轴对称及平移培优试题

合集下载

苏教版四年级数学下册第一单元 平移、旋转和轴对称专项试卷附答案

苏教版四年级数学下册第一单元 平移、旋转和轴对称专项试卷附答案

苏教版四年级数学下册单元培优测试卷第一单元平移、旋转和轴对称一、填空。

(每空1分,共32分)1.欣赏下面图形,它们分别是通过什么变换得到的?(填“平移”或“旋转”)( ) ( ) ( ) ( )2.钟面上的分针从3:30到3:45,按( )时针方向旋转了( )°。

3.正方形有( )条对称轴,长方形有( )条对称轴,圆有( )条对称轴。

4.寓意深远的汉字文化中也蕴含着数学的美,在“昌、日、比、台、正、全”这些汉字中,有( )个轴对称的字。

5.如图中,五角星向( )平移了( )格;六边形向( )平移了( )格;长方形向( )平移了( )格。

6.观察上图中①绕点O顺时针旋转90°到图形( )所在的位置,( )绕点O( )时针旋转90°到图形③所在的位置。

7.如果把上图中这串葡萄从托盘中取出来,指针会( )时针旋转( )°。

8.体育课上,当老师喊“立正,向左转”时,你的身体( )时针旋转( )°;当老师喊“立正,向右转”时,你的身体( )时针旋转( )°。

9.右图中:(1)图形B向下平移可以得到图形( )。

(2)与图形C可以组成轴对称图形的是图形( )、( )和( )。

(3)图形A绕点M顺时针旋转90°得到图形( )。

(4)图形E绕点M逆时针旋转90°得到图形( )。

(5)图形F绕点N逆时针旋转180°得到图形( )。

二、选择。

(将正确答案的字母填在括号里)(每小题2分,共12分)1.每年的12月2日是全国交通安全日。

下列交通标志中,是轴对称图形的有( )个。

禁止驶入禁止直行两侧变窄T形交叉直行注意行人A.2 B.3 C.4 D.5 2.这是一个电风扇开关,数字表示风速档。

现在风扇在“1”档运行,如果要关闭,可将旋钮( )。

A.按顺时针方向旋转90°B.按顺时针方向旋转120°C.按逆时针方向旋转90°D.按逆时针方向旋转120°3.把任意一个图形绕任意点顺时针旋转( ),又回到了原来的位置。

轴对称培优习题

轴对称培优习题

轴对称培优习题轴对称是几何学中的一个重要概念,它在许多数学和科学领域中都有应用。

轴对称指的是物体可以通过某个中心轴进行对称,使得物体在中心轴两侧的部分完全相同。

本文将介绍一些关于轴对称的培优习题,帮助读者更好地理解和应用轴对称的概念。

1. 点的轴对称:给定一个平面上的点P(x, y),如果存在一条直线L,关于直线L对称的点P'和P具有相同的坐标,则说点P关于直线L轴对称。

首先,我们需要确定点P关于直线L的对称点P'在哪里。

例题1:已知点A(2, 4),求点A关于x轴和y轴的对称点。

解答:点A关于x轴的对称点是A'(2, -4),点A关于y轴的对称点是A'(-2, 4)。

2. 图形的轴对称:在几何学中,很多图形都可以通过某个中心轴进行对称。

那么,我们如何判断一个图形是否具有轴对称性呢?例题2:判断下列图形是否具有轴对称性:(1) 正方形;(2) 长方形;(3) 等边三角形;(4) 圆;(5) 矩形。

解答:(1) 正方形具有轴对称性,它可以通过其中心的垂直和水平轴对称;(2) 长方形具有轴对称性,它可以通过其中心的垂直和水平轴对称;(3) 等边三角形具有轴对称性,它可以通过其中心的垂直轴对称;(4) 圆具有无数个轴对称,因为任意通过圆心的直线都可以将圆分成两个完全相同的部分;(5) 矩形具有轴对称性,它可以通过其中心的垂直和水平轴对称。

3. 图形的轴对称性质:对于具有轴对称性的图形,我们可以得到一些有趣的性质。

例题3:矩形ABCD是以对角线AC为轴对称的,如果已知点A(2, 3),点C在第三象限,求点C的坐标。

解答:由于矩形ABCD是以对角线AC为轴对称,因此点C关于x轴的对称点也在第三象限,即点C'(-2, -3)。

由此可知,点C的坐标为C'的坐标取负值,即点C(-2, -3)。

4. 图形的轴对称与面积:如果一个图形与它关于某个中心轴的对称形状完全重合,那么这个图形的面积与对称形状的面积相等。

第13章 轴对称(单元测试培优卷)(学生版) 2024-2025学年八年级数学上册基础知识专项突破

第13章 轴对称(单元测试培优卷)(学生版) 2024-2025学年八年级数学上册基础知识专项突破

第13章轴对称(单元测试·培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.下列图形中是轴对称图形的是()A .B .C .D .2.如图,点A 在直线l 上,△ABC 与AB C '' 关于直线l 对称,连接BB ',分别交AC ,AC '于点D ,D ¢,连接CC ',下列结论不一定正确的是()A .BACB AC ∠=∠''B .CC BB '' C .BD B D =''D .AD DD ='3.我们知道光的反射是一种常见的物理现象.如图,某V 型路口放置如图所示的两个平面镜1l ,2l ,两个平面镜所成的夹角为1∠,位于点D 处的甲同学在平面镜2l 中看到位于点A 处的乙同学的像,其中光的路径为入射光线AB 经过平面镜1l 反射后,又沿BC 射向平面镜2l ,在点C 处再次反射,反射光线为CD ,已知入射光线2AB l ∥,反射光线1CD l ∥,则1∠等于()A .40︒B .50︒C .60︒D .70︒4.如图,已知a b ∥,直线l 与直线a ,b 分别交于点A ,B ,分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交直线a ,b 于点D 、C ,连接AC ,若135∠=︒,则BAD ∠的度数是()A .35︒B .55︒C .65︒D .70︒5.如图,在等腰Rt ABC △,90BAC ∠=︒,AB AC =,BD 为ABC V 的角平分线,过点C 作CE BD ⊥交BD 的延长线与点E ,若2CE =,则BD 的长为()A .3B .4C .5D .66.如图,90ACB AED ∠=∠=︒,CAE BAD ∠=∠,BC DE =,若BD AC ∥,则ABC ∠与CAE ∠间的数量关系为()A .2ABC CAE∠=∠B .ABC CAE ∠=∠C .290ABC CAE ∠+∠=︒D .2180ABC CAE ∠+∠=︒7.某平板电脑支架如图所示,其中AB CD =,EA ED =,为了使用的舒适性,可调整AEC ∠的大小.若AEC ∠增大16︒,则BDE ∠的变化情况是()A .增大16︒B .减小16︒C .增大8︒D .减小8︒8.如图,在ABC V 中,80BAC ∠=︒,边A 的垂直平分线交BC 于点E ,边AC 的垂直平分线交AC 于点F ,连接AE ,AG .则EAG ∠的度数为()A .35︒B .30︒C .25︒D .20︒9.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,AD 是△ABC 的角平分线,若P ,Q 分别是AD 和AC 边上的动点,则PC +PQ 的最小值是()A .65B .2C .125D .5210.如图,在ABC V 中,90BAC ∠=︒,A 是高,BE 是中线,C 是角平分线,C 交A 于G ,交BE 于H ,下面说法:①ACF BCF S S = ;②AFG AGF ∠=∠;③2FAG ACF ∠=∠;④BH CH =.其中正确的是()A .①②③④B .①③C .②③D .①③④二、填空题(本大题共8小题,每小题4分,共32分)11.如图,在ABC V 中,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于点M 、N ,作直线MN ,交AB 于点D ,连接CD ,若ABC V 的周长为24,9BC =,则ADC △的周长为.12.如图,直线m n ∥,点A 是直线m 上一点,点B 是直线n 上一点,AB 与直线m ,n 均不垂直,点P为线段AB 的中点,直线l 分别与m ,n 相交于点C ,D ,若90,CPD CD ∠=︒=m ,n 之间的距离为2,则PC PD ⋅的值为.13.如图,A EGF ∠=∠,F 为BE CG ,的中点,58DB DE ==,,则AD 的长为.14.如图所示,在平面直角坐标系中,ABC V 满足45,90BAC CBA ∠=︒∠=︒,点A ,C 的坐标分别是()()2,0,3,5--,点B 在y 轴上,在坐标平面内存在一点D (不与点C 重合),使ABC ABD △≌△,且AC 与AD 是对应边,请写出点D 的坐标.15.如图,60AOB ∠=︒,C 是BO 延长线上一点,12cm OC =,动点M 从点C 出发沿射线CB 以2cm /s 的速度移动,动点N 从点O 出发沿射线OA 以1cm /s 的速度移动,如果点M 、N 同时出发,设运动的时间为s t ,那么当t =s 时,MON △是等腰三角形.16.如图,锐角ABC 中,30A ∠=︒,72BC =,ABC 的面积是6,D ,E ,F 分别是三边上的动点,则DEF 周长的最小值是.17.如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ,…在x 轴正半轴上,点1B ,2B ,3B ,…在直线()0y x =≥上,若()11,0A ,且112A B A △,223A B A △,334A B A △,…均为等边三角形,则线段20212022A A 的长度为.18.如图,将长方形纸片ABCD 沿EF 折叠(折线EF 交AD 于E ,交BC 于F ),点C D 、的对应点分别是1C 、1D ,1ED 交BC 于G ,再将四边形11C D GF 沿FG 折叠,点1C 、1D 的对应点分别是2C 、2D ,2GD 交EF 于H ,给出下列结论:①2EGD EFG∠=∠②2180EFC EGC ∠=∠+︒③若26FEG ∠=︒,则2102EFC ∠=︒④23FHD EFB∠=∠上述正确的结论是.三、解答题(本大题共6小题,共58分)19.(8分)在ABC V 中,90ACB ∠=︒,AC BC BE ==,AD EC ⊥,交EC 延长线于点D .求证:2CE AD =.20.(8分)如图,点P 是AOB ∠外的一点,点E 与点P 关于OA 对称,点F 与点P 关于OB 对称,直线FE 分别交OA OB 、于C 、D 两点,连接PC PD PE PF 、、、.(1)若20OCP F ∠=∠=︒,求CPD ∠的度数;(2)若求=CP DP ,13CF =,3DE =,求CP 的长.21.(10分)如图,在ABC V 中,AD 平分BAC ∠,点E 为AC 中点,AD 与BE 相交于点F .(1)若38,82ABC ACB ∠=︒∠=︒,求ADB ∠的度数;(2)过点B 作BH AD ⊥交AD 延长线于点H ,作ABH 关于AH 对称的AGH ,设BFH △,AEF △的面积分别为12,S S ,若6BCG S V =,试求12S S -的值.22.(10分)已知:OP 平分MON ∠,点A ,B 分别在边OM ,ON 上,且180OAP OBP ∠+∠=︒.(1)如图1,当BP OM ∥时,求证:OB PB =.(2)如图2,当90OAP ∠<︒时,作PC OM ⊥于点C .求证:2OA OB AC -=.23.(10分)已知,在ABC V 中,90CAB ∠=︒,AD BC ⊥于点D ,点E 在线段BD 上,且CD DE =,点F 在线段AB 上,且45BEF ∠=︒(1)如图1,求证:DAE B∠=∠(2)如图1,若2AC =,且2AF BF =,求ABC V 的面积(3)如图2,若点F 是AB 的中点,求AEF ABCS S的值.24.(12分)如图,在ABC V 中,90ACB ∠=︒,30ABC ∠=︒,CDE 是等边三角形,点D 在边AB 上.(1)如图1,当点E 在边BC 上时,求证DE EB=(2)如图2,当点E 在ABC V 内部时,猜想ED 和EB 数量关系,并加以证明;(3)如图3,当点E 在ABC V 外部时,EH AB ⊥于点H ,过点E 作GE AB ,交线段AC 的延长线于点G ,5AG CG =,3BH =,求CG 的长.。

轴对称、平移与旋转测试题(含答案)

轴对称、平移与旋转测试题(含答案)

轴对称、平移与旋转测试题(含答案)一、选择题(本大题共7小题,每小题5分,共35分;在每小题给出的四个选项中,只有一项符合题意)1.国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形( ) A.B B.J C.4 D.0图12.如图1,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B 的度数为( )A.48°B.54°C.74°D.78°3.将一张长方形的纸片对折,然后用笔尖在上面扎出字母“B”,再把它展开铺平,你可以看到的图形是( )图24.如图3,在△ABC中,∠C=67°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且点C′在BC上,则∠B′C′B的度数为( )A.56° B.50° C.46° D.40°图3 图45.如图4所示,将边长为2 cm的等边三角形ABC沿BC的方向向右平移1 cm得到△DEF,则四边形ABFD的周长为( )A.6 cm B.8 cm C.10 cm D.12 cm6.4张扑克牌如图5①所示放在桌面上,小敏把其中一张牌旋转180°得到图②,那么她所旋转的牌是从左数( )图5A.第一张 B.第二张 C.第三张 D.第四张7.下列说法正确的有( )图6(1)全等图形的面积相等,反过来,面积相等的两个图形是全等图形;(2)如图6所示的两个图形,放在一起能完全重合,但是图甲和图乙不全等;(3)如图7所示,△ABC与△DEF 是全等的,点A与点D是对应点,点B与点E是对应点,所以可以记为:△ABC≌△DEF;(4)如果两个图形的形状一样,大小一样,那么它们是全等图形.图7A.1个 B.2个 C.3个 D.4个二、填空题(本大题共7小题,每小题5分,共35分)8.如图8,下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行平移变换的是________,进行旋转变换的是________,进行轴对称变换的是________,进行中心对称变换的是________.(填序号)图89.如图9所示,在正方形网格中,格点三角形DEF是由格点三角形ABC平移得到的,则点B向右移动了________格.图910.如图10所示,大长方形的长为8 cm,宽为4 cm,则阴影部分的面积是________.图1011.如图11,将长方形纸片ABCD的一角沿EF折叠,使点C落在长方形ABCD的内部点C′处.若∠EFC=35°,则∠DEC′=________°.图11 图1212.如图12是4×4的正方形网格,其中已有3个小方格涂成了黑色.现要在其余13个白色小方格中选出一个也涂成黑色,使整个黑色的小方格图案是轴对称图形,这样的白色小方格有________个.13.数轴上的点A表示-2,将数轴上到点A的距离为3的点B向右平移5个单位长度得到点C,再把点C绕点A旋转180°得到点D,则AD的长为________.图1314.如图13,在直角三角形ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的度数为________.三、解答题(本大题共3小题,共30分)15.(8分)在如图14所示的网格中有四边形ABCD.(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O成中心对称;(3)四边形A1B1C1D1与四边形A2B2C2D2是否对称?若对称,请在图中画出对称轴或对称中心.图1416.(10分)如图15所示,在△ABC中,∠C=90°,将△ABC沿直线DE对折,点B刚好与点A重合,连结AD,∠DAE与∠DAC的度数之比为2∶1,求∠B的度数.图1517.(12分)取一副三角尺按图16①所示的方式放在一起,∠ACD=30°,∠BAC=45°,固定三角尺ADC,将三角尺ABC以点A为中心按顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC′,如图②所示.(1)当α为多少度时,能使得AB∥DC?(2)连结BD,当0°<α≤45°时,探究∠DBC′+∠CAC′+∠BDC的值的大小变化情况,并说明理由.图16教师详解详析1.[解析] D A.B不是中心对称图形,是轴对称图形,故本选项错误;B.J不是中心对称图形,也不是轴对称图形,故本选项错误;C.4不是中心对称图形,也不是轴对称图形,故本选项错误;D.0既是中心对称图形又是轴对称图形,故本选项正确.2.[答案] B3.[答案] C4.[解析] C∵点C′在边BC上,∴∠BC′C为平角.由于旋转不改变图形的大小,∴∠AC′B′=∠C=67°,AC′=AC,∴∠AC′C=∠C=67°,∴∠B′C′B=180°-∠AC′C-∠AC′B′=180°-67°-67°=46°.5.[解析] B由题意知△ABC≌△DEF,AD=BE=1 cm,DF=AC=2 cm,四边形ABFD的周长=AB+BF+DF+AD=8 cm.6.[答案] A7.[答案] B8.[答案] ③①④②④9.[答案] 5[解析] 注意点B的对应点是点E,从点B到点E向右平移了5格.10.[答案] 8 cm2[解析] 通过平移、旋转,可知阴影部分的面积是大长方形总面积的错误!.11.[答案] 7012.[答案] 413.[答案] 8或2[解析] 数轴上到点A的距离为3的点表示的数有两个:1和-5,向右平移5个单位长度得到的数分别是6和0,所以AC绕点A旋转180°得AD=8或2.14.[答案] 2α15.解:(1)四边形A1B1C1D1如图所示.(2)四边形A2B2C2D2如图所示.(3)四边形A1B1C1D1与四边形A2B2C2D2对称,对称轴为图中的直线EF.16.解:由翻折的性质知,DE平分∠ADB,所以∠ADE=∠BDE,∠DAB=∠B.又因为∠DAE与∠DAC的度数之比为2∶1,所以设∠DAC=x°,则∠B=∠DAB=2x°.因为∠C=90°,根据三角形的内角和为180°,得x°+2x°+2x°=90°,解得x=18,所以∠B=36°.17.解:(1)由题意得∠CAC′=α,要使AB∥DC,须∠BAC=∠ACD=30°,∴α=∠CAC′=∠BAC′-∠BAC=45°-30°=15°,即α=15°时,能使得AB∥DC.(2)如图,连结BD,∠DBC′+∠CAC′+∠BDC的值的大小没有变化,总是105°.理由:当0°<α≤45°时,总有△EFC′存在.∵∠EFC′=∠BDC+∠DBC′,∠CAC′=α,∠FEC′=∠CAC′+∠C,∠EFC′+∠FEC′+∠C′=180°,∴∠BDC+∠DBC′+∠C+α+∠C′=180°.又∵∠C′=45°,∠C=30°,∴∠DBC′+∠CAC′+∠BDC=105°.。

人教版八年级上册数学《轴对称》培优试题

人教版八年级上册数学《轴对称》培优试题

人教版八年级上册数学《轴对称》培优试题一.选择题(共7小题)1.已知,如图,△ABC中,AB=AC,∠A=120°,BC=18cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AB于点F,则MN的长为()A.18cm B.12cm C.6cm D.3cm2.如图,P为△ABC内一点,过点P的线段MN分别交AB、BC于点M、N,且M、N分别在P A、PC的中垂线上.若∠ABC=80°,则∠APC的度数为()A.120°B.125°C.130°D.135°3.已知等腰三角形一腰上的高线与另一腰的夹角为60°,那么这个等腰三角形的顶角等于()A.15°或75°B.30°C.150°D.150°或30°4.如图,在△ABC中,∠B=∠C,点D在BC边上,点E在AC上,∠ADE=∠AED,若∠BAD=40°,则∠CDE的度数为()A.10°B.15°C.20°D.25°5.如图,在△ABC中,AB=AC,点D为AB边上一点,且AD=CD=BC,则∠A的度数为()A.38°B.36°C.32°D.30°6.如图,∠AOB=60°,点P是∠AOB内的定点且OP=4,若点M,N分别是射线OA,OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6D.37.下列说法正确的个数有()①有两组边对应相等,一组角对应相等的两个三角形全等;②垂直于同一条直线的两直线平行;③三角形的中线把三角形的面积平分;④等腰三角形高所在的直线是对称轴.A.1个B.2个C.3个D.4个二.填空题(共9小题)8.如图,在等腰△ABC中,CA=CB,∠C=50°,DE⊥AC,FD⊥AB,则∠EDF=.9.如图,DE是△ABC的边AB的垂直平分线,垂足为点D,DE交AC于点E,且AC=7,△BEC的周长为11,则BC的长为.10.如图,∠AOB=30°,M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP =6cm,则△PMN的周长的最小值为cm.11.如图,已知△ABC与△ABD关于AB所在的直线对称,延长AD交CB的延长线于点E,若AC+BC=AE,且∠C=40°,则∠E的度数为.12.如图,在△ABC中,DE垂直平分AC,交AC边于点E,交BC边于点D,若AE=3,△ABD的周长为14,则△ABC的周长为.13.若等腰三角形一腰上的中线将它的周长分成了15cm和18cm两部分,则它的腰长为cm.14.如果等腰三角形的一个内角等于40°,则它两底角的平分线所夹的钝角为.15.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,这两条垂直平分线分别交BC于点D、E.已知△ADE的周长为13cm.分别连接OA、OB、OC,若△OBC的周长为27cm,则OA的长为cm.16.如图,在△ABC中,边AB,AC的垂直平分线交于点P,连接AP,BP,CP,若∠BAC=50°,则∠BPC=°.三.解答题(共6小题)17.如图,AB=AC,AE=ED=DB=BC,求∠A的度数.18.计算:△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于y轴成轴对称的△A1B1C1,并写出A1、B1、C1的坐标;(2)在y轴上有一点P,使P A+PB的值最小,请在坐标系中标出点P的位置.19.如图,在△ABC中,∠BAC=∠ACB,点D是BC边上一点,且满足∠B=∠1,CE平分∠ACB交AD于点E.(1)若∠ADC=80°,求∠2的度数;(2)过点E作EF∥AB,交BD于点F,请说明∠FEC=3∠3.20.如图,在△ABC中,∠BAC=105°,MP垂直平分AB,分别交AB、BC于点M、P,NQ垂直平分AC,分别交AC.BC于点N、Q,连接AP、AQ,求∠P AQ的度数.21.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB.(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.22.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA 方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)当t为何值时,△DEF为直角三角形?请说明理由.。

平移旋转轴对称练习题

平移旋转轴对称练习题

平移旋转轴对称练习题一、选择题1. 下列图形中,哪一个图形可以通过平移得到另一个图形?A. 正方形B. 长方形C. 梯形D. 平行四边形2. 在平面直角坐标系中,点A(2, 3)经过平移后得到点B,若点B 的坐标为(5, 7),则平移向量为?A. (3, 4)B. (4, 3)C. (3, 5)D. (5, 3)3. 下列哪个图形是轴对称图形?A. 正三角形B. 正方形C. 等腰梯形D. 所有选项都是4. 下列哪个图形可以通过旋转90度得到自身?A. 正方形B. 长方形C. 等边三角形D. 圆二、填空题1. 图形平移时,对应点的连线__________。

2. 图形的旋转中心称为__________。

3. 轴对称图形的对称轴可以是__________、__________或__________。

4. 一个图形绕着某一点旋转180度后与原图形重合,这个点称为__________。

三、判断题1. 平移不改变图形的大小和形状。

()2. 旋转会改变图形的大小和形状。

()3. 轴对称图形的对称轴必须经过图形的中心。

()4. 平移和旋转都是刚体变换。

()四、作图题1. 请画出下列图形经过平移后的图形:(1)正方形,平移向量:(3, 2)(2)等腰三角形,平移向量:(4, 1)2. 请画出下列图形绕点O旋转90度后的图形:(1)正方形(2)等边三角形3. 请画出下列图形的对称轴:(1)正方形(2)等腰梯形五、解答题1. 请描述一个正方形绕其中心旋转180度后的位置变化。

2. 画出两个全等三角形,其中一个三角形通过平移、旋转或轴对称变换得到另一个三角形,并说明变换过程。

3. 请举例说明生活中平移、旋转和轴对称现象的应用。

六、应用题1. 在平面直角坐标系中,点P(1, 2)经过平移后到达点Q,点Q 的坐标是(4, 1)。

求平移向量,并画出平移后的图形。

2. 一个长方形的长是8厘米,宽是4厘米。

如果将这个长方形绕其一个顶点旋转90度,求旋转后长方形的面积。

苏教版数学四年级下册第一单元《平移、 旋转和轴对称》培优卷(含答案)

苏教版数学四年级下册第一单元《平移、 旋转和轴对称》培优卷(含答案)

周测培优卷1图形的平移、旋转、轴对称的认识及其应用一、填空。

(每空2分,共42分)1. 从9:00到12:00,时针旋转了()°。

从3时到3时15分,分针旋转了()°。

2. 与时针旋转方向相同的是()旋转,相反的是()旋转。

3. 体育课上,老师的口令是“立正,向左转” 时,你的身体()旋转了()°,口令是“立正,向后转” 时,你的身体()旋转了()°。

4.(1)图形1绕点O 顺时针旋转90°到图形()所在的位置。

(2)图形4绕点O()时针旋转90°到图形3所在的位置。

(3)图形3绕点O逆时针旋转()°到图形1所在的位置。

5.图①先向()移动()格到图②的位置,再向()移动()格可以与图③重合,或者先向()移动()格,再向()移动()格也可以与图③重合。

6. 下图中左边的风车绕点O按()时针方向旋转了()得到右边的风车。

二、判断。

(对的在括号里打“√”,错的打“×”。

每题2分,共8分)1. 正方形是轴对称图形,它有4条对称轴。

()2. 圆不是轴对称图形。

()3. 利用平移、轴对称可以设计许多美丽的图案。

()4. 芳芳晚上10点睡觉,早晨闹钟6点准时响起,则时针在这段时间旋转了60°。

()三、选择。

(将正确答案的字母填在括号里。

每题2分,共10分)1. 把长方形绕O点顺时针旋转90°后,得到的图形是()。

2. 下图中左上方的小旗可以通过()与右下方的小旗重合。

A. 旋转B. 平移C. 对称3. 把一个图形顺时针旋转(),就可以回到原来的位置。

A. 90°B. 180°C. 360°4. 下面说法正确的是()。

A. 旋转改变图形的形状和大小B. 平移改变图形的形状和大小C. 平移和旋转都不改变图形的形状和大小5. 如图,将一张圆形纸对折两次后,在中间打一个正方形孔,并剪去一个小角,展开后的图形是()。

北师大版五年级上册数学 第二单元《轴对称与平移》单元测评必培优卷(解析版)

北师大版五年级上册数学 第二单元《轴对称与平移》单元测评必培优卷(解析版)

北师大版五年级上册数学第二单元《轴对称与平移》单元测评(解析版)培优卷测试时间:70分钟满分:130分题号一二三四五B卷总分得分A 卷基础训练(100 分)一、选择题(每题2分,共计20分)1.下面的图形中,()不是轴对称图形。

A. B. C. D.【答案】B【解析】根据轴对称图形的意义:一个图形沿直线对折后,直线两旁的部分能够完全重合。

可知:平行四边形不是轴对称图形;显然B中的风车不是一个轴对称的图形。

2.下面这个美丽的图案用到了()A. 平移B. 旋转C. 对称【答案】A【分析】考查了判别美丽的图案设计运用的平移、对称和旋转原理【解析】这个图案是将一个小图案平移得到的3.亮亮已经画出蜻蜓身体左侧的两只翅膀,可以用()的方法画出蜻蜓身体右侧的两只翅膀。

A.平移B.旋转C.沿蜻蜓身体画左侧翅膀的轴对称图形D.以上都不对【答案】C【解析】由轴对称图形的意义可知:亮亮可以沿蜻蜓身体画左侧翅膀的轴对称图形,就能画出蜻蜓身体右侧的两只翅膀。

4.某宾馆在楼梯上铺地毯,如图这块地毯的长度是()A. M+NB. 2M+2NC. M+2ND. 2M+N【答案】A【分析】把楼梯上的地毯分成两部分,横着的为一部分,进行向右平移,长即是M,然后把竖着的一部分,向下平移,长度即为N,然后相加即可得出地毯的长度.【解析】【解答】解:M+N;故选:A.5.下面三种图形中不是轴对称图形的是()A.平行四边形B.正方形C.长方形D.圆【答案】A【解析】根据轴对称图形的意义可知:平行四边形不是轴对称图形,而长方形和正方形形是轴对称图形。

6.对折后能重合的是()。

A. B. C.【答案】B【分析】将三个选项中的图形沿着某一条直线对折,看折线两边的部分能否完全重合。

【解析】A.对折后不能重合;B.对折后可以重合;C对折后不能重合。

故答案为:B7.如下图,最多能画几条图形的对称轴()A.2B.3C.4D.无数【答案】A【解析】如图所示有三条对称轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
B
M
C
N O
轴对称及平移培优试题
1.如图所示,右边的两个图形中,经过平移能得到左边的图形的是( )
D
C
B
A
2.下列图形中对称轴的条数多于两条的是( )
A .等腰三角形
B .矩形
C .菱形
D .等边三角形
3.在平移过程中,对应线段( )
A.互相平行且相等;
B.互相垂直且相等
C.互相平行(或在同一条直线上)且相等
4.如果将一图形沿北偏东30°的方向平移3厘米,再沿某方向平移3厘米,所得的图形与将原图形向正东方向平移3厘米所得的图形重合,则这一方向应为( ) A .北偏东60°
B .北偏东30°
C .南偏东60°
D .南偏东30°
5.下列图形经过平移后恰好可以与原图形组合成一个长方形的是( ) A 、三角形 B 、正方形 C 、梯形 D 、都有可能
6.在图形平移的过程中,下列说法中错误的是( )
A 、图形上任意点移动的方向相同
B 、图形上任意点移动的距离相同
C 、图形上可能存在不动的点
D 、图形上任意两点连线的长度不变
7.下列图形中,是轴对称图形的有__________个:①角;②线段;③等腰三角形;④扇形;⑤三角形;⑥正方形;⑦平行四边形;⑧五边形. A.5个 B.6个 C.7个 D.8个
8.如图,∠AOB 内一点P ,P 1、P 2分别是P 关于OA 、OB 的对称点,P 1P 2交OA 于M ,交OB 于N ,若P 1P 2 = 5cm ,则ΔPMN 的周长是( )
A.3cm
B.4cm
C.5cm
D.6cm 9.如图,O 是六个正三角形的公共顶点,下列图形中可由△OBC 平移得到的是( ) A .△OCD
B .△OAB
C .△FAO
D .△OEF
10. 如图,在△ABC 中,BC=8,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E.试求△ADE 的周长。

11.如图所示,平移△ABC 可得到△DEF,如果∠A=50°,∠C=60°,那么∠E=•____度,∠EDF=_______度,∠F=______度,
∠DOB=_______度.
12. 已知△ABC 中,AC+BC=24,AO 、BO 分别是角平分线,且MN ∥BA ,分别交AC 于N 、BC 于M ,则△CMN 的周长为( )
A .12
B .24
C .36
D .不确定
O
F
E
C
B A
D
13.在上面的六幅图中,(2)(3)(4)(5)(6)中的图案_______可以通过平移图案(1)得到的
14.如图,△ABC经过平移到△DEF的位置,则下列说法:
①AB∥DE,AD=CF=BE;②∠ACB=∠DEF;③平移的方向是点C到点E的方向;④平移距离为线段BE的长.其中说法正确的有() A.个 B.2个 C.3个 D.4个
15.如图,在等边△ABC中,D、E、F分别是边BC、AC、AB的中点,则△AFE经过平移可以得到()
A.△DEF
B.△FBD
C.△EDC
D.△FBD和△EDC
16. 如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC的面积为
17.如图1,四边形ABCD中,AD∥BC,BC=8,AD=3,AB=4,CD=3,将AB平移到DE处,则△CDE为三角形,周长为.
18.如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为()
19.如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为()
20.如图,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长为().A.10 cm B.12cm C.15cm D.20cm
21.在长方形ABCD中,AB=10 cm,BC=6 cm,试问将长方形ABCD沿着AB的方向平移多少才能使平移后的长方形与原来的长方形ABCD重叠部分的面积为24 cm2?
22.如图,在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置,若平移的距离为2,则图中的阴影部分的面积为
23.某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为
24.如图,在一矩形草地上,有一条弯曲的柏油小路,其中矩形的长为5,宽为3,柏油小路的任何地方的水平宽度都是1,则除小路以外的草地面积为
25.7×7内,将一个图形沿某个方向移动一定距离,这样的图形变换为平移,如图,将网格中的三条线段沿网格线的方向(水平或垂直)平移后组成一个首尾依次相接的三角形,至少需要移动()
C
B
A
A
E P
D
G
26.如图8,AD 是三角形ABC 的对称轴,点E 、F 是AD 上的两点,若BD=2,AD=3,则图中阴影部分的面积是________. 27.如图9,在ABC ∆中,ABC ACB ∠=∠,AB=25cm ,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若BCE ∆的周
长为43cm ,则底边BC 的长为______.
28.如图10,把宽为2cm 的纸条ABCD 沿EF GH ,同时折叠,B 、C 两点恰好落在AD 边的P 点处,若△PFH 的周长
为10cm ,则长方形ABCD 的面积为__________.
29.如图,将△ABC 沿MN 方向平移,平移的距离为线段MN 的长,画出平移后的图形。

30.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图) (1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1;
(2)在DE 上画出点P ,使PC PB +1最小;(3)在DE 上画出点Q ,使QC QA +最小。

E
D
A B
C
31.在正方形网格上有一个△ABC.
(1)画△ABC 关于直线MN 的对称图形(不写画法); (2)若网格上的每个小正方形的边长为1,求△ABC 的面积.
A
B
C
M
N
·
·B
a
图14
B
C
E F
32.贵港市政府计划修建一处公共服务设施,使它到三所公寓A、B、C 的距离相等。

(1)若三所公寓A、B、C的位置如图所示,请你在图中确定这处公共服务设施(用点P表示)的位置(尺规作图,保留作图痕迹,不写作法);(2)若∠BAC=56º,则∠BPC=º.
33.如图所示,E、F分别是△ABC的边AB、AC的两定点,在BC上求一点M,使△MEF的周长最短。

34.如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点。

(保留作图痕迹)
35.在旷野上,一个人骑马从A处出发,他先到河边N饮水,再到草场M出放马,然后返回A地,如图,请问他应该怎样
走才能使总路程最短?
A
N
M
36.图1是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF的位置.若AB=8cm,BE=4cm,DG=3cm,则图中阴影部分的面积为_____cm.
37.如图所示,已知Rt△ABC中,∠C=90°,BC=4,AC=4,现将△ABC沿CB方向平
移到△A′B′C′的位置.
(1)若平移的距离为3,求△ABC与△A′B′C′重叠部分的面积;
(2)若平移的距离为x(0≤x≤4),△ABC与△A′B′C′重叠部分的面积为y,写出面积y与平移距离x的关系式.
38.如图①,将线段A1A2向右平移2个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分),在图②中,将折线A1A2A3向右平移2个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).
(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移2个单位,从而得到一个封闭图形,并用阴影表示;
(2)请你分别写出上述三个图形中阴影部分的面积(设长方形水平方向长均为a,竖直方向长均为b):S1= ,
S2= ,S3= ;
(3)如图④,一块长方形草地,长为20米,宽为10米,草地上有一条弯曲的小路(小路任何地方的宽度都是2米),请你写出小路部分所占的面积是多少米2;
(4)如图⑤,若在(3)中的草地又有一条横向的弯曲小路(小路任何地方的宽度都是1米),请你写出小路部分所占的面积是多少米2.
39.如图所示是两个相同的直角梯形重叠在一起,求阴影部分的面积.(单位:厘米)
40.在梯形ABCD中,AD平行于BC,AD=4cm,BC=6cm,,梯形ABCD的高为5cm试问将梯形ABCD沿AD方向平移多少才能是平移后与原来的梯形ABCD重叠部分的面积为10CM²。

相关文档
最新文档