生活中的轴对称培优习题
《生活中的轴对称》典型例题

《生活中的轴对称》典型例题例1 指出下列图形中的轴对称图形例2 指出下列图形中的轴对称图形,并指出轴对称图形的对称轴.(1)正方形;(2)长方形;(3)圆;(4)平行四边形.例3 画出下列图形的对称轴。
例4 指出下边哪组图形是轴对称的,并指出对称轴.(1)任意两个半径相等的圆;(2)正方形的一条对角线把一个正方形分成的两个三角形;(3)长方形的一条对角线把长方形分成的两个三角形;(4)两个全等的三角形.(1) (2) (3) (4)(5) (6) (7) (8)例5找出下面的轴对称图形,并说出它们各有几条对称轴.例6 下列图形中,不是轴对称图形的是( )(A)有两个角相等的三角形(B)有一个内角是︒45的直角三角形(C)有一个内角是︒120的三角形30,另一个内角为︒(D)有一个角是︒30的直角三角形例7观察中(1)~(5),它们是不是轴对称图形?有什么共同特点?例8请分别画出下图中3个图形的对称轴.例9如图,(1)正三角形,(2)正四边形,(3)正五边形,(4)正六边形,(5)正八边形,(6)正九边形都是轴对称图形,数一数它们的对称轴的条数.观察后分析:正多边形对称轴的条数与边数"有什么关系?根据你的分析结果回答,正十边形,正十六边形,正二十九边形分别有几条对称轴?正五十边形呢?正一百边形呢?参考答案例1分析:正确理解轴对称图形概念.解:轴对称图形是(2)(3)(4)(6)(7)(8)例2 分析:判断一个图形是否是轴对称图形,关键是能否找到一条直线使该图的两部分沿这条直线对折后完全重合.解:(1)、(2)、(3)都是轴对称图形,(4)不是轴对称图形.正方形的对称轴是两条对边中点所在的直线和正方形对角线所在的直线;长方形的对称轴是两条对边中点所在的直线;圆的对称轴是任意一条直径所在的直线.说明:对称轴是一条直线,不是线段.例3分析:依据定义可以画出,但可能是多条.解:如图例4 分析:判断两个图形是否是轴对称,关键是能否找到一条直线使这两个图形沿这条直线对折后能够重合.解:(1)和(2)每组的两个图形都是轴对称的.(3)和(4)每组的两个图形不是轴对称的.(1)的对称轴是连结两个圆心的线段的垂直平分线;(2)的对称轴就是原正方形分成两三角形时的这条对角线所在的直线.说明:对称轴是直线而非线段.例5分析:本题主要考查识别轴对称图形的能力.根据轴对称图形的概念来认真识别.但要注意.图(9)(10)这两个图也有“对称”性,但它们没有对称轴.不能把它们误认为是轴对称图形.解:根据图形可知:(1)是轴对称图形,它有3条对称轴;(2)是轴对称图形,它有5条对称轴;(3)是轴对称图形.它有4条对称轴.(4)是轴对称图形.它有1条对称轴;(5)是轴对称图形,它有2条对称轴;(6)不是轴对称图形;(7)是轴对称图形,它有1条对称轴;(8)是轴对称图形,它有1条对称轴;(9)(10)虽然有“对称”性,但都不是轴对称图形.例6 分析:在(A)中,有两个角相等的三角形一定是等腰三角形,而等腰三角形一定是轴对称图形,它的对称轴为底边上的高(或底边上的中线或顶角的平分线). 而(B)和(C)中的两个三角形同样也是等腰三角形,所以也是轴对称图形. 那么(D)中三角形的三个内角各不相等,不是等腰三角形,所以(D)不是轴对称图形.解:选(D)说明:在三角形中,只有等腰三角形才是轴对称图形,而不是等腰三角形的三角形就一定不是轴对称图形.例7分析:本题主要考查两个图形成轴对称图形的理解.可以利用轴对称的概念加以判断,但不能把两个图形成轴对称与一个图形是轴对称图形的概念相混淆.解:它们都是轴对称图形,每一组中都有两个图形.可以沿某一条直线对折使两个图形能完全重合在一起,所以每幅图中的两个图形成轴对称.轴对称图形是一个图形.可以有一条或许多条对称轴.(1)~(5)两个图形成轴对称,一般来说只有一条对称轴.例8分析:找对称轴从不同角度观察,全面分析.解:(1)有6条对称轴;(2)有5条对称轴;(3)有6条对称轴.画图略.例9分析:正多边形并不都是轴对称图形.但是,是轴对称图形的正多边形的对称轴的条数与其边数有着密切的联系,请仔细找出它们之间的规律.解:正三角形有3条对称轴,正四边形有4条对称轴,正五边形有5条对称轴,正六边形就有6条对称轴,正八边形有8条对称轴,正九边形有9条对称轴.正多边形对称轴的条数与边数n之间的关系是:边数是n,对称轴的条数是n条.所以正十边形有10条对称轴,正十六边形有16条对称轴,正二十九边形就有29条对称轴,正五十边形就有50条对称轴,正一百边形就有100条对称轴.。
《生活中的轴对称》习题

《生活中的轴对称》习题
1.找出下列每个轴对称图形的对称轴并画在图上.
2.我国传统木质结构房屋,窗子常用各种图案装饰,如图1是一常见的图案,这个图案有_________条对称轴.
3.如图,图形是由棋子围成的正方形图案,图案的每条边有4个棋子,这个图案有_________条对称轴.
4.选择观察下列平面图形,其中是轴对称图形的有()
A.1个
B.2个
C.3个
D.4个
5.下列图形中对称轴最多的是()
A.圆
B.正方形
C.角
D.线段
6.下列图形中,是轴对称图形的是()
7.选择将三角形绕直线l旋转一周,可以得到如图所示主体图形的是()
8.下列图形不是轴对称图形的是()
A.角
B.线段
C.直线
D.三角形
9.将一张纸对折后,用剪刀剪上一个你喜欢的图案,展开后看是不是一个轴对称图形.。
轴对称培优习题

轴对称培优习题轴对称是几何学中的一个重要概念,它在许多数学和科学领域中都有应用。
轴对称指的是物体可以通过某个中心轴进行对称,使得物体在中心轴两侧的部分完全相同。
本文将介绍一些关于轴对称的培优习题,帮助读者更好地理解和应用轴对称的概念。
1. 点的轴对称:给定一个平面上的点P(x, y),如果存在一条直线L,关于直线L对称的点P'和P具有相同的坐标,则说点P关于直线L轴对称。
首先,我们需要确定点P关于直线L的对称点P'在哪里。
例题1:已知点A(2, 4),求点A关于x轴和y轴的对称点。
解答:点A关于x轴的对称点是A'(2, -4),点A关于y轴的对称点是A'(-2, 4)。
2. 图形的轴对称:在几何学中,很多图形都可以通过某个中心轴进行对称。
那么,我们如何判断一个图形是否具有轴对称性呢?例题2:判断下列图形是否具有轴对称性:(1) 正方形;(2) 长方形;(3) 等边三角形;(4) 圆;(5) 矩形。
解答:(1) 正方形具有轴对称性,它可以通过其中心的垂直和水平轴对称;(2) 长方形具有轴对称性,它可以通过其中心的垂直和水平轴对称;(3) 等边三角形具有轴对称性,它可以通过其中心的垂直轴对称;(4) 圆具有无数个轴对称,因为任意通过圆心的直线都可以将圆分成两个完全相同的部分;(5) 矩形具有轴对称性,它可以通过其中心的垂直和水平轴对称。
3. 图形的轴对称性质:对于具有轴对称性的图形,我们可以得到一些有趣的性质。
例题3:矩形ABCD是以对角线AC为轴对称的,如果已知点A(2, 3),点C在第三象限,求点C的坐标。
解答:由于矩形ABCD是以对角线AC为轴对称,因此点C关于x轴的对称点也在第三象限,即点C'(-2, -3)。
由此可知,点C的坐标为C'的坐标取负值,即点C(-2, -3)。
4. 图形的轴对称与面积:如果一个图形与它关于某个中心轴的对称形状完全重合,那么这个图形的面积与对称形状的面积相等。
第13章 轴对称(单元测试培优卷)(学生版) 2024-2025学年八年级数学上册基础知识专项突破

第13章轴对称(单元测试·培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.下列图形中是轴对称图形的是()A .B .C .D .2.如图,点A 在直线l 上,△ABC 与AB C '' 关于直线l 对称,连接BB ',分别交AC ,AC '于点D ,D ¢,连接CC ',下列结论不一定正确的是()A .BACB AC ∠=∠''B .CC BB '' C .BD B D =''D .AD DD ='3.我们知道光的反射是一种常见的物理现象.如图,某V 型路口放置如图所示的两个平面镜1l ,2l ,两个平面镜所成的夹角为1∠,位于点D 处的甲同学在平面镜2l 中看到位于点A 处的乙同学的像,其中光的路径为入射光线AB 经过平面镜1l 反射后,又沿BC 射向平面镜2l ,在点C 处再次反射,反射光线为CD ,已知入射光线2AB l ∥,反射光线1CD l ∥,则1∠等于()A .40︒B .50︒C .60︒D .70︒4.如图,已知a b ∥,直线l 与直线a ,b 分别交于点A ,B ,分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交直线a ,b 于点D 、C ,连接AC ,若135∠=︒,则BAD ∠的度数是()A .35︒B .55︒C .65︒D .70︒5.如图,在等腰Rt ABC △,90BAC ∠=︒,AB AC =,BD 为ABC V 的角平分线,过点C 作CE BD ⊥交BD 的延长线与点E ,若2CE =,则BD 的长为()A .3B .4C .5D .66.如图,90ACB AED ∠=∠=︒,CAE BAD ∠=∠,BC DE =,若BD AC ∥,则ABC ∠与CAE ∠间的数量关系为()A .2ABC CAE∠=∠B .ABC CAE ∠=∠C .290ABC CAE ∠+∠=︒D .2180ABC CAE ∠+∠=︒7.某平板电脑支架如图所示,其中AB CD =,EA ED =,为了使用的舒适性,可调整AEC ∠的大小.若AEC ∠增大16︒,则BDE ∠的变化情况是()A .增大16︒B .减小16︒C .增大8︒D .减小8︒8.如图,在ABC V 中,80BAC ∠=︒,边A 的垂直平分线交BC 于点E ,边AC 的垂直平分线交AC 于点F ,连接AE ,AG .则EAG ∠的度数为()A .35︒B .30︒C .25︒D .20︒9.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,AD 是△ABC 的角平分线,若P ,Q 分别是AD 和AC 边上的动点,则PC +PQ 的最小值是()A .65B .2C .125D .5210.如图,在ABC V 中,90BAC ∠=︒,A 是高,BE 是中线,C 是角平分线,C 交A 于G ,交BE 于H ,下面说法:①ACF BCF S S = ;②AFG AGF ∠=∠;③2FAG ACF ∠=∠;④BH CH =.其中正确的是()A .①②③④B .①③C .②③D .①③④二、填空题(本大题共8小题,每小题4分,共32分)11.如图,在ABC V 中,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于点M 、N ,作直线MN ,交AB 于点D ,连接CD ,若ABC V 的周长为24,9BC =,则ADC △的周长为.12.如图,直线m n ∥,点A 是直线m 上一点,点B 是直线n 上一点,AB 与直线m ,n 均不垂直,点P为线段AB 的中点,直线l 分别与m ,n 相交于点C ,D ,若90,CPD CD ∠=︒=m ,n 之间的距离为2,则PC PD ⋅的值为.13.如图,A EGF ∠=∠,F 为BE CG ,的中点,58DB DE ==,,则AD 的长为.14.如图所示,在平面直角坐标系中,ABC V 满足45,90BAC CBA ∠=︒∠=︒,点A ,C 的坐标分别是()()2,0,3,5--,点B 在y 轴上,在坐标平面内存在一点D (不与点C 重合),使ABC ABD △≌△,且AC 与AD 是对应边,请写出点D 的坐标.15.如图,60AOB ∠=︒,C 是BO 延长线上一点,12cm OC =,动点M 从点C 出发沿射线CB 以2cm /s 的速度移动,动点N 从点O 出发沿射线OA 以1cm /s 的速度移动,如果点M 、N 同时出发,设运动的时间为s t ,那么当t =s 时,MON △是等腰三角形.16.如图,锐角ABC 中,30A ∠=︒,72BC =,ABC 的面积是6,D ,E ,F 分别是三边上的动点,则DEF 周长的最小值是.17.如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ,…在x 轴正半轴上,点1B ,2B ,3B ,…在直线()0y x =≥上,若()11,0A ,且112A B A △,223A B A △,334A B A △,…均为等边三角形,则线段20212022A A 的长度为.18.如图,将长方形纸片ABCD 沿EF 折叠(折线EF 交AD 于E ,交BC 于F ),点C D 、的对应点分别是1C 、1D ,1ED 交BC 于G ,再将四边形11C D GF 沿FG 折叠,点1C 、1D 的对应点分别是2C 、2D ,2GD 交EF 于H ,给出下列结论:①2EGD EFG∠=∠②2180EFC EGC ∠=∠+︒③若26FEG ∠=︒,则2102EFC ∠=︒④23FHD EFB∠=∠上述正确的结论是.三、解答题(本大题共6小题,共58分)19.(8分)在ABC V 中,90ACB ∠=︒,AC BC BE ==,AD EC ⊥,交EC 延长线于点D .求证:2CE AD =.20.(8分)如图,点P 是AOB ∠外的一点,点E 与点P 关于OA 对称,点F 与点P 关于OB 对称,直线FE 分别交OA OB 、于C 、D 两点,连接PC PD PE PF 、、、.(1)若20OCP F ∠=∠=︒,求CPD ∠的度数;(2)若求=CP DP ,13CF =,3DE =,求CP 的长.21.(10分)如图,在ABC V 中,AD 平分BAC ∠,点E 为AC 中点,AD 与BE 相交于点F .(1)若38,82ABC ACB ∠=︒∠=︒,求ADB ∠的度数;(2)过点B 作BH AD ⊥交AD 延长线于点H ,作ABH 关于AH 对称的AGH ,设BFH △,AEF △的面积分别为12,S S ,若6BCG S V =,试求12S S -的值.22.(10分)已知:OP 平分MON ∠,点A ,B 分别在边OM ,ON 上,且180OAP OBP ∠+∠=︒.(1)如图1,当BP OM ∥时,求证:OB PB =.(2)如图2,当90OAP ∠<︒时,作PC OM ⊥于点C .求证:2OA OB AC -=.23.(10分)已知,在ABC V 中,90CAB ∠=︒,AD BC ⊥于点D ,点E 在线段BD 上,且CD DE =,点F 在线段AB 上,且45BEF ∠=︒(1)如图1,求证:DAE B∠=∠(2)如图1,若2AC =,且2AF BF =,求ABC V 的面积(3)如图2,若点F 是AB 的中点,求AEF ABCS S的值.24.(12分)如图,在ABC V 中,90ACB ∠=︒,30ABC ∠=︒,CDE 是等边三角形,点D 在边AB 上.(1)如图1,当点E 在边BC 上时,求证DE EB=(2)如图2,当点E 在ABC V 内部时,猜想ED 和EB 数量关系,并加以证明;(3)如图3,当点E 在ABC V 外部时,EH AB ⊥于点H ,过点E 作GE AB ,交线段AC 的延长线于点G ,5AG CG =,3BH =,求CG 的长.。
生活中的轴对称例题+习题

七年级数学 第5讲生活中的轴对称一、知识结构:二、思想方法 1、数形结合思想数形结合思想,就是在研究问题的过程中,把数和形结合起来考虑,一方面可以把抽象的数量关系用直观形象的图象来表示,便于观察总结获取信息;另一方面可以把图象问题用数学关系来表示,便于深入细致地研究.例1 在ABC ∆中,BC AD AC AB ⊥=,于点,50,cm BC AC AB D =++BD AB ++cm AD 40=求AD 的长.2、转化思想解决实际问题时,常常要把实际问题转化为对称问题来解决,例如求最短距离的问题. 例2 如图(1)所示,某住宅小区计划在休闲场地的三条道路n m l ,,上修建三个凉亭A ,B ,C ,且凉亭用长廊两两连通,如果凉亭A ,B 的位置已经选定,那么凉亭C 建在什么位置才能使工程造价最低?请简要说明理由.-3、分类讨论思想当要研究的问题包含多种可能情况而又不能一概而论时,需要按可能出现的所有情况来分别讨论,从而得出各种不同情况下相应的结论.例3 等腰三角形一腰上的高与另一腰的夹角为,30 则顶角的度数是 ( )60.A c B 120. ︒60.C 或 150 o D 60.或 1204、方程思想所谓方程思想,就是把所研究的问题中的已知量与未知量之间的数量关系转化为方程(组),从而使问题得到解决的思想方法.例4 如图5 - 109所示,ABC ∆是等腰三角形,,AC AB =分别向ABC ∆外作等边三角形ADB 和等边三角形ACE.若=∠DAE ,DBC ∠求ABC ∆三个内角的度数.三、中考链接考点一 识别轴对称图形及其对称轴例1 (2014.泰安中考)如图5- 110所示的四个图形,其中是轴对称图形,且对称轴的条数为2的图形的个数是 ( ) A. 1 B. 2 C. 3 D .4 考点二 轴对称的性质例 2 (2014.宁波中考)如图5- 111所示,用长方形纸片折出直角的平分线,下列折法正确的是 ( )考点三 简单的轴对称图形及其性质例3 如图5- 112所示,ABC ∆中,,15, =∠=DBC AC AB AB 的垂直平分线MN 交AC 于点D ,则A ∠的度数是 .例4如图5- 113所示,AB DE CD BD AC AB ⊥==,,于点AC DF E ⊥,于点F ,试说明.DF DE =考点四 尺规作角平分线、线段的垂直平分线例5 在ABC ∆中,按以下步骤作图:①分别以B ,C 为圆心,以大于BC 21的长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD ,若,25, =∠=B AC CD 则ACB ∠的度数为 .四、考点训练:1.如图5 - 132所示,ABC ∆与ABD ∆关于直线AB 对称,36,80o o C CAD =∠=∠ 则ABD ∠的度数为 .2.若等腰三角形的一个角为︒30,则它的顶角为 .3.如图5- 133所示,在ABC ∆中,BC AD AC AB ⊥=,于D, AB DE ⊥于点E, AC DF ⊥于点F,图中除AC AB =外,相等的线段还有____对.4.等腰三角形一腰上的高与另一腰的夹角为,36 则该等腰三角形的底角的度数为____.5.在黑板报的设计中,小敏遇到了如下的问题:如图5 - 134所示,直线l 与AB 垂直,要作ABC ∆关于l 成轴对称的图形.小敏已作出了一步,请你用直尺和圆规作出这个图形的其余部分,保留作图痕迹,并写出相应的作法.作法:(1)以B 为圆心,BA 长为半径作弧,与AB 的延长线交于点P , ; (2) 就是所要作的图形.6.如图5- 135所示的是一块正三角形花圃,为了能分别种上红、黄、紫三种颜色的花,要求把它划分成三块面积相同的部分,并且使整个图形呈轴对称图形.请你至少设计3种不同方案.7.如图5- 136所示,ABC ∆中,.30,90 =∠=∠A C (1)用尺规作AB 边上的中垂线DE ,交AC 于点 D ,交AB 于点E (保留作图痕迹,不要求写作法)(2)连接BD ,试说明BD 平分.CBA ∠8.如图5 - 137所示,E A ,90 =∠为BC 上一点,A 点和E 点关于BD 对称,B 点、C 点关于DE 对称,求ABC ∠和C ∠的度数.。
初三数学中考练习生活中的轴对称专项练习练习含解析

初三数学中考练习生活中的轴对称专项练习练习含分析1.假定以下选项中的图形均为正多边形,那么哪一个图形恰有 4 条对称轴?( B )2.我国传统建筑中,窗框 (如图① )的图案玲珑剔透、变化多端,窗框一部分如图②,它是一个轴对称图形,其对称轴有 ( B )A、1 条B、2 条C、3 条D、4 条3.如图,直线 MN 是四边形 AMBN 的对称轴,点 P 是直线 MN 上的点,以下判断错误的选项是 ( B )A、AM =BMB、AP=BNC、∠ MAP=∠ MBPD、∠ANM =∠ BNM4.如图,△ ABC 内有一点 D 是三条边的垂直均分线的交点,假定∠ D AB =20°,∠ DAC =30°,那么∠ BDC 的大小是 ( A )A、100°B、80°C、70°D、50°5.如图,在把易拉罐中的水倒入一个圆柱形水杯的过程中,假定水杯中的水在点 P 与易拉罐恰巧接触,那么此时水杯中的水深为 ( C )A、2 cmB、4 cmC、6 cmD、8 cm6.如图,在△ ABC 中, AD 均分∠ BAC ,DE⊥AB 于点 E,DF⊥AC于点 F,M 为 AD 上随意一点,那么以下结论中错误的选项是 ( D )A、DE=DFB、 ME=MFC、AE=AFD、BD=CD7.如图,在△ ABC 中,∠ C=90°,∠ B=30°,以 A 为圆心,随意1长为半径画弧分别交AB ,AC 于点 M,N,再分别以 M,N 为圆心,大于2 MN 的长为半径画弧,两弧交于点 P,连结 AP 并延伸交 BC 于点 D,那么以下说法:① AD 是∠ BAC 的角均分线;②∠ ADC =60°;③点 D 到 AB 的距离等于 CD 的长.此中正确的个数是 ( C )A、1B、2C、3D、08.如图,在一个规格为 4×8 的球台上,有两个小球 P 和 Q,假定击打小球 P,经过球台的边 AB 反弹后恰巧击中小球 Q,那么小球 P 击出时,应对准AB 边上的( B )A、点 Q1B、点 Q2C、点 Q3D、点9.如图,在△ ABC 中, AB =AC,∠ A=30°, DE Q4垂直均分AC,那么∠ BCD的度数为( D )A、80°B、75°C、65°D、45°10.如图,在△ ABC 中,AB = AC=13,BC=10,点 D 为 BC 的中点,DE⊥AB ,垂足为点E,AD =12,那么 DE 等于 ( C )10156075A.13B.13C.13D.1311.假定一个三角形的一个角的均分线恰巧是对边上的高,那么这个三角形的形状是 __等腰 __三角形.12.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其他小正三角形涂黑一个,使整个被涂黑的图案组成一个轴对称图形的方法有 __3__种.13.如图,△ ABC 是等边三角形,点 B,C,D,E 在同向来线上,且CG=CD, DF=DE,那么∠ E=__15__度.14.如图,△ ABC 中, AC=8,BC=5,AB 的垂直均分线 DE 交 AB于点 D,交边 AC 于点 E,那么△ BCE 的周长为 __13__.15.等腰三角形 ABC 中,AB =AC,D 为 BC 上的一点,连结 AD ,假定△ ACD 和△ ABD 都是等腰三角形,那么∠ C 的度数是 __45°或 36°__.16.以下列图,正方形 ABCD 的边长为 4 cm,那么图中暗影部分的面积为__8__cm2.17.如图,将三角形纸片沿 EF 折叠,假定∠ A′FA=70°,∠ A′ EA =130°,那么∠ A′= __30°__.18.如图, AB =AC,AE⊥BC,DC=CA,AD =DB,求∠ DAE 的度数.解:∵ AD =DB,∴∠ B=∠ DAB ,∴∠ ADC =2∠B,∵DC=CA,∴∠ADC =∠ DAC =2∠B,∵ AB = AC,∴∠ B=∠ C,∵∠ B+∠ C+∠ BA C=180°,∴∠ B+∠ B+∠ DAB +∠ DAC =180°,即 2∠B+∠ B+2∠B =180°,∴∠ B=36°,∴∠ DAC =72°,∠ BAC =108°,∵ AB =AC ,1AE⊥BC,∴2∠BAC =∠ EAC=54°,∴∠ DAE =∠ DAC -∠ EAC=18°19.如图,AD 是△ ABC 的角均分线, DE⊥AB 于点 E,DF⊥AC 于于点 F,直线 AD 交 EF 于点 O.问直线 AD 是线段 EF 的垂直均分线吗?请说明原因.解:∵∠ DAE =∠ DAF ,∠ AED =∠ AFD =90°, AD =AD ,∴△ ADE≌△ ADF(AAS) ,∴ AE=AF ,又∵ AD 均分∠ BAC ,∴ AO⊥EF, OE=O F,∴ AD 是线段 EF 的垂直均分线20.如图, AD 是△ ABC 的角均分线, AD 的垂直均分线交 BC 的延伸线于点 F,连结 AF.试说明:∠ FAC=∠ B.解:∵ EF 是 AD 的垂直均分线,∴ AF =DF,∴∠ FAD=∠ FDA. ∵∠ FAD =∠ FAC+∠ CAD ,∠ FDA =∠ B+∠ BAD , AD 均分∠ BAC ,∴∠CA D=∠ BAD ,∴∠ FAC=∠ B。
初中七年级数学下册《生活中的轴对称》专项测试题及答案解析

初中七年级数学下册《生活中的轴对称》专项测试题及答案分析第五章生活中的轴对称专项测试题(二)一、单项选择题(本大题共有15 小题,每题 3 分,共 45 分)1、在以下图所示的水解环保、绿色食品、节能、绿色环保四个标记中,是轴对称图形的是()A. B. C. D.2、如图,在正方形网格上有一个,画对于直线的对称图形(不写画法) .A. B.C. D.3、赏识下边的图案,指出它们中间不是轴对称图形的是().A. B. C. D.4、若点在线段的垂直均分线上,,则( ).A. B. C. 没法确立 D.5、若的三边,,知足,那么的形状是()A. 锐角三角形B. 等边三角形C. 直角三角形D. 等腰三角形6、如图,一个长方形纸片沿折叠后,点、分别落在点、的地点,若,则等于()A..B..C..D..7、在以下图形中,是轴对称图形的是()A. B. C. D.8、如图,对折矩形纸片,使与重合获得折痕,将纸片展平;再一次折叠,使点落到上点处,并使折痕经过点,展平纸片后的大小为()A. B. C. D.9、如图,由个小正方形构成的田字格中,的极点都是小正方形的极点,则田字格上画与成轴对称的三角形,且极点都是小正方形的极点,则这样的三角形(不包括自己)共有()A. 个B.个C.个D.个10 、如图,与对于直线轴对称,则以下结论中错误的选项是()A.的连线被垂直均分B.C.D.11 、以下说法中,正确的选项是()A.周长相等的两个三角形必定对于某条直线之间对称B.面积相等的两个三角形必定对于某条直线之间对称C.两个全等三角形必定对于某条直线对称D.对于某条直线对称的两个三角形必定全等12、如图,用数学的目光赏识这个蝴蝶图案,它的一种数学美表此刻蝴蝶图案的().A. 数形联合B. 随机性C. 用字母表示数D. 轴对称性13 、到三角形三个极点的距离都相等的点是这个三角形的()A. 三条边的垂直均分线的交点B. 三条中线的交点C. 三条角均分线的交点D. 三条高的交点14、以下三角形:①有两个角等于;②有一个角等于的等腰三角形;③三个外角(每个极点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.此中是等边三角形的有()A. ①②③④B. ①③C. ①②④D. ①②③15、如图,中,,,均分,,则图中等腰三角形的个数()A. 个B.个C.个D.个二、填空题(本大题共有 5 小题,每题 5 分,共 25 分)16 、以下说法中,正确的选项是(填序号)① 轴对称图形只有一条对称轴;② 轴对称图形的对称轴是一条线段;③ 两个图形成轴对称,这两个图形是全等图形;④ 全等的两个图形必定成轴对称;⑤轴对称图形是指一个图形,而轴对称是指两个图形而言.17 、角是轴对称图形,它的对称轴是().18、如图,在正三角形网格中,已有两个小正三角形被涂黑,再将图中其他小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.19 、如图,已知,为两边、的中点,将沿线段折叠,使点落在点处,若,则度.20 、在直线、角、线段、等边三角形四个图形中,对称轴最多的是______,它有_______条对称轴;最少的是 _______,它有 _______条对称轴.三、解答题(本大题共有 3 小题,每题 10 分,共 30 分)21 、如图,、为的边、上的两定点,在上求作一点,使的周长最短 .22 、如图,平面直角坐标系中,的三个极点坐标分别为,,.请画出对于直线作轴对称变换获得的,点的坐标为23 、如图,是的外接圆,弦交于点,连结,且,.求的度数.第五章生活中的轴对称专项测试题(二) 答案部分一、单项选择题(本大题共有15 小题,每题 3 分,共 45 分)1、【答案】 C【分析】解:依据题意,可知是轴对称图形,其他图形均不知足轴对称图形的条件. 故答案为:2、【答案】 D【分析】解:分别作对于的对称点,连结,则为所求三角形 .故答案应选:3、【答案】 A【分析】解:四个图案中,为小鸟身体侧面的图案不是轴对称图形.故答案是:.4、【答案】 A【分析】解:由于线段垂直均分线的点到线段两头点的距离相等,因此,因此.故答案为:.5、【答案】 D【分析】解:=0,或或,即或或,因此三角形必定是等腰三角形.6、【答案】 C【分析】解:,,,由折叠的性质可知,.故正确答案是:.7、【答案】 D【分析】解:依据轴对称图形的定义能够获得:第一个图形是轴对称图形;第二个图形不是轴对称图形;第三个图形不是轴对称图形;第四个图形不是轴对称图形.8、【答案】 B【分析】解:以下图:由题意可得,,,则,故,则,,,,.9、【答案】 B【分析】解:以下图:切合题意的有个三角形.10 、【答案】 D【分析】解:与不是对应线段,不必定平行,故错误;与对于直线轴对称,则,,正确;与对于直线轴对称,则,,正确;与对于直线 MN 轴对称,与的对应点,的连线被垂直均分,正确.11 、【答案】 D【分析】解:依据对称的性质,对于某条直线对称的两个三角形必定全等,正确.12、【答案】 D【分析】解:用数学的目光赏识这个蝴蝶图案,它的一种数学美表此刻蝴蝶图案的对称性.13、【答案】 A【分析】解:到三角形三个极点的距离都相等的点是这个三角形的三条边的垂直平分线的交点.14、【答案】 A【分析】解:①两个角为度,则第三个角也是度,则其是等边三角形,故正确;②这是等边三角形的判断,故正确;③三个外角相等则三个内角相等,则其是等边三角形,故正确;④依据等边三角形三线合一性质,故正确.因此都正确.15、【答案】 A【分析】解:,是等腰三角形,,均分,,,,,在中,,为等腰三角形,在中,,是等腰三角形,在中,,是等腰三角形,在中,,是等腰三角形,因此共有个等腰三角形.二、填空题(本大题共有 5 小题,每题 5 分,共 25 分)16 、以下说法中,正确的选项是(填序号)①轴对称图形只有一条对称轴;②轴对称图形的对称轴是一条线段;③两个图形成轴对称,这两个图形是全等图形;④全等的两个图形必定成轴对称;⑤轴对称图形是指一个图形,而轴对称是指两个图形而言 .【答案】③⑤【分析】解:①错误,轴对称图形可有一条对称轴也可有多条对称轴;②错误,轴对称图形的对称轴是一条直线;③正确,两个图形成轴对称,这两个图形必定是全等图形;④错误,全等的两个图形不必定成轴对称;轴对称还得有地点关系;⑤正确,轴对称图形是指一个图形,而轴对称是指两个图形而言.故③⑤正确 .故正确答案为:③⑤.17 、角是轴对称图形,它的对称轴是().【答案】角均分线所在的直线【分析】解:角的对称轴是角的均分线所在的直线.故答案为:角的均分线所在的直线.18、如图,在正三角形网格中,已有两个小正三角形被涂黑,再将图中其他小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.【答案】 3【分析】解:以下图:将图中其他小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.故答案为:.19 、如图,已知,为两边、的中点,将沿线段折叠,使点落在点处,若,则度.【答案】 70【分析】解:由折叠的性质知,,点是的中点,,由折叠可知,,,.正确答案是:.20 、在直线、角、线段、等边三角形四个图形中,对称轴最多的是______,它有_______条对称轴;最少的是 _______,它有 _______条对称轴.【答案】直线、无数、角、【分析】解:直线:任何与直线垂直的直线都是直线的对称轴,有无数条对称轴;角的对称轴是角的角均分线所在的直线,只有一条对称轴;线段的对称轴是线段的中垂线和自己,有两条对称轴;等边三角形的对称轴是各边的中垂线,有 3 条对称轴.故:对称轴最多的是直线,它有无数条对称轴;最少的是,它有条对称轴.三、解答题(本大题共有 3 小题,每题 10 分,共 30 分)21 、如图,、为的边、上的两定点,在上求作一点,使的周长最短 .【分析】解:如图,作点对于的对称点,连结,交于点,点是所求的点.22 、如图,平面直角坐标系中,的三个极点坐标分别为,,.请画出对于直线作轴对称变换获得的,点的坐标为【分析】解:( 1)所作图形以下:点的坐标为.23 、如图,是的外接圆,弦交于点,连结,且,.求的度数.【分析】解:在和中,(),,又,,为等边三角形,.。
生活中的轴对称 测试题

l O DC BA 图2B C 3050图1 D C B A 图3 A C D EB 图4 图7第五章 生活中的轴对称 测试题一、选择题1.在线段、直线、射线、角、等腰三角形、任意的一个三角形、五角星这些图形中,轴对称图形有( )A .6个B .5个C .4个D .3个2. 下列图案中,有且只有三条对称轴的是( )3.下列说法中正确的是( )A.①②③④ B.①②③ C. ②③④ D. ②④① 角平分线上任意一点到角的两边的线段长相等 ②角是轴对称图形③线段不是轴对称图形 ④ 线段垂直平分线上的点到这条线段两个端点的距离相等4.下列说法正确的是( )A.任何一个图形都有对称轴 B. 两个全等三角形一定关于某条直线对称C. 点A ,点B 在直线m 两旁,且AB 与直线m 交于点O ,若AO =BO ,则点A 与点B 关于直线m 对称D. 若△ABC 与△DEF 成轴对称,则△ABC ≌△DEF5.下列说法中错误的是( ) A .两个关于某直线对称的图形一定能够完全重合B .对称图形的对称点一定在对称轴的两侧C .成轴对称的两个图形,其对应点的连线的垂直平分线是它们的对称轴D .平面上两个能够完全重合的图形不一定关于某直线对称 6.如右图,△ABC 中,AB=AC,D 是BC 的中点,则下列结论中不正确...的是( ) A.∠B=∠C B. AD 平分∠BAC C. AB=2BD D. AD ⊥BC 第6题图 7、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ). 第7题图A .1个B .2个C .3个D .4个8. 如图1,△ABC 与△A /B /C /关于直线l 对称,则∠B 的度数为( )A .30° B .50° C .90° D .100°9.如图2,把长方形ABCD 沿EF 对折后使两部分重合,若∠1=50°,则∠AEF=( )A.110°B.115°C.120°D.130°10.如图3,AB=AC,BD=BC,若∠A=40°,则∠ABD 的度数是( )A .20° B .30° C .35° D .40°11.如图4,在△ABC 中,AB=AC ,∠A=36°,AB 的中垂线DE 交AC 于D ,交AB 于E ,下述结论错误..的是( ) A .BD 平分∠ABC B .点D 是线段AC 的中点 C .AD=BD=BC D .△BDC 的周长等于AB+BC图5 12. 如图5,△ABC 中,∠BAC =100°,DF 、EG 分别是AB 、AC 的垂直平分线,则∠DAE 等于( )A. 50°B. 45°C. 30°D. 20°二、填空题1.等腰三角形的两个内角之比是1:2,那么这个等腰三角形的顶角度数为___________.2.ΔABC 和ΔA ’B’C’关于直线l 对称,若ΔABC 的周长为12cm ,ΔA’B’C’的面积为6cm 2,则ΔA’B’C’的周长为___________,ΔABC 的面积为_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生活中的轴对称培优习题
选择题
1.观察下列中国传统工艺品的花纹,其中的轴对称图形是().
A B C D
2.已知两条互不平行的线段AB和A′B′关于直线1对称,AB和A′B′所在的直线交于点P,下面四个结论:①AB=A′B′;②点P在直线1上;③若A、A′是对应点,•则直线1垂直平分线段AA′;④若B、B′是对应点,则PB=PB′,其中正确的是()
A.①③④B.③④C.①②D.①②③④
3.将两块全等的直角三角形(有一锐角为30 )拼成一个四边形,其中轴对称图形的四边形有多少个()
A、1
B、2
C、3
D、4
4.如图所示,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超,使超市到三个小区的距离相等,则超市应建在()
A.在AC、BC两边高线的交点处
B.在AC、BC两边中线的交点处
C.在AC、BC两边垂直平分线的交点处
D.在A、B两内角平分线的交点处
5.如图1,把一个正方形三次对折后沿虚线剪下,则得到的图形是()
6.一只小狗在平面镜前欣赏自己的全身像(如图2),此时,它所看到的全身像是()
图2
7.下列说法中错误的是()
A成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴
B关于某条直线对称的两个图形全等C全等的三角形一定关于某条直线对称
D若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称
8.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是()
A.17cm B.22cm C.17cm或22cm D.18cm
9.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是()
A.40°B.50°C.60°D.30°
10.等腰三角形的一个外角是80°,则其底角是()
A.100°B.100°或40°C.40°D.80°
11.已知:在△ABC中,AB=AC,O为不同于A的一点,且OB=OC,则直线AO与底边BC的关系为()
C
B
A
图4K H B C 图5N C 图6M D B A C N A .平行 垂直且平分BC
C.斜交 垂直但不平分BC
一、填空题 12. 如图所示,镜子里号码如图,则实际纸上的号码是____.
13. 某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车牌号码如图
所示,则该汽车的号码是 .
14.如图4,若AB =AC ,BG =BH ,AK =KG ,则∠BAC 的度数是 .
15.如图5,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,且AB =10,BC =15,MN =3,则△ABC 的周长等于 .
16.如图6,已知正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,则DN +MN 的最小值是 .
17.如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”。
如图(1)中四边形ABCD 就是一个“格点多边形”。
图28A
D
B C
(1) 求图(1)中四边形ABCD
的面积; (2) 在图(2)方格纸中画一个格点三角形EFG ,使△EFG 的面积等于四边形ABCD 的面积且为轴对称图形.
18.如图3,在△ABC 中BC=5cm ,BP 、CP 分别是∠ABC 和∠ACB 的角的平分线,且PD ∥AB ,PE ∥AC ,则△PDE 的周长是_______cm 19. 如图4,在△ABC 中,∠ACB=90°,∠BAC=30°,在直
线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有__ _个
20.已知等腰三角形的一个角为42°,则它的底角度数_______.
801
B A
P C D E 图 3 A B C 图4 C
D
A E
B 图5
21. 如图,ABE △和ACD △是ABC △分别沿着AB AC ,边翻折180o 形成的,若150BAC ∠=o ,
则θ∠的度数是 .
22. 如图,在ABC △中,AB AC =,M ,N 分别是AB ,AC 的中点,D ,E 为BC 上的点,连结DN ,EM .
若13cm AB =,10cm BC =,5cm DE =,则图中阴影部分的面积为 2cm .
三、解答题
23. 如图5,设点P 是∠AOB 内一个定点,分别画点P 关于OA 、OB 的对称点P 1、P 2,连结P 1P 2交OA 于点M ,交OB 于点N ,若P 1P 2=5cm ,则△PMN 的周长为多少
24.已知:如图,△ABC 中,∠C =90°,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE ∥AB 交BC 于E ,求证CT =BE .
25.如图,已知△ABC 中,AH ⊥BC 于H ,∠C =35°,且AB +BH =HC ,求∠B 度数.
A C T E
B M D
C A
B H。