽度;
3.空间几何体的直观图
(1)斜二测画法
①建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX OY建立直角坐标系;
②画出斜坐标系,在画直观图的纸上(平面上)画出对应的OX ,0' Y ,使.XbY=450(或1350),它们确定的平面表示水平平面;
③画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X’轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y'轴,且长度变为原来的一半;
④擦去辅助线,图画好后,要擦去X轴、Y轴及为画图添加的辅助线(虚线)。
结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的注:解决两种常见的题型时应注意
1)由几何体的三视图画直观图时,一般先考虑“俯视图”
2)由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。
(2)平行投影与中心投影
平行投影的投影线是互相平行的,中心投影的投影线相交于一点。
4.知识归纳及拓展
(1)几种常凸多面体间的关系
(2)—些特殊棱柱、棱锥、棱台的概念和主要性质
1 .多面体的面积和体积公式
S TF N h h,
表中L h分别表TF母线' 髙* r表TF圆枉' 圆锥与球冠的底半径! τ↑∖门分别表示區!台上、下底面半径,R表示半径.
附注:(1)两点的球面距离:
球面上两点之间的最短距离,就是经过两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫
做两点的球面距离+
两点的球面距离公式:(其中R为球半径,θ为A,B所对应的球心角的弧度数)
(2)正四面体的性质
设正四面体的棱长为a,则这个正四面体的全面积:S全=、3a2;体积:V =-2a3;对棱中点连线段的
12
之和为定值(等于正四面体的高)。
(参考教材:人教版必修 2A 版)
长:
J 2
d a ;内切球半径:
2
12
a ;外接球半径
R 6a ;
4
正四面体内任意 点到四个面的距离。