温度冲击试验和温度循环试验之比较
高低温试验项目及标准(一)

高低温试验项目及标准(一)高低温试验项目及标准引言高低温试验是一种常用的测试方法,用于评估产品在面对极端温度环境时的性能和可靠性。
本文将介绍高低温试验的一些常见项目和相关的标准。
试验项目以下是一些常见的高低温试验项目:1.温度循环试验:通过周期性地改变温度,测试产品在不同温度条件下的性能和可靠性。
–高温循环:提高温度至指定值,保持一段时间,然后急速降温至低温,并保持一段时间。
–低温循环:降低温度至指定值,保持一段时间,然后急速升温至高温,并保持一段时间。
2.恒温试验:在指定的高温或低温下,长时间地保持产品的温度,以测试其在极端环境下的稳定性。
–高温保持:将产品置于高温环境中,并保持一段时间。
–低温保持:将产品置于低温环境中,并保持一段时间。
3.温度冲击试验:通过急速改变温度,测试产品在由高温到低温或由低温到高温的过程中的耐受程度。
–高温冲击:将产品由低温环境急速移至高温环境,并保持一段时间。
–低温冲击:将产品由高温环境急速移至低温环境,并保持一段时间。
相关标准为了确保高低温试验的准确性和一致性,存在许多相关的标准供参考。
以下是一些常用的标准:•GB/T - 电工电子产品环境试验第二部分:试验A: 低温试验方法•GB/T - 电工电子产品环境试验第二部分:试验B: 高温试验方法•GB/T - 电工电子产品环境试验第二部分:试验Ca: 湿热试验方法•ISO - 道路车辆环境试验第4部分:试验方法D: 耐受高低温试验•IEC - 环境试验的第2部分:试验A: 冷测试方法这些标准提供了试验方法、试验条件、设备要求等方面的指导,帮助实施高低温试验并确保结果的可比性和准确性。
结论高低温试验是一种重要的评估产品性能和可靠性的方法。
通过温度循环、恒温试验和温度冲击试验等项目,我们可以了解产品在面对极端温度环境时的表现。
相关的标准提供了一致的测试方法和指导,使得高低温试验结果的可比性得以保证。
在产品开发和质量控制的过程中,高低温试验具有重要的应用价值。
温度冲击试验 VS 实际使用寿命如何换算?

温度冲击试验VS实际使用寿命如何换算?众所周知,可靠性实验主要的原理是模拟、加速。
今天分享一下温度冲击试验,跟实际环境的对应关系。
如何换算及换算演示在文末。
1、温度冲击的定义热冲击试验(ThermalShockTesting)常被称作温度冲击试验(TemperatureShockTesting)或者温度循环(TemperatureCycling),高低温冷热冲击试验。
温度冲击按照GJB150.5A-20093.1的说法,是装备周围大气温度的急剧变化,温度变化率大于10度/min,即为温度冲击。
MIL-STD-810F503.4(2001)持相类似的观点。
2、温度冲击测试的目的温度冲击试验的目的:工程研制阶段可用于发现产品的设计和工艺缺陷;产品定型或设计鉴定和量产阶段用于验证产品对温度冲击环境的适应性,为设计定型和量产验收决策提供依据;作为环境应力筛选应用时,目的是剔除产品的早期故障。
3、温度冲击的应用电子设备和元器件中发生温度变化的情况很普遍。
当设备未通电时,其内部零件要比其外表面上的零件经受的温度变化慢。
下列情况下,可预见快速的温度变化:——当设备从温暖的室内环境转移到寒冷的户外环境,或相反情况时;——当设备遇到淋雨或浸入冷水中而突然冷却时;——安装于外部的机载设备中;——在某些运输和贮存条件下。
通电后设备中会产生高的温度梯度,由于温度变化,元器件会经受应力,例如,在大功率的电阻器旁边,辐射会引起邻近元器件表面温度升高,而其他部分仍然是冷的。
当冷却系统通电时,人工冷却的元器件会经受快速的温度变化。
在设备的制造过程中同样可引起元器件的快速温度变化。
温度变化的次数和幅度以及时间间隔都是很重要的。
4、温度冲击的效应温度冲击通常对靠近装备外表面的部分影响更严重,离外表面越远(当然,与相关材料的特性有关),温度变化越慢,影响越不明显。
运输箱、包装等还会减小温度冲击对封闭的装备的影响。
急剧的温度变化可能会暂时或永久地影响装备的工作。
冷热冲击循环标准

冷热冲击循环标准
冷热冲击试验是用高温和低温冲击测试产品的试验,考核产品对于周围空气温度的激烈变化的适应性。
常见的冷热冲击参考标准有国标GB2423《电工电子产品基本环境试验规程》,IEC60068-2-14基本环境试验规范。
第2部分试验N温度变化)。
国标GB2423里高温试验的将试验样品放入温度为试验室温度的试验箱中,然后将温度调节到符合相关规范规定的严酷等级温度。
当试验样品温度达到稳定后,在该条件下暴露到规定的持续时间。
对于试验时需要通电运行的试验样品(即使它们不属于散热试验样品),应在试验样品温度达到稳定后通电,根据需要进行功能检测。
这种情况下,可能还需要一段时间达到温度稳定,然后试验样品在该高温条件下暴露到相关规范规定的持续时间。
冷热冲击试验各类标准中的冷热冲击试验均来源于试验方法N:温度变化中的Na。
在特定时间内快速温度变化试验。
它的定义在特定时间内进行快速温度变化,转换时间一般设定为手动2~3分钟,自动少于30秒,小试件则少于10秒。
常用术语中的温度冲击试验也属于冷热冲击试验。
冷热冲击试验有几个重要参数需要考虑:循环数、温度转换时间、温度保持时间、温度极限值(因此项试验为存储类试验,故其极限值为存储极限温度值)。
电工电子产品环境试验基础知识

环境试验基础知识一、温度试验:电工电子产品在温度应力的作用下会造成塑料、树脂的老化、分解、变形、甚至燃烧;金属短路、断路、损坏;焊剂流动、焊接不实形成噪声。
根据“10℃规则”,当环境温度上升10℃时,产品寿命会减少一半;当环境温度上升10℃时,产品寿命会减少到四分之一。
根据这一现象,我们可以升高环境温度,加速失效现象的发生。
这就是我们进行的加速寿命老化试验。
还必须对早期失效的不合格的产品进行筛选测试。
二、湿热试验:试验样品在高温高湿条件下,会造成水气吸附和扩散。
许多材料吸湿后体积膨胀、强度降低、电性能下降、金属腐蚀、离子迁移、造成开路或短路。
典型的半导体器件加速湿阻试验下述结论不仅适用于湿热试验,同时也适用于其他环境试验湿热试验的注意事项:1、试验目的明确,进行与目的相符的试验。
积累每一次的失效数据,为以后的试验能有效地进行。
2、关心测试数据的准确性,湿球纱布变质变赃会导致测量精度偏差5%~10%:要使用脱脂的干净纱布和蒸馏水。
3、在进行温度-湿度偏压试验(THB)时,因试件内部发热,试样表面附近的相对湿度会降低,影响试验的准确性。
试验方式可调整为:通电1小时断电3小时,断续电试验。
4、试验箱内的温湿度条件应与试样内部的温湿度条件保持一致,且均匀度要好。
在高湿度试验中,如果某一点的温度低1℃ ,这一点的湿度就可能变成100%RH,就会有凝结的水珠出现,使试验数据发生很大变化。
5、防止试验箱顶部凝露水滴到度样上,造成不必要的损失。
6、在压力蒸煮锅试验结束后,要冷却后再取出。
防止试样受到压力冲击和温度冲击,造成样品破裂损坏。
三、高低温温度冲击试验:航空器起飞或降落时,机载外部器材会出现温度的急剧变化;设备从高温区移到低温区或从低温区移到高温区;设备通电与断电;采用锡焊焊接;整机小型化,元件密集,元器件更容易受热,等等。
都会引起高低温温度的冲击。
元器件都是由不同材料构成,由热膨胀系数不同引起的故障时有发生。
发动机冷热冲击试验

发动机冷热冲击试验发动机冷热冲击试验是一种常见的测试方法,用于评估发动机在不同温度下的性能和可靠性。
这种试验通常在实验室中进行,通过模拟不同的工作条件来模拟发动机在实际使用中的情况。
本文将介绍发动机冷热冲击试验的原理、方法和应用。
一、试验原理发动机冷热冲击试验的原理是通过模拟发动机在不同温度下的工作条件,评估其性能和可靠性。
在实际使用中,发动机会经历不同的温度变化,例如从冷启动到高温运行,或者从高温运行到冷却状态。
这些温度变化会对发动机的性能和可靠性产生影响,因此需要进行冷热冲击试验来评估其性能和可靠性。
二、试验方法发动机冷热冲击试验通常分为两种方法:热冲击试验和冷热冲击试验。
热冲击试验是将发动机加热到一定温度,然后突然降温,以模拟发动机在高温状态下的工作条件。
冷热冲击试验是将发动机冷却到一定温度,然后突然加热,以模拟发动机在低温状态下的工作条件。
在试验过程中,需要对发动机进行多次循环测试,以模拟实际使用中的情况。
每个循环包括加热、冷却和恢复三个阶段。
在加热阶段,发动机被加热到一定温度,通常是发动机的最高工作温度。
在冷却阶段,发动机被冷却到一定温度,通常是发动机的最低工作温度。
在恢复阶段,发动机被恢复到室温状态,以便进行下一次循环测试。
三、试验应用发动机冷热冲击试验广泛应用于发动机的研发和生产过程中。
通过这种试验,可以评估发动机在不同温度下的性能和可靠性,以便进行优化和改进。
例如,在发动机的设计阶段,可以通过冷热冲击试验来评估不同材料和结构的性能和可靠性,以选择最合适的设计方案。
在发动机的生产过程中,可以通过冷热冲击试验来检测发动机的质量和可靠性,以确保发动机符合规定的标准和要求。
发动机冷热冲击试验还可以用于评估发动机在不同环境下的性能和可靠性。
例如,在极端气候条件下,发动机的性能和可靠性可能会受到影响,因此需要进行冷热冲击试验来评估其适应能力。
在高海拔地区,发动机的性能和可靠性也可能会受到影响,因此需要进行冷热冲击试验来评估其适应能力。
冷热冲击试验和温度循环试验有何区别

冷热冲击试验和温度循环试验有何区别冷热冲击试验和温度循环试验都属于可靠性试验的一种。
在产品生产前或生产后对其进行质量测试可以帮助预测其在使用过程中可能出现的问题,并提高产品的可靠性和稳定性。
冷热冲击试验冷热冲击试验是将被测材料或零件在热箱和冷箱之间不断切换,以模拟在不同温度环境下产品的使用条件。
冷热冲击试验常用于测试产品的热胀冷缩性和耐热性,如汽车外壳、电子元器件、机械零件等。
通常,冷热冲击试验会以快速温度变化的形式进行,使测试材料或零件在一定时间内分别处于高温和低温环境内,然后在这两个环境之间反复转换,观察其耐热和耐冷性能的变化,以此检验产品的质量。
这些快速的温度变化在短时间内会导致材料的热胀冷缩和应力积累,这些条件是产品在使用过程中可能遇到的。
冷热冲击试验的过程非常严峻,能够挑战产品的真实环境中所面临的最严峻的环境。
温度循环试验温度循环试验是将测试材料或零件置于高温和低温环境中,使其在高温条件下进行一段时间,然后在低温环境中进行另外一段时间,以此重复进行,来检验材料或零件在不同温度环境下的稳定性和可靠性。
与冷热冲击试验不同,温度循环试验的环境温度变化相对缓慢,且变化预测性更强。
它通常用于测试产品在稳定温度条件下的性能如可靠性、气密性、机械性能等。
与冷热冲击试验相比,温度循环试验更加耗时和耗费资源,但它可以更细致地检测产品的稳定性。
区别和联系在实际应用中,冷热冲击试验和温度循环试验的区别不仅仅在于温度的快慢变化,两者的试验理论与实践也有区别。
一般来说,冷热冲击试验注重材料的抗快速温度变化的能力与应变能力的评估,同时也关注于产品的可靠性和永久性的稳定性实验;而温度循环试验则关注产品的耐久性和稳定性,注重对产品进行长时间、正常温度条件下的质量评估。
此外,冷热冲击试验和温度循环试验通常根据产品要求指定不同的方案,目标与范围也不尽相同。
在产品实际测试过程中,应根据材料的实际情况以及相关的规定和标准选择适合的测试方案,并综合考虑两种试验的结果,以衡量产品的质量与性能。
电子产品可靠性试验

电子产品可靠性试验电子产品可靠性试验是指对电子产品在使用过程中出现的各种异常情况进行测试的过程。
这些测试可以涉及电子产品的各个方面,例如电路板、连接器、线路、元器件、外壳以及软件等方面。
这些测试旨在保证产品在各种客户环境下的可靠性和稳定性,以提高产品的质量和客户的满意度。
电子产品可靠性试验有多种,包括合成振动试验、冲击试验、温度循环试验、高温寿命试验、低温寿命试验、湿热寿命试验、脉冲压力试验、电场强度试验、辐射强度试验等。
这些试验可以单独进行也可以组合进行,以确定产品是否符合各种标准和规范。
合成振动试验是指对电子产品在振动情况下进行测试。
这种测试可以模拟产品在使用过程中的震动和颠簸情况,以确定产品是否能够承受各种应力。
冲击试验是指对电子产品在受到冲击情况下进行测试。
这种测试可以模拟用户将产品摔在地上或设备在运输中受到的冲击情况。
温度循环试验可以模拟电子产品在各种温度变化情况下的使用情况。
在高温寿命试验中,电子产品通常在高温度下长时间运行以确定其可靠性。
在低温寿命试验中,电子产品在极低温度下进行长时间运行。
在湿热寿命试验中,电子产品在高温高湿度条件下运行,以模拟产品在潮湿或高湿度环境下的使用情况。
脉冲压力试验是指测试电子产品在受到瞬间压力情况时的可靠性。
电场强度试验是测试电子产品是否能够承受电场的强度和脉冲。
辐射强度试验是测试电子产品是否可以承受电磁辐射和脉冲的强度。
电子产品可靠性试验的主要目的是检测产品是否符合标准和技术要求。
这些测试还可以确定产品的使用寿命、安全性和性能等方面。
此外,通过进行可靠性测试,可以对设计和生产过程进行改进,以提高产品的质量和可靠性。
总之,电子产品可靠性试验对于保障产品质量和客户满意度非常重要。
只有通过各种测试,才能确定电子产品的可靠性和稳定性是否达到各种标准和要求。
塑料件冷热冲击测试标准-概述说明以及解释

塑料件冷热冲击测试标准-概述说明以及解释1.引言1.1 概述在塑料件的生产和应用过程中,冷热冲击测试是一项非常重要的环节。
塑料件在实际使用中往往会遇到温度变化的情况,如果塑料件质量不过硬,可能在温度变化时会出现裂纹,变形等问题,进而影响产品的使用寿命和安全性。
因此,通过冷热冲击测试,可以评估塑料件在温度变化情况下的耐久性和稳定性,为产品设计和生产提供重要参考依据。
本文旨在探讨塑料件冷热冲击测试的标准化问题,对目前常见的测试标准进行比较和分析,旨在为相关行业提供实用的指导。
通过对不同测试标准的深入研究,可以更好地了解塑料件在不同温度环境下的性能特点,为产品设计和制造过程提供科学依据。
同时,本文还将探讨塑料件冷热冲击测试标准的必要性和未来发展趋势,希望为相关领域的研究和实践提供借鉴和参考。
1.2 文章结构文章结构部分的内容如下:文章结构部分将介绍整篇文章的框架和内容安排。
首先将介绍文章的引言部分,包括概述、文章结构和目的。
然后将进入正文部分,具体包括塑料件冷热冲击测试的重要性、目前常见的塑料件冷热冲击测试标准以及不同测试标准的比较与分析。
最后,将进入结论部分,总结全文内容并展望塑料件冷热冲击测试标准的未来发展方向和建议。
整体结构清晰,逻辑性强,有助于读者更好地理解和消化文章的内容。
1.3 目的:本文旨在系统性地探讨塑料件冷热冲击测试标准的相关内容,通过对目前常见的测试标准进行比较与分析,帮助读者更加深入地了解塑料件在冷热环境下的性能表现。
同时,通过对不同测试标准的对比,提出对于塑料件冷热冲击测试标准的必要性,为今后在实际生产和应用中提供更为科学的指导。
最终,本文旨在为塑料件冷热冲击测试标准的制定和推广提供一定的参考和建议。
内容2.正文2.1 塑料件冷热冲击测试的重要性塑料件冷热冲击测试是评估塑料材料在极端温度变化下的性能和稳定性的关键测试方法之一。
冷热冲击测试可以模拟产品在实际使用中可能遇到的温度变化,例如从冷藏环境到高温环境或反之。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度循环就是将试验样品曝露于予设的高低温交替的试验环境中。为避开温度冲击影响,试验时的温度变化率必须小于20℃/分钟。同时,为达到蠕变及疲劳损伤的效果,推荐试验温度循环为25℃~100℃,或者也可根据产品的用途使用0℃~100℃的循环试验,曝露时间为各1 5分钟。
环境应力筛选试验(ESS= Environmental Stress Screening):
1槽法:小于15℃/分钟(试样)
1槽法:小于20℃/分钟(空气)
加速系数
100~500倍
比加速试验加速系数小
10~20倍
试验结果
设计信息
设计信息
生产品质差异验证
温度冲击试验:
升温/降温速率不低于30℃/分钟。温度变化范围很大,同时试验严酷度还随着温度变化率的增加而增加。
温度冲击试验与温度循环试验的差异主要是应力负荷机理不同。温度冲击试验主要考察由于蠕变及疲劳损伤引起的失效,而温度循环主要考察由于剪切疲劳引起的失效。
对产品施加环境应力促使早期失效产品存在的潜在缺陷尽快暴露而予以剔除
温度冲击试验和温度循环试验之比较
各种试验目的及环境条件:
目的
加速应力试验
加速寿命试验
环境应力筛选试验(ESS)
试验标准
MIL-STD-202 Method 107
A104-b
IEC68-2-1
MIL-STD-2164-85
试验方法
温度冲击试验
温度循环试验
温度循环试验
试验环境
比使用环境更严酷
极限使用环境
极限使用环境
试样
零部件
元器件,焊点(BGA,CSP)
成品
试样尺寸
小
小
比较大
试验温度范围
-40(-55)~125(150)℃
-40(-65)~125(150)℃
-40(-0)~100℃
温度变化率
1槽法:大于30℃/分钟(空气)
2槽法:大于50℃/分钟(空气)
温度冲击试验容许使用二槽式试验装置;温度循环试验使用单槽式试验装置。在二槽式箱体内,温度变化率要大于50℃/分钟。
※引起温度冲击的原因:回流焊,干燥,再加工,修理等制造、修理工艺中剧烈的温度变化。
※加速应力试验:加速试验是使用比在实际环境中更短的时间,对试验样品进行的加速试验,以考察其失效机理。试验的加速就是采用加大应力的方法促使试验样品在短期内失效,。但是必须注意避免其它应力原因引起的失效机理。