高考导数大题30道(2020年整理).doc
高考导数大题30道

高考导数大题30道1.已知函数$f(x)=x+ax+b$的图像在点$P(1,0)$处的切线与直线$3x+y=$平行。
1) 求常数$a,b$的值;2) 求函数$f(x)$在区间$[t,+\infty)$上的最小值和最大值$(t>1)$。
2.已知函数$f(x)=-x+ax$,$a\in\mathbb{R}$。
1) 若$f(x)$在$[1,+\infty)$上为单调减函数,求$a$的取值范围;2) 若$a=1/2$,求$f(x)$在$[-3,0]$上的最大值和最小值。
3.设函数$f(x)=\dfrac{1}{2x}e^{2x}$。
1) 求函数$f(x)$的单调区间;2) 若当$x\in[-2,2]$时,不等式$f(x)<m$恒成立,求$m$的取值范围。
4.已知函数$f(x)=x-3x^3$及$y=f(x)$上一点$P(1,-2)$,过点$P$作直线$l$。
1) 求使直线$l$和$y=f(x)$相切且以$P$为切点的直线方程;2) 求使直线$l$和$y=f(x)$相切且切点异于$P$的直线方程$y=g(x)$。
5.已知函数$f(x)=x-3ax^{-1}$,$a\neq 3$。
1) 求$f(x)$的单调区间;2) 若$f(x)$在$x=-1$处取得极大值,直线$y=m$与$y=f(x)$的图像有三个不同的交点,求$m$的取值范围。
7.已知函数$f(x)=a\ln x-bx$图像上一点$P(2,f(2))$处的切线方程为$y=-3x+2\ln 2+2$。
Ⅰ) 求$a,b$的值;Ⅱ) 若方程$f(x)+m=0$在区间$[e,+\infty)$有两个不等实根,求$m$的取值范围(其中$e$为自然对数的底数)。
8.已知函数$f(x)=(a-x)\ln x$,$a\in\mathbb{R}$。
1) 当$a=1$时,求$f(x)$在区间$[1,e]$上的最大值和最小值;2) 若在区间$(1,+\infty)$上,函数$f(x)$的图像恒在直线$y=2ax$下方,求$a$的取值范围。
高三数学:2024届高考数学导数大题精选30题(解析版)(共31页)

2024届新高考数学导数大题精选30题1(2024·安徽·二模)已知函数f (x )=x 2-10x +3f (1)ln x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间和极值.【答案】(1)y =4x -13;(2)递增区间为(0,2),(3,+∞),递减区间为2,3 ,极大值-16+12ln2,极小值-21+12ln3.【分析】(1)求出函数f (x )的导数,赋值求得f (1),再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数f (x )的导数,利用导数求出单调区间及极值.【详解】(1)函数f (x )=x 2-10x +3f (1)ln x ,求导得f(x )=2x -10+3f (1)x,则f (1)=-8+3f (1),解得f (1)=4,于是f (x )=x 2-10x +12ln x ,f (1)=-9,所以所求切线方程为:y +9=4(x -1),即y =4x -13.(2)由(1)知,函数f (x )=x 2-10x +12ln x ,定义域为(0,+∞),求导得f (x )=2x -10+12x =2(x -2)(x -3)x,当0<x <2或x >3时,f (x )>0,当2<x <3时,f (x )<0,因此函数f (x )在(0,2),(3,+∞)上单调递增,在(2,3)上单调递减,当x =2时,f (x )取得极大值f (2)=-16+12ln2,当x =3时,f (x )取得极小值f (3)=-21+12ln3,所以函数f (x )的递增区间为(0,2),(3,+∞),递减区间为(2,3),极大值-16+12ln2,极小值-21+12ln3.2(2024·江苏南京·二模)已知函数f (x )=x 2-ax +ae x,其中a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[0,a ]上的最小值为1e,求a 的值.【答案】(1)x -ey =0(2)a =1【分析】(1)由a =0,分别求出f (1)及f (1),即可写出切线方程;(2)计算出f (x ),令f (x )=0,解得x =2或x =a ,分类讨论a 的范围,得出f (x )的单调性,由f (x )在区间[0,a ]上的最小值为1e,列出方程求解即可.【详解】(1)当a =0时,f (x )=x 2e x ,则f (1)=1e ,f (x )=2x -x 2ex,所以f (1)=1e ,所以曲线y =f (x )在(1,f (1))处的切线方程为:y -1e =1e(x -1),即x -ey =0.(2)f(x )=-x 2+(a +2)x -2a e x =-(x -2)(x -a )ex,令f (x )=0,解得x =2或x =a ,当0<a <2时,x ∈[0,a ]时,f (x )≤0,则f (x )在[0,a ]上单调递减,所以f (x )min =f (a )=a ea =1e ,则a =1,符合题意;当a >2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,x ∈(2,a ]时,f (x )>0,则f (x )在(2,a ]上单调递增,所以f (x )min =f (2)=4-a e2=1e ,则a =4-e <2,不合题意;当a =2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,所以f (x )min =f (2)==2e 2≠1e ,不合题意;综上,a =1.3(2024·浙江绍兴·模拟预测)已知f x =ae x -x ,g x =cos x . (1)讨论f x 的单调性.(2)若∃x 0使得f x 0 =g x 0 ,求参数a 的取值范围.【答案】(1)当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)-∞,1【分析】(1)对f x =ae x -x 求导数,然后分类讨论即可;(2)直接对a >1和a ≤1分类讨论,即可得到结果.【详解】(1)由f x =ae x -x ,知f x =ae x -1.当a ≤0时,有f x =ae x -1≤0-1=-1<0,所以f x 在-∞,+∞ 上单调递减;当a >0时,对x <-ln a 有f x =ae x -1<ae -ln a -1=1-1=0,对x >-ln a 有f x =ae x -1>ae -ln a -1=1-1=0,所以f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.综上,当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)当a >1时,由(1)的结论,知f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增,所以对任意的x 都有f x ≥f -ln a =ae -ln a +ln a =1+ln a >1+ln1=1≥cos x =g x ,故f x >g x 恒成立,这表明此时条件不满足;当a ≤1时,设h x =ae x -x -cos x ,由于h -a -1 =ae -a -1+a +1-cos -a -1 ≥ae-a -1+a ≥-a e-a -1+a =a 1-e-a -1≥a 1-e 0=0,h 0 =ae 0-0-cos0=a -1≤0,故由零点存在定理,知一定存在x 0∈-a -1,0 ,使得h x 0 =0,故f x 0 -g x 0 =ae x 0-x 0-cos x 0=h x 0 =0,从而f x 0 =g x 0 ,这表明此时条件满足.综上,a 的取值范围是-∞,1 .4(2024·福建漳州·一模)已知函数f x =a ln x -x +a ,a ∈R 且a ≠0.(1)证明:曲线y =f x 在点1,f 1 处的切线方程过坐标原点.(2)讨论函数f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得f x 在1,f 1 处的切线方程,从而得证;(2)分类讨论a <0与a >0,利用导数与函数的单调性即可得解.【详解】(1)因为f x =a ln x -x +a x >0 ,所以f (x )=a x -1=a -xx,则f (1)=a ln1-1+a =a -1,f (1)=a -1,所以f x 在1,f 1 处的切线方程为:y -(a -1)=(a -1)(x -1),当x =0时,y -(a -1)=(a -1)(0-1)=-(a -1),故y =0,所以曲线y =f (x )在点1,f 1 处切线的方程过坐标原点.(2)由(1)得f (x )=ax -1=a -xx,当a<0时,a-x<0,则f x <0,故f(x)单调递减;当a>0时,令f (x)=0则x=a,当0<x<a时,f (x)>0,f(x)单调递增;当x>a时,f (x)<0,f(x)单调递减;综上:当a<0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.5(2024·山东·二模)已知函数f x =a2xe x-x-ln x.(1)当a=1e时,求f x 的单调区间;(2)当a>0时,f x ≥2-a,求a的取值范围.【答案】(1)f x 的减区间为0,1,增区间为1,+∞(2)a≥1【分析】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,求导得f x =x+1xxe x-1-1,令g x =xe x-1-1,求g x 确定g x 的单调性与取值,从而确定f x 的零点,得函数的单调区间;(2)求f x ,确定函数的单调性,从而确定函数f x 的最值,即可得a的取值范围.【详解】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,则f x =x+1e x-1-1-1x=x+1xxe x-1-1,设g x =xe x-1-1,则g x =x+1e x-1>0恒成立,又g1 =e0-1=0,所以当x∈0,1时,f x <0,f x 单调递减,当x∈1,+∞时,f x >0,f x 单调递增,所以f x 的减区间为0,1,增区间为1,+∞;(2)f x =a2x+1e x-1-1x=x+1xa2xe x-1,设h x =a2xe x-1,则h x =a2x+1e x>0,所以h x 在0,+∞上单调递增,又h0 =-1<0,h1a2=e1a2-1>0,所以存在x0∈0,1 a2,使得h x0 =0,即a2x0e x0-1=0,当x∈0,x0时,f x <0,f x 单调递减,当x∈x0,+∞时,f x >0,f x 单调递增,当x=x0时,f x 取得极小值,也是最小值,所以f x ≥f x0=a2x0e x0-x0-ln x0=1-ln x0e x0=1+2ln a,所以1+2ln a≥2-a,即a+2ln a-1≥0,设F a =a+2ln a-1,易知F a 单调递增,且F1 =0,所以F a ≥F1 ,解得a≥1,综上,a≥1.6(2024·山东·一模)已知函数f(x)=ln x+12a(x-1)2.(1)当a=-12时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-2x+1有两个极值点x1,x2,且g(x1)+g(x2)≥-1-32a,求a的取值范围.【答案】(1)增区间(0,2),减区间(2,+∞)(2)[1,+∞)【分析】(1)将a=-12代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入g(x1)+g(x2)≥-1-32a,构造函数,求导,研究函数性质进而求出a的取值范围.【详解】(1)当a=-12时,f(x)=ln x-14(x-1)2,x>0,则f (x)=1x-12(x-1)=-(x-2)(x+1)2x,当x∈(0,2),f (x)>0,f(x)单调递增,当x∈(2,+∞),f (x)<0,f(x)单调递减,所以f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);(2)g(x)=f(x)-2x+1=ln x+12a(x-1)2-2x+1,所以g (x)=1x+a(x-1)-2=ax2-(a+2)x+1x,设φ(x)=ax2-(a+2)x+1,令φ(x)=0,由于g(x)有两个极值点x1,x2,所以Δ=(a+2)2-4a=a2+4>0x1+x2=a+2a>0x1x2=1a>0,解得a>0.由x1+x2=a+2a,x1x2=1a,得g x1+g x2=ln x1+12a x1-12-2x1+1+ln x2+12a x2-12-2x2+1=ln x1x2+12a x1+x22-2x1x2-2x1+x2+2-2x1+x2+2=ln1a +12a a+2a2-2a-2⋅a+2a+2-2⋅a+2a+2=ln1a +a2-2a-1≥-1-32a,即ln a-12a-1a≤0,令m(a)=ln a-12a-1a,则m (a)=1a-12-12a2=-(a-1)22a2≤0,所以m(a)在(0,+∞)上单调递减,且m(1)=0,所以a≥1,故a的取值范围是[1,+∞).7(2024·湖北·二模)求解下列问题,(1)若kx-1≥ln x恒成立,求实数k的最小值;(2)已知a,b为正实数,x∈0,1,求函数g x =ax+1-xb-a x⋅b1-x的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分k≤0和k>0讨论,确定单调性,进而得最值;(2)先发现g0 =g1 =0,当a=b时,g x =0,当0<x<1,a≠b时,取ab=t,L x =tx+1-x-t x,求导,研究单调性,进而求出最值得答案.【详解】(1)记f x =kx-1-ln x x>0,则需使f x ≥0恒成立,∴f x =k-1xx>0,当k≤0时,f x <0恒成立,则f x 在(0,+∞)上单调递减,且在x>1时,f x <0,不符合题意,舍去;当k >0时.令f x =0,解得x =1k,则f x 在0,1k 上单调递减,在1k ,+∞ 上单调递增,所以f x min =f 1k =-ln 1k=ln k ,要使kx -1≥ln x 恒成立,只要ln k ≥0即可,解得k ≥1,所以k 的最小值为1;(2)g (x )=ax +(1-x )b -a x ⋅b 1-x ,x ∈[0,1],a >0,b >0,易知g 0 =g 1 =0,当a =b 时,g x =ax +a -ax -a =0,此时函数无极值;当0<x <1,a ≠b 时,g (x )=ax +(1-x )b -b ⋅a b x =b a b x +1-x -a b x,取ab=t ,t >0,t ≠1,L x =tx +1-x -t x ,t >0,t ≠1,x ∈0,1 ,则L x =t -1-t x ln t ,当t >1时,由L x ≥0得x ≤ln t -1ln tln t,由(1)知t -1≥ln t ,当t >1时,t -1ln t>1,因为x -1≥ln x ,所以1x -1≥ln 1x ,所以ln x ≥1-1x ,即x >0,当t >1时,ln t >1-1t,所以t >t -1ln t ,则ln t >ln t -1ln t >0,所以ln t -1ln tln t<1,即L x 在0,ln t -1ln t ln t 上单调递增,在ln t -1ln tln t,1单调递减.所以函数g x 极大=gln t -1lntln t,t =ab,a ≠b ,当0<t <1时,同理有ln t -1lntln t∈0,1 ,由Lx ≥0得x ≤ln t -1lntln t,即(x )在0,ln t -1lntln t上单调递增,在ln t -1lntln t,1上单调递减.所以函数g x 极大=gln t -1lntln t,t =a b,a ≠b ,综上可知,当a =b 时,函数g x 没有极值;当a ≠b 时,函数g x 有唯一的极大值g ln t -1lntln t,其中t =ab,没有极小值.【点睛】关键点点睛:取ab=t ,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8(2024·湖北武汉·模拟预测)函数f (x )=tan x +sin x -92x ,-π2<x <π2,g (x )=sin n x -x n cos x ,x ∈0,π2,n ∈N +.(1)求函数f (x )的极值;(2)若g (x )>0恒成立,求n 的最大值.【答案】(1)极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2;(2)3.【分析】(1)判断函数f (x )为奇函数,利用导数求出f (x )在区间0,π2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当n =1时,g (x )>0恒成立,当n >1时,等价变形不等式并构造函数F (x )=x -sin x cos 1nx,0<x <π2,利用导数并按导数为负为正确定n 的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数f (x )=tan x +sin x -92x ,-π2<x <π2,f (-x )=tan (-x )+sin (-x )-92(-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,当0<x <π2时,f (x )=sin x cos x +sin x -92x ,求导得:f(x )=1cos 2x +cos x -92=2cos 3x -9cos 2x +22cos 2x =(2cos x -1)(cos x -2-6)(cos x -2+6)2cos 2x,由于cos x ∈(0,1),由f (x )>0,得0<cos x <12,解得π3<x <π2,由f (x )<0,得12<cos x <1,解得0<x <π3,即f (x )在0,π3 上单调递减,在π3,π2上单调递增,因此函数f (x )在0,π2 上有极小值f π3 =3(3-π)2,从而f (x )在-π2,π2 上的极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2.(2)当n =1时,g (x )>0恒成立,即sin x -x cos x >0恒成立,亦即tan x >x 恒成立,令h (x )=tan x -x ,x ∈0,π2 ,求导得h (x )=1cos 2x -1=1-cos 2x cos 2x=tan 2x >0,则函数h (x )在0,π2上为增函数,有h (x )>h (0)=0,因此tan x -x >0恒成立;当n >1时,g (x )>0恒成立,即不等式sin xn cos x>x 恒成立,令F (x )=x -sin x cos 1n x ,0<x <π2,求导得:F (x )=1-cos x ⋅cos 1nx -1n⋅cos1n-1x ⋅(-sin x )⋅sin xcos 2nx=1-cos1+n nx +1n⋅sin 2x ⋅cos1-n nxcos 2nx=1-cos 2x +1n ⋅sin 2xcos n +1nx =cosn +1nx -cos 2x -1n (1-cos 2x )cos n +1nx =cosn +1nx -1n -n -1ncos 2x cosn +1nx令G (x )=cos n +1nx -1n -n -1n cos 2x ,求导得则G (x )=n +1n cos 1nx ⋅(-sin x )-n -1n⋅2cos x ⋅(-sin x )=sin x n (2n -2)cos x -(n +1)cos 1n x =2n -2n ⋅sin x cos x -n +12n -2cos 1n x=2n -2n ⋅sin x ⋅cos 1n x cos n -1n x -n +12n -2,由n >1,x ∈0,π2 ,得2n -2n⋅sin x ⋅cos 1nx >0,当n +12n -2≥1时,即n ≤3时,G (x )<0,则函数G (x )在0,π2上单调递减,则有G (x )<G (0)=0,即F (x )<0,因此函数F (x )在0,π2 上单调递减,有F (x )<F (0)=0,即g (x )>0,当n +12n -2<1时,即n >3时,存在一个x 0∈0,π2 ,使得cos n -1n x 0=n +12n -2,且当x ∈(0,x 0)时,G (x )>0,即G (x )在(0,x 0)上单调递增,且G (x )>G (0)=0,则F (x )>0,于是F (x )在(0,x 0)上单调递增,因此F (x )>F (0)=0,即sin xn cos x<x ,与g (x )>0矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9(2024·湖北·模拟预测)已知函数f x =ax 2-x +ln x +1 ,a ∈R ,(1)若对定义域内任意非零实数x 1,x 2,均有f x 1 f x 2x 1x 2>0,求a ;(2)记t n =1+12+⋅⋅⋅+1n ,证明:t n -56<ln n +1 <t n .【答案】(1)a =12(2)证明见解析【分析】(1)求导可得f 0 =0,再分a ≤0与a >0两种情况分析原函数的单调性,当a >0时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,1n -12n2<ln 1n +1 <1n ,再累加结合放缩方法证明即可.【详解】(1)f x 的定义域为-1,+∞ ,且f 0 =0;f x =2ax -1+1x +1=2ax -x x +1=x 2a -1x +1,因此f 0 =0;i.a ≤0时,2a -1x +1<0,则此时令f x >0有x ∈-1,0 ,令f x <0有x ∈0,+∞ ,则f x 在-1,0 上单调递增,0,+∞ 上单调递减,又f 0 =0,于是f x ≤0,此时令x 1x 2<0,有f x 1 f x 2x 1x 2<0,不符合题意;ii .a >0时,f x 有零点0和x 0=12a-1,若x 0<0,即a >12,此时令f x <0有x ∈x 0,0 ,f x 在x 0,0 上单调递减,又f 0 =0,则f x 0 >0,令x 1>0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0>0,即0<a <12,此时令f x <0有x ∈0,x 0 ,f x 在0,x 0 上单调递减,又f 0 =0,则f x 0 <0,令-1<x 1<0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0=0,即a =12,此时fx =x 2x +1>0,f x 在-1,+∞ 上单调递增,又f 0 =0,则x >0时f x >0,x <0时f x <0;则x ≠0时f x x >0,也即对x 1x 2≠0,f x 1 f x 2x 1x 2>0,综上,a =12(2)证:由(1)问的结论可知,a =0时,f x =-x +ln x +1 ≤0;且a =12时x >0,f x =12x 2-x +ln x +1 >0;则x>0时,x-12x2<ln x+1<x,令x=1n,有1n-12n2<ln1n+1<1n,即1n-12n2<ln n+1-ln n<1n,于是1n-1-12n-12<ln n-ln n-1<1n-11-12<ln2<1将上述n个式子相加,t n-121+122+⋅⋅⋅+1n2<ln n+1<t n;欲证t n-56<ln n+1<t n,只需证t n-56<t n-121+122+⋅⋅⋅+1n2,只需证1+122+⋅⋅⋅+1n2<53;因为1n2=44n2<44n2-1=212n-1-12n+1,所以1+122+⋅⋅⋅+1n2<1+213-15+15-17+⋅⋅⋅+12n-1-12n+1=53-22n+1<53,得证:于是得证t n-56<ln n+1<t n.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10(2024·湖南·一模)已知函数f x =sin x-ax⋅cos x,a∈R.(1)当a=1时,求函数f x 在x=π2处的切线方程;(2)x∈0,π2时;(ⅰ)若f x +sin2x>0,求a的取值范围;(ⅱ)证明:sin2x⋅tan x>x3.【答案】(1)πx-2y+2-π22=0.(2)(ⅰ)a≤3(ⅱ)证明见解析【分析】(1)令a=1时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设g(x)=2sin x+tan x-ax,x∈0,π2,由g x >0得a≤3,再证明此时满足g x >0.(ⅱ)根据(ⅰ)结论判断出F x =sin2x⋅tan x-x3在0,π2上单调递增,∴F(x)>F(0)=0,即sin2x tan x >x3.【详解】(1)当a=1时,f(x)=sin x-x⋅cos x,f (x)=cos x-(cos x-x⋅sin x)=x⋅sin x,fπ2=π2,fπ2=1.所以切线方程为:y-1=π2x-π2,即πx-2y+2-π22=0.(2)(ⅰ)f(x)+sin2x=sin x-ax⋅cos x+sin2x>0,即tan x-ax+2sin x>0,x∈0,π2,设g(x)=2sin x+tan x-ax,x∈0,π2,g (x )=2cos x +1cos 2x -a =1cos 2x(2cos 3x -a cos 2x +1).又∵g (0)=0,g (0)=3-a ,∴g (0)=3-a ≥0是g (x )>0的一个必要条件,即a ≤3.下证a ≤3时,满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,又g (x )≥1cos 2x(2cos 3x -3cos 2x +1),设(t )=2t 3-3t 2+1,t ∈(0,1),h (t )=6t 2-6t =6t (t -1)<0,h (t )在(0,1)上单调递减,所以h (t )>h (1)=0,又x ∈0,π2 ,cos x ∈(0,1),∴g (x )>0,即g (x )在0,π2 单调递增.∴x ∈0,π2时,g (x )>g (0)=0;下面证明a >3时不满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,,g (x )=2cos x +1cos 2x-a ,令h (x )=g (x )=2cos x +1cos 2x -a ,则h (x )=-2sin x +2sin x cos 3x =2sin x 1cos 3x-1,∵x ∈0,π2 ,∴sin x >0,1cos 3x-1>0,∴h (x )>0,∴h (x )=g (x )在0,π2为增函数,令x 0满足x 0∈0,π2,cos x 0=1a ,则g x 0 =2cos x 0+1cos 2x 0-a =2cos x 0+a -a >0,又g (0)=3-a <0,∴∃x 1∈0,x 0 ,使得g x 1 =0,当x ∈0,x 1 时,g (x )<g x 1 =0,∴此时g (x )在0,x 1 为减函数,∴当x ∈0,x 1 时,g (x )<g (0)=0,∴a >3时,不满足g (x )≥0恒成立.综上a ≤3.(ⅱ)设F (x )=sin 2x ⋅tan x -x 3,x ∈0,π2 ,F (x )=2sin x ⋅cos x ⋅tan x +sin 2x ⋅1cos 2x-3x 2=2sin 2x +tan 2x -3x 2=2(sin x -x )2+(tan x -x )2+2(2sin x +tan x )x -2x 2-x 2-3x 2.由(ⅰ)知2sin x +tan x >3x ,∴F (x )>0+0+2x ⋅3x -6x 2=0,,F x 在0,π2上单调递增,∴F (x )>F (0)=0,即sin 2x tan x >x 3.【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11(2024·全国·模拟预测)已知函数f (x )=ln (1+x )-11+x.(1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)若x ∈(-1,π),讨论曲线y =f (x )与曲线y =-2cos x 的交点个数.【答案】(1)y =32x -1;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,f x =11+x +121+x 32,故f 0 =32,而f 0 =-1,故所求切线方程为y +1=32x ,即y =32x -1.(2)令ln 1+x -11+x =-2cos x ,故ln 1+x +2cos x -11+x=0,令g x =ln 1+x +2cos x -11+x ,g x =11+x -2sin x +121+x -32,令h x =g x =11+x -2sin x +121+x -32,hx =-11+x2-2cos x -341+x -52.①当x ∈-1,π2时,cos x ≥0,1+x 2>0,1+x-52>0,∴h x <0,∴h x 在-1,π2上为减函数,即gx 在-1,π2 上为减函数,又g 0 =1+12>0,g1 =12-2sin1+12⋅2-32<12-2⋅sin1+12<1-2×12=0,∴g x 在0,1 上有唯一的零点,设为x 0,即g x 0 =00<x 0<1 .∴g x 在-1,x 0 上为增函数,在x 0,π2上为减函数.又g 0 =2-1>0,g -π4 =ln 1-π4 +2cos -π4 -11-π4=ln 1-π4+2-11-π4<0,g π2=ln 1+π2 -11+π2>0,∴g x 在-1,x 0 上有且只有一个零点,在x 0,π2上无零点;②当x ∈π2,5π6 时,g x <11+x -1+121+x-32<0,g x 单调递减,又g π2 >0,g 5π6 =ln 1+5π6 -3-1+5π6-12<ln4-3<0,∴g x 在π2,5π6内恰有一零点;③当x ∈5π6,π 时,hx =-11+x2-2cos x -341+x -52为增函数,∴hx =h 5π6 =-11+5π62+1-34⋅1+5π6-52>0,∴g x 单调递增,又g π >0,g 5π6 <0,所以存在唯一x 0∈5π6,π ,g x 0 =0,当x ∈5π6,x 0 时,g x <0,g x 递减;当x ∈x 0,π 时,g x >0,g x 递增,g x ≤max g 5π6 ,g π <0,∴g x 在5π6,π内无零点.综上所述,曲线y =f x 与曲线y =-2cos x 的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12(2024·广东佛山·二模)已知f x =-12e 2x +4e x -ax -5.(1)当a =3时,求f x 的单调区间;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 +f x 2 +x 1+x 2<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,可得t 1、t 2是方程t 2-4t +a =0的两个正根,借助韦达定理可得t 1+t 2=4,t 1t 2=a ,即可用t 1、t 2表示f x 1 +f x 2 +x 1+x 2,进而用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当a =3时,f x =-12e 2x +4e x -3x -5,f x =-e 2x +4e x -3=-e x -1 e x -3 ,则当e x ∈0,1 ∪3,+∞ ,即x ∈-∞,0 ∪ln3,+∞ 时,f x <0,当e x ∈1,3 ,即x ∈0,ln3 时,f x >0,故f x 的单调递减区间为-∞,0 、ln3,+∞ ,单调递增区间为0,ln3 ;(2)f x =-e 2x +4e x -a ,令t =e x ,即f x =-t 2+4t -a ,令t 1=e x 1,t 2=e x 2,则t 1、t 2是方程t 2-4t +a =0的两个正根,则Δ=-4 2-4a =16-4a >0,即a <4,有t 1+t 2=4,t 1t 2=a >0,即0<a <4,则f x 1 +f x 2 +x 1+x 2=-12e 2x 1+4e x 1-ax 1-5-12e 2x2+4e x 2-ax 2-5+x 1+x 2=-12t 21+t 22 +4t 1+t 2 -a -1 ln t 1+ln t 2 -10=-12t 1+t 2 2-2t 1t 2 +4t 1+t 2 -a -1 ln t 1t 2-10=-1216-2a +16-a -1 ln a -10=a -a -1 ln a -2,要证f x 1 +f x 2 +x 1+x 2<0,即证a -a -1 ln a -2<00<a <4 ,令g x =x -x -1 ln x -20<x <4 ,则g x =1-ln x +x -1x =1x-ln x ,令h x =1x -ln x 0<x <4 ,则h x =-1x 2-1x <0,则g x 在0,4 上单调递减,又g 1 =11-ln1=1,g 2 =12-ln2<0,故存在x 0∈1,2 ,使g x 0 =1x 0-ln x 0=0,即1x 0=ln x 0,则当x ∈0,x 0 时,g x >0,当x ∈x 0,4 时,g x <0,故g x 在0,x 0 上单调递增,g x 在x 0,4 上单调递减,则g x ≤g x 0 =x 0-x 0-1 ln x 0-2=x 0-x 0-1 ×1x 0-2=x 0+1x 0-3,又x 0∈1,2 ,则x 0+1x 0∈2,52 ,故g x 0 =x 0+1x 0-3<0,即g x <0,即f x 1 +f x 2 +x 1+x 2<0.【点睛】关键点点睛:本题关键点在于借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,从而可结合韦达定理得t 1、t 2的关系,即可用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.13(2024·广东广州·模拟预测)已知函数f x =x e x -kx ,k ∈R .(1)当k =0时,求函数f x 的极值;(2)若函数f x 在0,+∞ 上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为-1e,无极大值(2)e ,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为g x =e x -kx 在0,+∞ 上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当k =0时,f x =xe x (x ∈R ),所以f x =1+x e x ,令f x =0,则x =-1,x -∞,-1-1-1,+∞f x -0+f x单调递减极小值单调递增所以f (x )min =f -1 =-e -1=-1e,所以f x 的极小值为-1e,无极大值.(2)函数f x =x e x -kx 在0,+∞ 上仅有两个零点,令g x =e x -kx ,则问题等价于g x 在0,+∞ 上仅有两个零点,易知g x =e x -k ,因为x ∈0,+∞ ,所以e x >1.①当k ∈-∞,1 时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,所以g x >g 0 =1,所以g x 在0,+∞ 上没有零点,不符合题意;②当k ∈1,+∞ 时,令g x =0,得x =ln k ,所以在0,ln k 上,g x <0,在ln k ,+∞ 上,g x >0,所以g x 在0,ln k 上单调递减,在(ln k ,+∞)上单调递增,所以g x 的最小值为g ln k =k -k ⋅ln k .因为g x 在0,+∞ 上有两个零点,所以g ln k =k -k ⋅ln k <0,所以k >e.因为g 0 =1>0,g ln k 2 =k 2-k ⋅ln k 2=k k -2ln k ,令h x =x -2ln x ,则h x =1-2x =x -2x,所以在0,2 上,h x <0,在2,+∞ 上,h x >0,所以h x 在0,2 上单调递减,在2,+∞ 上单调递增,所以h x ≥2-2ln2=ln e 2-ln4>0,所以g ln k 2 =k k -2ln k >0,所以当k >e 时,g x 在0,ln k 和(ln k ,+∞)内各有一个零点,即当k >e 时,g x 在0,+∞ 上仅有两个零点.综上,实数k 的取值范围是e ,+∞ .【点睛】方法点睛:求解函数单调区间的步骤:(1)确定f x 的定义域.(2)计算导数f x .(3)求出f x =0的根.(4)用f x =0的根将f x 的定义域分成若干个区间,判断这若干个区间内f x 的符号,进而确定f x 的单调区间.f x >0,则f x 在对应区间上单调递增,对应区间为增区间;f x <0,则f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14(2024·江苏南通·二模)已知函数f x =ln x -ax ,g x =2ax,a ≠0.(1)求函数f x 的单调区间;(2)若a >0且f x ≤g x 恒成立,求a 的最小值.【答案】(1)答案见解析(2)2e 3.【分析】(1)求导后,利用导数与函数单调性的关系,对a >0与a <0分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)f x =1x -a =1-axx(a ≠0),当a <0时,由于x >0,所以f x >0恒成立,从而f x 在0,+∞ 上递增;当a >0时,0<x <1a ,f x >0;x >1a ,fx <0,从而f x 在0,1a 上递增,在1a,+∞ 递减;综上,当a <0时,f x 的单调递增区间为0,+∞ ,没有单调递减区间;当a >0时,f x 的单调递增区间为0,1a ,单调递减区间为1a ,+∞ .(2)令h x =f x -g x =ln x -ax -2ax,要使f x ≤g x 恒成立,只要使h x ≤0恒成立,也只要使h x max ≤0.h x =1x -a +2ax 2=-ax +1 ax -2 ax 2,由于a >0,x >0,所以ax +1>0恒成立,当0<x <2a 时,h x >0,当2a<x <+∞时,h x <0,所以h x max =h 2a =ln 2a -3≤0,解得:a ≥2e 3,所以a 的最小值为2e3.15(2024·山东济南·二模)已知函数f x =ax 2-ln x -1,g x =xe x -ax 2a ∈R .(1)讨论f x 的单调性;(2)证明:f x +g x ≥x .【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得fx =2ax 2-1x,分a ≤0和a >0两种情况,结合导函数的符号判断原函数单调性;(2)构建F x =f x +g x -x ,x >0,h x =e x -1x,x >0,根据单调性以及零点存在性定理分析h x 的零点和符号,进而可得F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:f x 的定义域为0,+∞ ,fx =2ax -1x =2ax 2-1x,当a ≤0时,则2ax 2-1<0在0,+∞ 上恒成立,可知f x 在0,+∞ 上单调递减;当a >0时,令f x >0,解得x >12a;令f x <0,解得0<x <12a;可知f x 在0,12a 上单调递减,在12a,+∞ 上单调递增;综上所述:当a ≤0时,f x 在0,+∞ 上单调递减;当a >0时,f x 在0,12a 上单调递减,在12a,+∞ 上单调递增.(2)构建F x =f x +g x -x =xe x -ln x -x -1,x >0,则F x =x +1 e x -1x -1=x +1 e x -1x,由x >0可知x +1>0,构建h x =e x -1x ,x >0,因为y =e x ,y =-1x在0,+∞ 上单调递增,则h x 在0,+∞ 上单调递增,且h 12=e -20,h 1 =e -1 0,可知h x 在0,+∞ 上存在唯一零点x 0∈12,1 ,当0<x <x 0,则h x <0,即Fx <0;当x >x 0,则h x >0,即F x >0;可知F x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,则F x ≥F x 0 =x 0e x 0-ln x 0-x 0-1,又因为e x 0-1x 0=0,则e x 0=1x 0,x 0=e -x 0,x 0∈12,1 ,可得F x 0 =x 0×1x 0-ln e -x-x 0-1=0,即F x ≥0,所以f x +g x ≥x .16(2024·福建·模拟预测)已知函数f (x )=a ln x -bx 在1,f 1 处的切线在y 轴上的截距为-2.(1)求a 的值;(2)若f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)b ∈0,2e 【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将f x 有且仅有两个零点转化为方程b =2ln xx有两个根,构造对应函数并借助导数研究单调性及值域即可得.【详解】(1)f (x )=ax-b ,f 1 =a -b ,f (1)=a ×0-b =-b ,则函数f (x )=a ln x -bx 在1,f 1 处的切线为:y +b =a -b x -1 ,即y =a -b x -a ,令x =0,则有y =-a =-2,即a =2;(2)由a =2,即f (x )=2ln x -bx ,若f x 有且仅有两个零点,则方程2ln x-bx=0有两个根,即方程b=2ln xx有两个根,令g x =2ln xx,则gx =21-ln xx2,则当x∈0,e时,g x >0,则当x∈e,+∞时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故g x ≤g e =2ln ee=2e,又x→0时,g x →-∞,x→+∞时,g x →0,故当b∈0,2 e时,方程b=2ln x x有两个根,即f x 有且仅有两个零点.17(2024·浙江杭州·二模)已知函数f x =a ln x+2-12x2a∈R.(1)讨论函数f x 的单调性;(2)若函数f x 有两个极值点,(ⅰ)求实数a的取值范围;(ⅱ)证明:函数f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)-1<a<0;(ⅱ)证明见解析【分析】(1)求出函数的导函数,再分a≤-1、-1<a<0、a≥0三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【详解】(1)函数f x =a ln x+2-12x2a∈R的定义域为-2,+∞,且f x =ax+2-x=-x+12+a+1x+2,当a≤-1时,f x ≤0恒成立,所以f x 在-2,+∞单调递减;当-1<a<0时,令f x =0,即-x+12+a+1=0,解得x1=-a+1-1,x2=a+1-1,因为-1<a<0,所以0<a+1<1,则-2<-a+1-1<-1,所以当x∈-2,-a+1-1时f x <0,当x∈-a+1-1,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时,此时-a+1-1≤-2,所以x∈-2,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.综上可得:当a≤-1时f x 在-2,+∞单调递减;当-1<a<0时f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.(2)(ⅰ)由(1)可知-1<a<0.(ⅱ)由(1)f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减,所以f x 在x=a+1-1处取得极大值,在x=-a+1-1处取得极小值,又-1<a<0,所以0<a+1<1,则1<a+1+1<2,又f x极大值=f a+1-1=a ln a+1+1-12a+1-12<0,又f-a+1-1<f a+1-1<0,所以f x 在-a+1-1,+∞上没有零点,又-1<a<0,则4a<-4,则0<e4a<e-4,-2<e4a-2<e-4-2,则0<e 4a-22<4,所以f e 4a-2=4-12e4a-22>0,所以f x 在-2,-a+1-1上存在一个零点,综上可得函数f x 有且只有一个零点.18(2024·河北沧州·模拟预测)已知函数f(x)=ln x-ax+1,a∈R.(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)-∞,2.【分析】(1)利用导数分类讨论判断函数f x 的单调性,即可求解;(2)先利用导数证明不等式e x≥x+1,分离变量可得a≤e2x-ln x+1x恒成立,进而e 2x-ln x+1x≥2x+ln x+1-(ln x+1)x=2,即可求解.【详解】(1)函数f x =ln x-ax+1,a∈R的定义域为0,+∞,且f (x)=1x-a.当a≤0时,∀x∈0,+∞,f (x)=1x-a≥0恒成立,此时f x 在区间0,+∞上单调递增;当a>0时,令f (x)=1x-a=1-axx=0,解得x=1a,当x∈0,1 a时,f x >0,f x 在区间0,1a上单调递增,当x∈1a,+∞时,f x <0,f x 在区间1a,+∞上单调递减.综上所述,当a≤0时,f x 在区间0,+∞上单调递增;当a>0时,f x 在区间0,1 a上单调递增,在区间1a,+∞上单调递减.(2)设g x =e x-x-1,则g x =e x-1,在区间(-∞,0)上,g x <0,g x 单调递减,在区间0,+∞上,g x >0,g x 单调递增,所以g x ≥g0 =e0-0-1=0,所以e x≥x+1(当且仅当x=0时等号成立).依题意,∀x>0,f x ≤xe2x-2ax恒成立,即a≤e2x-ln x+1x恒成立,而e2x-ln x+1x=xe2x-(ln x+1)x=e2x+ln x-(ln x+1)x≥2x+ln x+1-(ln x+1)x=2,当且仅当2x+ln x=0时等号成立.因为函数h x =2x+ln x在0,+∞上单调递增,h1e=2e-1<0,h(1)=2>0,所以存在x0∈1e,1,使得2x0+ln x0=0成立.所以a ≤e 2x -ln x +1xmin =2,即a 的取值范围是-∞,2 .【点睛】方法点睛:利用导数证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.19(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【答案】(1)f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)不存在,理由见解析【分析】(1)求出导函数,根据导函数的正负来确定函数的单调区间;(2)求出直线AB 的斜率,再求出f (x 0),从而得到x 1,x 2的等式,再进行换元和求导,即可解出答案.【详解】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4t +1 2=t -1 2t t +1 2>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.20(2024·广东深圳·二模)已知函数f x =ax +1 e x ,f x 是f x 的导函数,且f x -f x =2e x .(1)若曲线y =f x 在x =0处的切线为y =kx +b ,求k ,b 的值;(2)在(1)的条件下,证明:f x ≥kx +b .【答案】(1)k =3,b =1;(2)证明见解析.【分析】(1)根据题意,求导可得a 的值,再由导数意义可求切线,得到答案;(2)设函数g x =2x +1 e x -3x -1,利用导数研究函数g (x )的单调性从而求出最小值大于0,可得证.【详解】(1)因为f x =ax +1 e x ,所以f x =ax +a +1 e x ,因为f x -f x =2e x ,所以a =2.则曲线y =f (x )在点x =0处的切线斜率为f 0 =3.又因为f 0 =1,所以曲线y =f (x )在点x =0处的切线方程为y =3x +1,即得k =3,b =1.(2)设函数g x =2x +1 e x -3x -1,x ∈R ,则g x =2x +3 e x -3,设h x =g x ,则h x =e x 2x +5 ,所以,当x >-52时,h x >0,g x 单调递增.又因为g0 =0,所以,x >0时,g x >0,g x 单调递增;-52<x <0时,g x <0,g x 单调递减.又当x ≤-52时,g x =2x +3 e x -3<0,综上g x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以当x =0时,g x 取得最小值g 0 =0,即2x +1 e x -3x -1≥0,所以,当x ∈R 时,f x ≥3x +1.21(2024·辽宁·二模)已知函数f x =ax 2-ax -ln x .(1)若曲线y =f x 在x =1处的切线方程为y =mx +2,求实数a ,m 的值;(2)若对于任意x ≥1,f x +ax ≥a 恒成立,求实数a 的取值范围.【答案】(1)a =-1,m =-2(2)12,+∞ 【分析】(1)根据导数几何意义和切线方程,可直接构造方程组求得结果;(2)构造函数g x =ax 2-ln x -a x ≥1 ,将问题转化为g x ≥0恒成立;求导后,分别在a ≤0、a ≥12和0<a <12的情况下,结合单调性和最值求得符合题意的范围.【详解】(1)∵f x =2ax -a -1x,∴f 1 =2a -a -1=a -1,∵y =f x 在x =1处的切线为y =mx +2,∴f 1 =a -1=mf 1 =0=m +2 ,解得:a =-1,m =-2.(2)由f x +ax ≥a 得:ax 2-ln x -a ≥0,令g x =ax 2-ln x -a x ≥1 ,则当x ≥1时,g x ≥0恒成立;。
2020各地高考数学理数导数真题

2020年全国各地导数题集(全国I 卷理)已知函数2()e x f x ax x =+-.(1)当1=a 时,讨论)(x f 的单调性;(2)当0x ≥时,121)(3+≥x x f ,求a 的取值范围.【解答】(1)当1a =时,2()e x f x x x =+-则'()e 21x f x x =+-.故当x ∈∞(-,0)时,()0f x '<;当x ∈∞(0,+)时,()0f x '>.所以)(x f 在)0,(-∞单调递减,在),0(+∞单调递增.(2)31()12f x x ≥+等价于321(1)e 12x x ax x --++≤.设函数321()(1)e (0)2x g x x ax x x -=-++≥,则32213()(121)e 22xg x x ax x x ax -'=--++-+-21[(23)42]e 2x x x a x a -=--+++1(21)(2)e 2x x x a x -=----.(i)若210a +≤,即12a ≤-,则当(0,2)x ∈时,'()0g x >.所以()g x 在(0,2)单调递增,而(0)1g =,故当(0,2)x ∈时,()1g x >,不合题意.(ii)若2120<+<a ,即1122a -<<,则当),2()12,0(+∞⋃+∈a x 时,0)('<x g ;当)2,12(+∈a x 时,0)('>x g .所以)(x g 在),2(),12,0(+∞+a ,单调递减,在)2,12(+a 单调递增.由于(0)1g =,所以()1g x <当且仅当2(2)(74)1g a e -=-≤,即27e 4a -≥.所以当27e 142a -≤<时,1)(≤x g .(iii)若212a +≥,即12a ≥,则31()(1)e 2x g x x x -≤++.由于27e 10[,42-∈,故由(ii)可得31(1)e 12x x x -++≤.故当12a ≥时,1)(≤x g .综上,a 的取值范围是27e [,)4-+∞(全国Ⅱ卷理)已知函数2() sin sin 2f x x x =.(1)讨论()f x 在区间(0,π)的单调性;(2)证明:()8f x ≤;(3)设*n ∈N ,证明:2222sin sin 2sin 4234sin nn n x x x x ≤ .【解答】(1)()cos (sin sin 2)sin (sin sin 2)'f x x x x x x x '=+22sin cos sin 22sin cos 22sin sin 3x x x x x x x=+=当(0,(,)33x π2π∈π 时,()0f x '>,()f x 单调递增;当(,)33x π2π∈时,()0f x '<,()f x 单调递减.(2)因为(0)()0f f =π=,由(1)知,()f x 在区间[0,]π的最大值为()38f π=,最小值为()38f 2π=-.而()f x 是周期为π的周期函数,故|()|8f x ≤.(3)由于32223332(sin sin 2sin 2)|sin sin 2sin 2|n n x x x x x x = 23312|sin ||sin sin 2sin 2sin 2||sin 2|n n n x x x x x x -= 12|sin ||()(2)(2)||sin 2|n n x f x f x f x x -= 1|()(2)(2)|n f x f x f x -≤ ,所以222233sin sin 2sin 24n nnn x x x ≤= .(全国Ⅲ卷理)设函数c bx x x f ++=3)(,曲线)(x f y =在点))21(,21(f 处的切线与y 轴垂直.(1)求b ;(2)若)(x f 有一个绝对值不大于1的零点,证明:)(x f 所有零点的绝对值都不大于1.【解答】(1).3)('2b x x f +=依题意得,021('=f 即043==b .故43-=b .(2)由(1)知3233(),'()3.44f x x x c f x x =-+=-令,0)('=x f 解得21-=x 或.21=x )('x f 与)(x f 的情况为:x)21,(--∞21-)21,21(-21),21(∞=)('x f +0—0+)(x f ↑41+c ↓41-c ↑因为4121()1(+=-=c f f ,所以当41-<c 时,)(x f 只有大于1的零点.因为41)21()1(-==-c f f ,所以当41>c 时,)(x f 只有小于1-的零点.由题设可知.4141≤≤-c 当41-=c 时,)(x f 只有两个零点21-和1.当41=c 时,)(x f 只有两个零点1-和21.当4141<<-c 时,)(x f 有三个零点321,,x x x ,且).1,21(),21,21(),21,1(321∈-∈--∈x x x 综上,)(x f 所有零点的绝对值都不大于1.(北京理)已知函数212)(x x f -=(1)求曲线)(x f y =的斜率等于2-的切线方程;(2)设曲线)(x f y =在点))(,(t f t 处的切线与坐标轴围城的三角形面积为)(t s ,求)(t s 的最小值.【解答】(1)132+-=x y (2)在))(,(t f t 处的切线方程为:1222++-=t tx y ;若0=t ,则围不成三角形;切线与坐标轴交点为)0,212(),12,0(22t t B t A ++tt OB OA t s 22)12(4121)(+==,因为其为偶函数仅考虑0>t 即可0),14424(41)(3>++=t t t t t s ,则)12)(4(43144243(41)('2222+-=-+=t t t t t s 极小值为最小值32)2()(min ==s t s (天津)已知函数)(),(ln )('3x f R k x k x x f ∈+=为)(x f 的导函数(1)当6=k 时(i )求曲线)(x f y =再点))1(,1(f 处的切线方程;(ii )求函数xx f x f x g 9)(')()(+-=的单调区间和极值.(2)当3-≥k 时,求证:对任意的),1[,21+∞∈x x ,且21x x >,有.)()(2)(')('212121x x x f x f x f x f -->+【解答】(1)(i )当6k =时,3()6ln f x x x =+,故26()3f x x x'=+,(1)9f ∴'=,(1)1f = ,∴曲线()y f x =在点))1(,1(f 处的切线方程为19(1)y x -=-,即980x y --=.(ii )3293()()()6ln 3g x f x f x x x x x x =-'+=+-+,0x >,3222633(1)(1)()36x x g x x x x x x -+∴'=-+-=,令()0g x '=,解得1x =,当01x <<,()0g x '<,当1x >,()0g x '>,∴函数()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,1x =是极小值点,极小值为(1)1g =,无极大值;(2)由3()ln f x x k x =+,则2()3k f x x x'=+,对任意的1x ,2[1x ∈,)+∞,且12x x >,令12x t x =,1t >,121212()[()()]2[()()]x x f x f x f x f x -'+'-+22331121212122()(33)2(ln )x k k x x x x x x k x x x =-+++--+332212112121221233()2ln x x x x x x x x x k k x x x =--++--,33221(331)(2ln )x t t t k t t t=-+-+--,①令1()2ln h x x x x=--,1x >,当1x >时,22121()1(1)0h x x x x '=+-=->,()h x ∴在(1,)+∞单调递增,当1t >,()(1)0h t h >=,即12ln 0t t t-->,21x ,323331(1)0t t t t -+-=->,3k - ,33221(331)(2ln )x t t t k t t t ∴-+-+--3232133313(2ln )36ln 1t t t t t t t t t t>-+----=-++-,②,由(1)(ii)可知当1t 时,()(1)g t g >即32336ln 1t t t t-++>,③,由①②③可得121212()[()()]2[()()]0x x f x f x f x f x -'+'-+>,∴当3k - 时,对任意的1x ,2[1x ∈,)+∞,且12x x >,有121212()()()()2f x f x f x f x x x '+'->-.(江苏)已知关于x 的函数)(x f y =,()x g y =与),()(R b k b kx x h ∈+=在区间D 上恒有)()()(x g x h x f ≥≥(1)若x x x f 2)(2+=,x x x g 2)(2+-=,),(+∞-∞=D ,求)(x k 的表达式(2)若1)(2+-=x x x f ,),,0(,)(,ln )(+∞=-==D k kx x h x k x g 求k 的取值范围;(3)若x x x f 2)(4-=,84)(2-=x x g ,24223)(4)(t t x t t x h +--=[][]2,2,),20(-⊆=≤<n m D t ,求证:7≤-m n 【解答】(1)由题设有x x b kx x x 2222+≤+≤+-对任意的R x ∈恒成立令0=x ,则00≤≤b ,所以0=b ,因此x x kx 22+≤即0)2(2>-+x k x 对任意的R x ∈恒成立,所以0)2(2≤-=∆k ,因此2=k ,故.2)(x x h =(2)令)0)(ln 1()()()(>--=-=x x x k x g x h x F ,0)1(=F ,又xx k x F )1()('-=若0<k ,则)(x F 在)1,0(上递增,在),1(+∞上递减,则0)1()(=≤F x F ,即0)()(≤-x g x h ,不符合题意,当0=k 时,)()(,0)()()(x g x h x g x h x F ==-=,符合题意若0>k ,则)(x F 在)1,0(上递减,在),1(+∞上递增,则0)1()(=≥F x F ,即0)()(≥-x g x h ,符合题意,综上所述,0≥k 由0)1()1()(1)()(22≥+++-=--+-=-k x k x k kx x x x h x f 当021<+=k x ,即1-<k ,1)1(2+++-=k x k x y 在),1(+∞递增因为01)0()0(<+=-k h f ,故存在),0(0+∞∈x ,使0)()(<-x h x f ,不符合题意当021=+=k x ,即1-=k 时,0)()(2≥=-x x h x f ,符合题意当021>+=k x ,即1->k 时,则需0)1(4)1(2≤+-+=∆k k ,解得31≤<-k 综上所述,k 的取值范围是[]3,0∈k (3)因为8423)(42224224-≥+--≥-x t t x t t x x 对任意[][]2,2,-⊆∈n m x 恒成立,2422423)(42t t x t t x x +--≥-对任意[][2,2,-⊆∈n m x 恒成立,等价于0)232()(222≥-++-t tx x t x 对任意[][]2,2,-⊆∈n m x 恒成立,故023222≥-++t tx x 对任意[][]2,2,-⊆∈n m x 恒成立,令232)(22-++=t tx x x M ,当102≤≤t ,11,0882<-<->+-=∆t t ,此时)()(x h x f ≥不成立此时7122<+<+≤-t m n ,当212≤≤t ,0882≤+-=∆t 但243223)(484t t x t t x +--≥-对任意[][]22,-⊆∈n m x 恒成立,等价于0)2)(43()(442232≤-++--t t x t t x 对任意[][]2,2,-⊆∈n m x 恒成立,0)2)(43()(442232=-++--t t x t t x 的两根21,x x ,则4823,2421321--=-=+t t x x t t x x 所以8354)(2462122121++-=-+=-=-t t t x x x x x x m n 令λ=2t ,[]2,1∈λ,则83523++-=-λλλm n []),2,1(835)(23∈++-=λλλλλP )13)(3(3103)('2--=+-=λλλλλP 所以[]2,1∈λ,0)('<λP ,)(λP 递减,7)1()(max ==p P λ所以7≤-m n (浙江)已知21≤<a ,函数a x e x f x --=)(,其中...71828.2=e 是自然对数的底数.(1)证明:函数)(x f y =在),0(+∞上有唯一零点;(2)记0x 为函数)(x f y =在),0(+∞上的零点,证明:(i ))1(210-≤≤-a x a (ii ).)1)(1()(00a a e e f x x --≥【解答】(1)因为042)2(,01)0(22>-≥--=<-=e a e f a f ,所以)(x f y =在),0(+∞上存在零点.因为1)('-=x e x f ,所以当0>x 时,0)('>x f ,故函数)(x f 在),0[+∞上单调递增,所以函数)(x f y =在),0(+∞上有唯一零点(2)(i )令1)(1)('),0(121)(2-+=--=≥---=a x f x e x g x x x e x g x x ,)1(2()1(2))1(2()1(2-=---=--a g a a e a f a 由(1)知函数)('x g 在),0[+∞上单调递增,故当0>x 时,0)0(')('=>g x g ,所以函数)(x g 在),0[+∞上单调递增,故.0)0()(=>g x g 由0))1(2(≥-a g 得)(0)1(2))1(2(0)1(2x f a a e a f a =≥---=--,因为)(x f 在),0[+∞上单调递增,故0)1(2x a ≥-令)10(1)(2≤≤---=x x x e x h x 1()1(),10(1)(2-=-≤≤---=a f a h x x x e x h x ,12)('--=x e x h x 令,2)('),10(12)(11-=≤≤--=xx e x h x x e x h 所以x0)2ln ,0(2ln )1,2(ln 1)('1x h 1--0+2-e )(1x h 0↓↑3-e 故当10<<x 时,0)(1<x h 即0)('<x h 在]1,0[单调递减,因此当10≤≤x 时0)0()(=≤h x h 由0)1(≤-a h 得)(01)1(01x f a a e a f a =≤---=--因为)(x f 在),0[+∞上单调递增,故01x a ≤-综上,)1(210-≤≤-a x a (ii )令)1()(',1)1()(--=---=e e x u x e e x u x x ,所以当1>x 时,0)('>x u 故函数0)(>x u 在区间),0[+∞上单调递增,因此0)1()(=≥u x u由a x e x +=00可得20020000)1()2()1()()(0ax e x e a x e a x f x e f x a a x -≥-+-=+=由10-≥a x 得.)1)(1()(00a a e e f x x --≥(山东)已知函数.ln ln )(1a x ae x f x +-=-(1)当e a =时,求曲线)(x f y =再点))(,1(x f 处的切线与两坐标轴围成的三角形的面积;(2)若1)(≥x f ,求a 的取值范围【解答】)(x f 的定义域为.1)('),,0(1x aex f x -=+∞-(1)当e a =时,.1ln )(1+-=-x e x f x 1)1('-=e f ,曲线)(x f y =再点))(,1(x f 处的切线方程为)1)(1()1(--=--x e e y ,即.2)1(+-=x e y 直线2)1(+-=x e y 在x 轴,y 轴上的截距分别为.2,12--e 因此所求三角形的面积为.12--e (2)当10<<a 时,1ln )1(<+=a a f 当1=a 时,.1)(',ln )(11xe xf x e x f x x -=-=--当)1,0(∈x 时,0)('<x f ;当),1(+∞时,)(x f 取最小值,最小值为1)1(=f ,从而.1)(≥x f 当1>a 时,.1ln ln ln )(11≥-≥+-=--x e a x ae x f x x 综上,a 的取值范围是),1[+∞二级结论.,ln 1,1ex e x x x e xx ≥≥-+≥。
2020年高考数学 大题专练 导数综合问题(20题含答案详解)

2020年高考数学大题专练导数综合问题1.已知函数f(x)=ax3+bx+4,当x=-2时,函数f(x)有极大值8.(1)求函数f(x)的解析式;(2)若不等式f(x)+mx>0在区间[1,3]上恒成立,求实数m的取值范围.2.设函数f(x)=ln x-2mx2-n(m,n∈R).(1)讨论f(x)的单调性;(2)若f(x)有最大值-ln 2,求m+n的最小值.3.已知函数f(x)=(x-1)e x+1,g(x)=e x+ax-1(其中a∈R,e为自然对数的底数,e=2.718 28…).(1)求证:函数f(x)有唯一零点;(2)若曲线g(x)=e x+ax-1的一条切线方程是y=2x,求实数a的值.4.已知函数f(x)=ln x+ax.(1)讨论函数f(x)的单调性;(2)当a=1时,函数g(x)=f(x)-x+12x-m有两个零点x1,x2,且x1<x2.求证:x1+x2>1.5.已知函数f(x)=1-ln x x ,g(x)=ae e x +1x-bx ,若曲线y=f(x)与曲线y=g(x)的一个公共点是 A(1,1),且在点A 处的切线互相垂直.(1)求a ,b 的值;(2)证明:当x≥1时,f(x)+g(x)≥2x.6.已知函数f(x)=(x -1)e x +1,x ∈[0,1].(1)证明:f(x)≥0;(2)若a<e x -1x<b 对任意的x ∈(0,1)恒成立,求b -a 的最小值.7.已知f(x)=12x 2-a 2ln x ,a>0. (1)若f(x)≥0,求a 的取值范围;(2)若f(x 1)=f(x 2),且x 1≠x 2,证明:x 1+x 2>2a.8.已知函数f(x)=ln x +a x,a ∈R. (1)讨论函数f(x)的单调性;(2)当a>0时,证明f(x)≥2a -1a.9.已知a 为实数,函数f(x)=aln x +x 2-4x.(1)若x=3是函数f(x)的一个极值点,求实数a 的取值;(2)设g(x)=(a-2)x ,若∃x 0∈⎣⎢⎡⎦⎥⎤1e ,e ,使得f(x 0)≤g(x 0)成立,求实数a 的取值范围.10.已知函数f(x)=2a -x 2e x (a ∈R). (1)求函数f(x)的单调区间;(2)若∀x ∈[1,+∞),不等式f(x)>-1恒成立,求实数a 的取值范围.11.设函数f(x)=-x 2+ax +ln x(a ∈R).(1)当a=-1时,求函数f(x)的单调区间;(2)若函数f(x)在⎣⎢⎡⎦⎥⎤13,3上有两个零点,求实数a 的取值范围.12.设函数f(x)=e 2x -aln x.(1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f (x)≥2a+aln 2a.13.已知函数f(x)=ae x -ln x -1.(1)设x=2是f(x)的极值点,求a ,并求f(x)的单调区间;(2)证明:当a≥1e时,f (x)≥0.14.设函数f(x)=e x -x 2-ax -1(e 为自然对数的底数),a∈R.(1)证明:当a <2-2ln 2时,f ′(x)没有零点;(2)当x >0时,f(x)+x≥0恒成立,求a 的取值范围.15.已知函数f(x)=lnx-mx2,g(x)=0.5mx2+x,mϵR,令F(x)=f(x)+g(x).(1)求函数f(x)的单调区间;(2)若关于x的不等式F(x)≤mx-1恒成立,求整数m的最小值.16.已知f(x)=(x3-6x2+3x+t)ex.(1)当t=-3时,求函数f(x)的单调递增区间.(2)如果f(x)有三个不同的极值点,求t的取值范围.17.已知y=f(x),f(x)=x3+ax2-a2x+2.(1)若a=1,求曲线在点(1,f(1))处的切线方程;(2)若a<0, 求函数f(x)的单调区间;(3)若不等式2xlnx≤f/(x)+a2+1恒成立,求实数a的取值范围.18.已知函数.(1)若函数f(x)在区间[2,3]上不是单调函数,求实数a的取值范围;(2)是否存在实数a>0,使得函数y=f(x)图像与直线y=2a有两个交点?若存在,求出所有a的值;若不存在,请说明理由.19.设函数f(x)=ex-1-x-ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0恒成立,求a的取值范围.20.已知函数f(x)=xlnx+ax+1-a.(1)求证:对任意实数a,都有[f(x)]min≤1;(2)若a=2,是否存在整数k,使得在x∈(2,+∞)上,恒有f(x)>(k+1)x-2k-1成立?若存在,请求出k的最大值;若不存在,请说明理由.(e=2.71828)答案详解1.解:(I )∵当时,函数有极大值8 ∴,解得∴所以函数的解析式为. (II )∵不等式在区间上恒成立∴在区间上恒成立 令,则由解得,解得所以当时,单调递增,当时,单调递减所以对,都有,所以,即实数的取值范围是.2.解:(1)函数f(x)的定义域为(0,+∞),f′(x)=1x -4mx=1-4mx2x,当m≤0时,f′(x)>0,∴f(x)在(0,+∞)上单调递增;当m>0时,令f′(x)>0,得0<x<m 2m ,令f′(x)<0,得x>m2m ,∴f(x)在⎝⎛⎭⎪⎫0,m 2m 上单调递增,在⎝ ⎛⎭⎪⎫m 2m ,+∞上单调递减. (2)由(1)知,当m≤0时,f(x)在(0,+∞)上单调递增,无最大值.当m>0时,f(x)在⎝ ⎛⎭⎪⎫0,m 2m 上单调递增,在m 2m ,+∞上单调递减.∴f(x)max =f ⎝⎛⎭⎪⎫m 2m =ln m 2m -2m·14m -n=-ln 2-12ln m-12-n=-ln 2, ∴n=-12ln m-12,∴m +n=m-12ln m-12.令h(x)=x-12ln x-12(x>0),则h′(x)=1-12x =2x -12x,由h′(x)<0,得0<x<12;由h′(x)>0,得x>12,∴h(x)在⎝ ⎛⎭⎪⎫0,12上单调递减,在⎝ ⎛⎭⎪⎫12,+∞上单调递增,∴h(x)min =h ⎝ ⎛⎭⎪⎫12=12ln 2,∴m +n 的最小值为12ln 2.3.解:(1)证明:因为f(x)=(x-1)e x+1(x∈R),所以f′(x)=xe x,由f′(x)=xe x =0,得x=0,f′(x)=xe x >0时,x>0;f′(x)=xe x<0时,x<0;所以f(x)=(x-1)e x+1在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以f(x)=(x-1)e x+1的最小值为f(0)=0,即函数f(x)=(x-1)e x+1有唯一零点.(2)设曲线g(x)=e x+ax-1与切线y=2x 相切于点(x 0,y 0),因为g(x)=e x +ax-1,所以g′(x)=e x+a ,所以⎩⎪⎨⎪⎧ex 0+a =2,y 0=ex 0+ax 0-1,y 0=2x 0,消去a ,y 0,得(x 0-1)ex 0+1=0,由(1)知方程(x 0-1)ex 0+1=0有唯一根x 0=0,则e 0+a=2,所以a=1. 4.解:(1)f′(x)=1x+a ,x ∈(0,+∞).①当a≥0时,f′(x)>0恒成立,∴f(x)在(0,+∞)上单调递增;②当a<0时,令f′(x)=0,解得x=-1a,令f′(x)>0,得0<x<-1a ,令f′(x)<0,得x>-1a,∴f(x)在0,-1a 上单调递增,在-1a,+∞上单调递减.(2)证明:当a=1时,g(x)=ln x +12x-m.由已知得ln x 1+12x 1=m ,ln x 2+12x 2=m.两式相减得ln x 1x 2+12x 1-12x 2=0,整理得x 1x 2=x 1-x 22lnx 1x 2,∴x 1=x 1x 2-12ln x 1x 2,x 2=1-x 2x 12ln x 1x 2.∴x 1+x 2=x 1x 2-x 2x 12lnx 1x 2,令t=x 1x 2∈(0,1),h(t)=t -1t -2ln t.则h′(t)=1+1t 2-2t =t 2-2t +1t 2>0, ∴h(t)在(0,1)上单调递增.∴h(t)<h(1)=0,即t -1t <2ln t ,又∵ln t<0,∴t -1t 2ln t>1.∴x 1+x 2>1. 5.解:(1)f′(x)=ln x -1x 2,g′(x)=-ae 1-x-1x2-b. 由⎩⎪⎨⎪⎧g (1)=1,g′(1)·f′(1)=-1,得⎩⎪⎨⎪⎧a =b ,a +b =-2,所以a=b=-1.(2)证明:由(1)可知g(x)=-e e x +1x+x.f(x)+g(x)≥2x ⇔1-ln x x -e 1-x +1x +x≥2x ⇔x -ln x≥ex ex +1-x 2.记h(x)=x -ln x ,则h′(x)=x -1x ≥0,所以h(x)在[1,+∞)上单调递增,因此h(x)≥h(1)=1.记φ(x)=ex ex ,则φ′(x)=(1-x)e 1-x≤0,所以φ(x)在[1,+∞)上单调递减,因此φ(x)≤φ(1)=1.而当x≥1时,1-x 2≤0,所以xe 1-x +1-x 2≤x-ln x.综上所述,当x≥1时,f(x)+g(x)≥2x.6.解:(1)证明:因为f ′(x)=xe x≥0,即f(x)在[0,1]上单调递增, 所以f(x)≥f(0)=0,即结论成立.(2)令g(x)=e x -1x ,则g ′(x)=x -1e x +1x2>0,x ∈(0,1), 所以当x ∈(0,1)时,g(x)<g(1)=e -1,要使e x-1x <b ,只需b≥e-1.要使e x-1x >a 成立,只需e x-ax -1>0在x ∈(0,1)恒成立,令h(x)=e x -ax -1,x ∈(0,1),则h ′(x)=e x-a.由x ∈(0,1),得e x∈(1,e).①当a≤1时,h ′(x)>0,此时x ∈(0,1),有h(x)>h(0)=0成立,所以a≤1满足条件; ②当a≥e 时,h′(x)<0,此时x ∈(0,1),有h(x)<h(0)=0,不符合题意,舍去; ③当1<a<e 时,令h′(x)=0,得x=ln a .当x ∈(0,ln a)时,h′(x)<0,即x ∈(0,ln a)时,h(x)<h(0)=0,不符合题意,舍去. 综上,a≤1.又b≥e-1,所以b -a 的最小值为e -2. 7.解:(1)f′(x)=x -a 2x =x +a x -ax(x>0).当x ∈(0,a)时,f′(x)<0,f(x)单调递减; 当x ∈(a ,+∞)时,f′(x)>0,f(x)单调递增.当x=a 时,f(x)取最小值f(a)=12a 2-a 2ln a.令12a 2-a 2ln a≥0,解得0<a< e. 故a 的取值范围是(0,e].(2)证明:由(1)知,f(x)在(0,a)上单调递减,在(a ,+∞)上单调递增, 不失一般性,设0<x 1<a<x 2<2a ,则2a-x 2<a.要证x 1+x 2>2a ,即x 1>2a-x 2,则只需证f(x 1)<f(2a-x 2). 因为f(x 1)=f(x 2),则只需证f(x 2)<f(2a-x 2). 设g(x)=f(x)-f(2a-x),a≤x≤2a.则g′(x)=x -a 2x +2a-x-a 22a -x =-2a a -x2x 2a -x≤0,所以g(x)在[a,2a)上单调递减,从而g(x)≤g(a)=0. 又a<x 2<2a ,于是g(x 2)=f(x 2)-f(2a-x 2)<0, 即f(x 2)<f(2a-x 2). 因此x 1+x 2>2a. 8.解:(1)f′(x)=1x -a x 2=x -ax2(x>0).当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增.当a>0时,若x>a ,则f′(x)>0,函数f(x)在(a ,+∞)上单调递增; 若0<x<a ,则f′(x)<0,函数f(x)在(0,a)上单调递减. (2)证明:由(1)知,当a>0时,f(x)min =f(a)=ln a +1.要证f(x)≥2a -1a ,只需证ln a +1≥2a -1a ,即证ln a +1a-1≥0.令函数g(a)=ln a +1a -1,则g′(a)=1a -1a 2=a -1a2(a>0),当0<a<1时,g′(a)<0,当a>1时,g′(a)>0,所以g(a)在(0,1)上单调递减,在(1,+∞)上单调递增,所以g(a)min =g(1)=0.所以ln a +1a-1≥0恒成立,所以f(x)≥2a -1a.9.解:(1)函数f(x)的定义域为(0,+∞),f′(x)=a x +2x-4=2x 2-4x +ax.∵x=3是函数f(x)的一个极值点, ∴f′(3)=0,解得a=-6.经检验a=-6时,x=3是函数f(x)的一个极小值点,符合题意,∴a=-6.(2)由f(x 0)≤g(x 0),得(x 0-ln x 0)a≥x 20-2x 0,记F(x)=x-ln x(x>0),∴F′(x)=x -1x(x>0),∴当0<x<1时,F′(x)<0,F(x)单调递减; 当x>1时,F′(x)>0,F(x)单调递增.∴F(x)≥F(1)=1>0,∴a≥x 20-2x 0x 0-ln x 0.记G(x)=x 2-2x x -ln x ,x ∈⎣⎢⎡⎦⎥⎤1e ,e , ∴G′(x)=2x -2x -ln x -x -2x -1x -ln x 2=x -1x -2ln x +2x -ln x2. ∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,∴2-2ln x=2(1-ln x)≥0, ∴x-2ln x +2>0,∴x ∈⎝ ⎛⎭⎪⎫1e ,1时,G′(x)<0,G(x)单调递减; x ∈(1,e)时,G′(x)>0,G(x)单调递增. ∴G(x)min =G(1)=-1,∴a≥G(x)min =-1. 故实数a 的取值范围为[-1,+∞). 10.解:(1)f′(x)=x 2-2x -2aex, 当a≤-12时,x 2-2x-2a≥0,f′(x)≥0,∴函数f(x)在(-∞,+∞)上单调递增.当a>-12时,令x 2-2x-2a=0,解得x 1=1-2a +1,x 2=1+2a +1.∴函数f(x)的单调递增区间为(-∞,1-2a +1)和(1+2a +1,+∞), 单调递减区间为(1-2a +1,1+2a +1).(2)f(x)>-1⇔2a -x 2e x >-1⇔2a>x 2-e x,由条件知,2a>x 2-e x对∀x≥1恒成立.令g(x)=x 2-e x ,h(x)=g′(x)=2x -e x ,∴h′(x)=2-e x.当x ∈[1,+∞)时,h′(x)=2-e x≤2-e<0,∴h(x)=g′(x)=2x -e x在[1,+∞)上单调递减,∴h(x)=2x-e x≤2-e<0,即g′(x)<0,∴g(x)=x 2-e x在[1,+∞)上单调递减,∴g(x)=x 2-e x≤g(1)=1-e ,故若f(x)>-1在[1,+∞)上恒成立, 则需2a>g(x)max =1-e ,∴a>1-e 2,即实数a 的取值范围是⎝ ⎛⎭⎪⎫1-e 2,+∞. 11.解:(1)函数f(x)的定义域为(0,+∞),当a=-1时,f′(x)=-2x-1+1x =-2x 2-x +1x,令f′(x)=0,得x=12(负值舍去),当0<x<12时,f′(x)>0;当x>12时,f′(x)<0.∴f(x)的单调递增区间为⎝ ⎛⎭⎪⎫0,12,单调递减区间为( 12,+∞ ). (2)令f(x)=-x 2+ax +ln x=0,得a=x-ln x x .令g(x)=x-ln x x ,其中x ∈⎣⎢⎡⎦⎥⎤13,3,则g′(x)=1-1-ln x x 2=x 2+ln x -1x2,令g′(x)=0,得x=1, 当13≤x<1时,g′(x)<0;当1<x≤3时,g′(x)>0, ∴g(x)的单调递减区间为⎣⎢⎡⎭⎪⎫13,1,单调递增区间为(1,3], ∴g(x)min =g(1)=1,∵函数f(x)在⎣⎢⎡⎦⎥⎤13,3上有两个零点,g ⎝ ⎛⎭⎪⎫13=3ln 3+13,g(3)=3-ln 33, 3ln 3+13>3-ln 33,∴实数a 的取值范围是⎝ ⎛⎦⎥⎤1,3-ln 33. 12.解:(1)f(x)的定义域为(0,+∞),f′(x)=2e 2x-a x(x >0).当a≤0时,f ′(x)>0,f ′(x)没有零点;当a >0时,设u(x)=e 2x,v(x)=-a x,因为u(x)=e 2x在(0,+∞)上单调递增,v(x)=-a x在(0,+∞)上单调递增,所以f′(x)在(0,+∞)上单调递增.又f′(a)>0,当b 满足0<b <a 4且b <14时,f ′(b)<0,故当a >0时,f ′(x)存在唯一零点.(2)证明:由(1)可设f′(x)在(0,+∞)上的唯一零点为x 0, 当x∈(0,x 0)时,f ′(x)<0;当x∈(x 0,+∞)时,f ′(x)>0. 故f(x)在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x=x 0时,f(x)取得最小值,最小值为f(x 0).由于2e2x 0-a x 0=0,所以f(x 0)=a 2x 0+2ax 0+aln 2a ≥2a +aln 2a.故当a >0时,f (x)≥2a+aln 2a.13.解:(1)f(x)的定义域为(0,+∞),f ′(x)=ae x-1x.由题设知,f ′(2)=0,所以a=12e2.从而f(x)=12e 2e x -ln x -1,f ′(x)=12e 2e x -1x.当0<x <2时,f ′(x)<0;当x >2时,f ′(x)>0. 所以f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明:当a≥1e 时,f (x)≥exe -ln x -1.设g(x)=e x e -ln x -1,则g′(x)=e x e -1x.当0<x <1时,g ′(x)<0;当x >1时,g ′(x)>0.所以x=1是g(x)的最小值点. 故当x >0时,g (x)≥g(1)=0.因此,当a≥1e时,f (x)≥0.14.解:(1)证明:∵f′(x)=e x -2x -a ,令g(x)=f′(x),∴g ′(x)=e x-2. 令g′(x)<0,解得x <ln 2;令g′(x)>0,解得x >ln 2,∴f ′(x)在(-∞,ln 2)上单调递减,在(ln 2,+∞)上单调递增, ∴f ′(x)min =f′(ln 2)=2-2ln 2-a. 当a <2-2ln 2时,f ′(x)min >0,∴f ′(x)的图象恒在x 轴上方,∴f ′(x)没有零点.(2)当x >0时,f(x)+x≥0恒成立,即e x -x 2-ax +x -1≥0恒成立,∴ax ≤e x -x 2+x -1,即a≤e x x -x -1x+1恒成立.令h(x)=e x x -x -1x +1(x >0),则h′(x)=(x -1)(e x-x -1)x2. 当x >0时,e x-x -1>0恒成立,令h′(x)<0,解得0<x <1,令h′(x)>0,解得x >1, ∴h(x)在(0,1)上单调递减,在(1,+∞)上单调递增, ∴h(x)min =h(1)=e -1.∴a 的取值范围是(-∞,e -1]. 15.解:16.解:19.解:(1)a=0时,f(x)=e x-1-x,f′(x)=e x-1.当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.故f(x)在(-∞,0)单调减少,在(0,+∞)单调增加(2)f′(x)=e x-1-2ax.由(1)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x-2ax=(1-2a)x,从而当1-2a≥0,即a≤0.5时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)得e-x>1-x(x≠0),从而当a>时,f′(x)<e x-1+2a(e-x-1)=e-x(e x-1)(e x-2a),故当x∈(0,ln2a)时, f′(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0,综上可得a的取值范围为(-∞,0.5].20.解:(1)证明:由已知易得,所以令得:显然,时,<0,函数f(x)单调递减;时,>0,函数f(x)单调递增,所以,令,则由得,时,>0,函数t()单调递增;时,<0,函数t()单调递减,所以,即结论成立.(2)由题设化简可得,令,所以由=0得①若,即时,在上,有,故函数单调递增所以②若,即时,在上,有,故函数在上单调递减,在上,有.故函数在上单调递增,所以,在上,故欲使,只需即可令, 由得所以,时,,即单调递减又,故。
高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围. 2.已知函数()ln f x x =.(1)当()()sin 1g x x =-,求函数()()()T x f x g x =+在()0,1的单调性; (2)()()12h x f x b x=+-有两个零点1x ,2x ,且12x x <,求证:121x x +>. 3.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围.4.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数) 5.求下列函数的导数: (1)2cos x xy x -=; (2)()e 1cos 2x x y x =+-; (3)()3log 51y x =-.6.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.7.已知函数()323f x x ax x =-+.(1)若3x =是()f x 的极值点,求()f x 在[]1,a 上的最大值和最小值;(2)若()f x 在[)1,+∞上是单调递增的,求实数a 的取值范围.8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.10.已知函数()222(0)e xmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224e f x f x -≤恒成立,求实数m 的取值范围.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+;②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数,所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)单调递增 (2)证明见解析 【解析】 【分析】(1)直接求导,判断出导数大于0,即可得到单调性;(2)直接由1x ,2x 是函数()1ln 2h x x b x =+-的两个零点得到1212122ln x xx x x x -=,分别解出1211212ln x xx x x -=,2121212ln xx x x x -=,再换元令12x t x =构造函数()12ln l t t t t=--,求导确定单调性即可求解. (1)由题意,函数()()sin 1ln T x x x =-+,则()()1cos 1T x x x'=--+,又∵()0,1x ∈,∴11x>,()()10,1,cos 11x x -∈-<,∴()0T x '>,∴()T x 在(0,1)上单调递增. (2)根据题意,()()1ln 02h x x b x x =+->, ∵1x ,2x 是函数()1ln 2h x x b x=+-的两个零点,∴111ln 02x b x +-=,221ln 02x b x +-=. 两式相减,可得122111ln22x x x x =-,即112221ln 2x x x x x x -=, ∴1212122ln x x x x x x -=,则1211212ln x x x x x -=,2121212ln xx x x x -=. 令12x t x =,()0,1t ∈,则1211112ln 2ln 2ln t t t t x x t t t---+=+=.记()12ln l t t t t =--,()0,1t ∈,则()()221t l t t-'=. 又∵()0,1t ∈,∴()0l t '>恒成立,∴()l t 在()0,1上单调递增,故()()1l t l <,即12ln 0t t t --<,即12ln t t t-<.因为ln 0t <,可得112ln t t t->,∴121x x +>.【点睛】本题关键点在于对双变量的处理,通过对111ln 02x b x +-=,221ln 02x b x +-=作差,化简得到1212122ln x x x x xx -=, 分别得到12,x x 后,换元令12x t x =,这样就转换为1个变量,再求导确定单调性即可求解. 3.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立,因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞.4.(1)(21y x =-+(2)(ⅰ)22e ,-;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解;(2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x x x x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>,所以函数()g x 在10,4⎛⎫⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增,又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减, 所以,()()01r x r <=,所以不等式()21e 011x xx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a-<<<-,所以βα-> 所以21x x->综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii)小题证明的关键是,利用1e x x +≤,进行放缩可得1x 21x x -<;再利用()21e 011x xx x +<<<-,进行放缩可得()()1201,21ii i ixax f x i x +'⋅+->==-,从而构造二次函数()(222m x ax ax =-++++21x x ->5.(1)'y ()31sin 2cos x x xx --=;(2)'y ()e 1cos sin 2ln 2x xx x =+--;(3)'y ()551ln 3x =-⋅.【解析】 【分析】根据导数的运算法则,对(1)(2)(3)逐个求导,即可求得结果. (1)因为2cos x x y x -=,故'y ()()()243sin 12cos 1sin 2cos x x x x x x x x x x------==. (2)因为()e 1cos 2x x y x =+-,故'y ()e 1cos sin 2ln 2x xx x =+--.(3)因为()3log 51y x =-,故'y ()()155?51ln 351ln 3x x =⨯=--⋅. 6.(1)()3232f x x x =+-(2)()2,2- 【解析】 【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围.(1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-.当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值. 因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >,由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减, 则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-. 7.(1)最大值为15,最小值为9- (2)3a ≤ 【解析】 【分析】(1)由()30f '=可求得实数a 的值,再利用函数的最值与导数的关系可求得函数()f x 在[]1,a 上的最大值和最小值;(2)分析可知()23230f x x ax '=-+≥对任意的1≥x 恒成立,利用参变量分离法结合基本不等式可求得实数a 的取值范围. (1)解:因为()323f x x ax x =-+,则()2323f x x ax =-+',则()33060f a '=-=,解得5a =,所以,()3253f x x x x =-+,则()()()23103313f x x x x x '=-+=--,列表如下:所以,min 39f x f ==-,因为11f =-,515f =,则max 515f x f ==. (2)解:由题意可得()23230f x x ax '=-+≥对任意的1≥x 恒成立,即312a x x⎛⎫≤+ ⎪⎝⎭,由基本不等式可得313322x x ⎛⎫+≥⨯ ⎪⎝⎭,当且仅当1x =时,等号成立,故3a ≤.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】 【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元. 9.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】 【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调性和极值. (1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+, 又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-. (2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞,令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e . 又()22222e e ln e 3e 22ef =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值. 【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.10.(1)单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦ (2)20,4e ⎛⎤ ⎥-⎝⎦【解析】 【分析】(1)先对函数求导,然后由导数的正负可求出函数的单调区间, (2)由函数()f x 在[]1,2上为增函数,求出函数的最值,则()()max min 24e 2()()e m g m f x f x -+=-=,然后将问题转化为()224e 24e e m -+≥,从而可求出实数m 的取值范围. (1)()()()()221422(0)e e xxmx m x mx x f x m -+-+-+-=>'=令()0f x '=,解得2x m =-或2x =,且22m-< 当2,x m ∞⎛⎤∈-- ⎥⎝⎦时,()0f x '≤,当2,2x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>,当[)2,x ∞∈+时,()0f x '≤即()f x 的单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦(2)由(1)知,当[]0,1,2m x >∈时,()0f x '>恒成立 所以()f x 在[]1,2上为增函数, 即()()max min242()2,()1e em mf x f f x f +====. ()()12f x f x -的最大值为()()max min 24e 2()()e m g m f x f x -+=-=()()1224e f x f x ⎡⎤≥-⎣⎦恒成立()224e 24e e m -+∴≥ 即24em ≤-, 又0m > 20,4e m ⎛⎤∴∈ ⎥-⎝⎦ 故m 的取值范围20,4e ⎛⎤ ⎥-⎝⎦。
导数高考大题

函数与导数综合【2020年】1.(2020·新课标Ⅰ)已知函数2()e x f x ax x =+-. (1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 2.(2020·新课标Ⅱ)已知函数f (x )=sin 2x sin2x . (1)讨论f (x )在区间(0,π)的单调性; (2)证明:33()8f x ≤; (3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22nx ≤34nn .3.(2020·新课标Ⅲ)设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 4.(2020·北京卷)已知函数2()12f x x =-. (Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值. 5.(2020·江苏卷)某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E '为多少米时,桥墩CD 与EF 的总造价最低?6.(2020·江苏卷)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; (2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围;(3)若()422242() 2() (48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<,,,[] , D m n =⊆⎡⎣,求证:n m -≤7.(2020·山东卷)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.8.(2020·天津卷)已知函数3()ln ()f x x k x k R =+∈,()f x '为()f x 的导函数. (Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程; (ii )求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅱ)当3k -时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.9.(2020·浙江卷)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点; (Ⅱ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:(ⅰ0x ≤≤; (ⅱ)00(e )(e 1)(1)x x f a a ≥--.【2019年】8.【2019年高考全国Ⅰ卷】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点.9.【2019年高考全国Ⅱ卷】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e x y =的切线. 10.【2019年高考全国Ⅲ卷】已知函数32()2f x x ax b =-+.(1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.11.【2019年高考北京】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ).当M (a )最小时,求a 的值.12.【2019年高考天津】设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242n n ππ⎛⎫π+π+ ⎪⎝⎭内的零点,其中n ∈N ,证明20022sin c s e o n n n x x x -πππ+-<-.13.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x >(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)e x ∈+∞均有(),2xf x a ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.14.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值; (3)若0,01,1a b c =<=,且f (x )的极大值为M ,求证:M ≤427. 【2018年】20. (2018年浙江卷)已知函数f (x )=−ln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 21. (2018年天津卷)已知函数,,其中a >1.(I )求函数的单调区间;(II )若曲线在点处的切线与曲线在点处的切线平行,证明;(III )证明当时,存在直线l ,使l 是曲线的切线,也是曲线的切线22. (2018年北京卷)设函数=[].(Ⅰ)若曲线y= f (x )在点(1,)处的切线与轴平行,求a ;(Ⅱ)若在x =2处取得极小值,求a 的取值范围.23. (2018年江苏卷)记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S 点”.(1)证明:函数与不存在“S 点”; (2)若函数与存在“S 点”,求实数a 的值; (3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S 点”,并说明理由.24. (2018年江苏卷)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧(P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC 与MN 所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大. 25. (2018年全国I 卷理数)已知函数.(1)讨论的单调性; (2)若存在两个极值点,证明:26. (2018年全国Ⅲ卷理数)已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.27. (2018年全国Ⅱ卷理数)已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求.【2017年】4.【2017课标1,理21】已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.5.【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥。
完整版)导数测试题(含答案)

完整版)导数测试题(含答案)1.已知函数y=f(x)=x^2+1,则在x=2,Δx=0.1时,Δy的值为0.41.2.函数f(x)=2x^2-1在区间(1,1+Δx)上的平均变化率为4+4Δx。
3.设f′(x)存在,则曲线y=f(x)在点(x,f(x))处的切线与x 轴相交但不垂直。
4.曲线y=-1/x在点(1,-1)处的切线方程为y=x-2.5.在曲线y=x^2上,且在该点处的切线倾斜角为π/4的点为(2,4)。
6.已知函数f(x)=1/x,则f′(-3)=-1/9.7.函数f(x)=(x-3)ex的单调递增区间是(2,∞)。
8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的充要条件。
9.函数f(x)在开区间(a,b)内的极小值点有2个。
10.函数f(x)=-x^2+4x+7,在x∈[3,5]上的最大值和最小值分别是f(3)和f(5)。
11.函数f(x)=x^3-3x^2-9x+k在区间[-4,4]上的最小值为-71.12.速度为零的时刻是0,1,4秒末。
13.已知函数 $y=f(x)=ax^2+2x$,且 $f'(1)=4$,则 $a=3$。
14.已知函数 $y=ax^2+b$ 在点 $(1,3)$ 处的切线斜率为 $2$,则 $b=a+1$。
15.函数 $y=x e^x$ 的最小值为 $-1/e$。
16.有一长为 $16$ m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是 $64$ $m^2$。
17.(1) $y'=6x+\cos x$;(2) $y'=\dfrac{1}{(1+x)^2}$;(3)$y'=\dfrac{1}{x}-e^x$。
18.(1) 解方程 $x^2+4=x+10$ 得 $x=3$ 或 $x=-2$,故交点为 $(3,13)$ 或 $(-2,0)$;(2) 在交点 $(3,13)$ 处,抛物线的斜率为 $6$,故该点处的切线方程为 $y=6x-5$。
(完整版)高考导数专题(含详细解答)

导数及其应用导数的运算1. 几种常有的函数导数:①、 c( c 为常数); ②、( x n )( n R ); ③、 (sin x) = ;④、 (cos x) =;⑤、( a x ); ⑥、 ( ex); ⑦、 (log a x ) ; ⑧、 (ln x ).2. 求导数的四则运算法规:(u v)u v ; (uv) u vu'u v ' uv 'u ( v0 ) 注:① u, v 必定是可导函数 .uv ; (u)vuvvvv 223. 复合函数的求导法规:f x ( ( x))f (u) ? ( x) 或 y xy u ? u x一、求曲线的切线(导数几何意义)导数几何意义: f (x 0 ) 表示函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 的斜率;函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 方程为 y f (x 0 )f (x 0 )(x x 0 )1. 曲线在点 处的切线方程为( )。
A:B:C:D:答案详解 B 正确率 : 69%, 易错项 : C解析 :本题主要观察导数的几何意义、导数的计算以及直线方程的求解。
对 求导得,代入 得 即为切线的斜率, 切点为,因此切线方程为即。
故本题正确答案为B 。
2.3. 设函数f ( x) g( x) x2,曲线 y g(x) 在点 (1,g(1)) 处的切线方程为 y 2x 1,则曲线 y f ( x) 在点 (1, f (1))处切线的斜率为( )A .41C.21B . D .4 24. 已知函数 f ( x) 在R上满足 f ( x) 2 f (2 x) x28x 8,则曲线y f (x) 在点 (1, f (1)) 处的切线方程是()A . y2x 1 B. y x C. y3x 2 D. y2x 3变式二:5. 在平面直角坐标系xoy 中,点P在曲线C : y x310 x 3 上,且在第二象限内,已知曲线 C 在点 P 处的切线的斜率为 2,则点 P 的坐标为.6. 设曲线 yx n 1 (n N * ) 在点( 1,1)处的切线与 x 轴的交点的横坐标为 x n ,令 a n lg x n ,则 a 1 a 2 L a 99 的值为.7. 已知点 P 在曲线 y=4 上, 为曲线在点 P 处的切线的倾斜角,则的取值范围是e x1, 3]D 、 [ 3,A 、 [0, )B 、 [, ) C 、 ( )44 22 4 4变式三:8. 已知直线y =x+ 1 与曲线y ln( x a) 相切,则α的值为( )A . 1 B. 2 C. - 1 D. - 29. 若存在过点 (1,0)的直线与曲线 yx 3 和 y ax 2 15 x 9 都相切,则 a 等于4( )A . 1或 -25B . 1或21C . 7 或 - 25D .7或 76444 6441 110. 若曲线 yx 2 在点 a, a 2 处的切线与两个坐标围成的三角形的面积为18,则 aA 、64B 、 32C 、 16D 、811. (本小题满分 13 分) 设 f ( x)ae x 1b( a 0) . ( I )求 f ( x) 在 [0, ) 上的最小值;ae x3x ;求 a,b 的值 .( II )设曲线 yf ( x) 在点 (2, f (2)) 的切线方程为 y212. 若曲线 f x ax2Inx 存在垂直于y轴的切线,则实数 a 的取值范围是.二、求单调性或单调区间1、利用导数判断函数单调性的方法:设函数y f (x) 在某个区间 D 内可导,若是 f ( x) >0,则y f (x) 在区间D上为增函数;若是 f ( x) <0,则y f (x) 在区间 D 上为减函数;若是 f ( x) =0恒成立,则y f (x) 在区间 D 上为常数 .2、利用导数求函数单调区间的方法:不等式 f ( x) >0的解集与函数y f (x) 定义域的交集,就是y f ( x) 的增区间;不等式 f ( x) <0的解集与函数y f (x) 定义域的交集,就是y f (x) 的减区间 .1、函数f (x) ( x 3)e x的单调递加区间是( )A . ( ,2) B. (0,3) C. (1,4) D . (2, )2. 函数f (x)x315x233x 6 的单调减区间为.3. 已知函数,,谈论的单调性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数大题
1 .已知函数()b ax x x f ++=2
3的图象在点P (1,0)处的切线与直线03=+y x 平行。 (1)求常数a 、b 的值;
(2)求函数()x f 在区间[]t ,0上的最小值和最大值(0>t )。
2 .已知函数R a ax x x f ∈+-=,)(
3 (1)若)(x f 在),1[+∞上为单调减函数,求实数a 取值范围;
(2)若,12=a 求)(x f 在[-3,0]上的最大值和最小值。
3 .设函数x e x x f 22
1)(=. (1)求函数)(x f 的单调区间;
(2)若当]2,2[-∈x 时,不等式m x f <)(恒成立,求实数m 的取值范围.
4 .已知函数.),2,1()(3)(3
l P P x f y x x x f 作直线过点上一点及-=-= (1)求使直线)(x f y l =和相切且以P 为切点的直线方程;
(2)求使直线)(x f y l =和相切且切点异于P 的直线方程)(x g y =。
()I 求()f x 的单调区间;
()II 若()f x 在1x =-处取得极大值,直线y=m 与()y f x =的图象有三个不同的交点,求m 的取值范围。
7 .已知函数2
()ln f x a x bx =-图象上一点(2,(2))P f 处的切线方程为22ln 23++-=x y . (Ⅰ)求b a ,的值;
(Ⅱ)若方程()f x m +=m 的取值范围(其中e 为自然对数的底数);
8 .已知函数21
2
()()ln f x a x x =-+.(R a ∈) (1)当a =1时,求()f x 在区间[1,e ]上的最大值和最小值;
(2)若在区间(1,+∞)上,函数()f x 的图象恒在直线2y ax =下方,求a 的取值范围。
10.已知函数2
()sin 2(),()()2f x x b x b R F x f x =+-∈=+,且对于任意实数x ,恒有(5)(5)F x F x -=-。 ⑴求函数)(x f 的解析式;
⑵已知函数()()2(1)ln g x f x x a x =+++在区间(0,1)上单调,求实数a 的取值范围;
⑶讨论函数21()ln(1)()2
h x x f x k =+-
-零点的个数?
( I )当1-=a 时,求函数)(x f 的单调区间;
( II )若函数)(x f 的图象与直线ax y =只有一个公共点,求实数b 的取值范围.
13.已知函数).()(2
a x x x f += (1)当a =1时,求)(x f 的极值;
(2)当0≠a 时,求)(x f 的单调区间.
14.(本小题共13分)
已知函数))0(,0(3
1)(23f d cx bx x x f 在点++-=处的切线方程为.2=y (I)求c 、d 的值;
(II)求函数f (x )的单调区间。
15.已知函数2
()(1)f x x x =+ . (Ⅰ)求函数()f x 的单调区间与极值;
(Ⅱ)设2
()g x ax =,若对于任意(0,)x ∈+∞,()()f x g x ≥恒成立,求实数a 的取值范围.
16.已知函数c bx ax x x f +++=2
3)(,412)(-=x x g , 若0)1(=-f ,且)(x f 的图象在点))1(,1(f 处的切线方程为)(x g y =. (Ⅰ)求实数c b a ,,的值;
(Ⅱ)求函数)()()(x g x f x h -=的单调区间.
17.设函数x x a ax x f 12)36(2)(23++-=()R a ∈.
(Ⅰ)当1=a 时,求函数)(x f 的极大值和极小值;
(Ⅱ)若函数)(x f 在区间)1,(-∞上是增函数,求实数a 的取值范围.
18.已知函数32
()(,f x x ax b a b =-++∈R). (Ⅰ)若a =1,函数()f x 的图象能否总在直线y b =的下方?说明理由;
(Ⅱ)若函数()f x 在(0,2)上是增函数,求a 的取值范围;
(Ⅲ)设123,,x x x 为方程()0f x =的三个根,且1(1,0)x ∈-,2(0,1)x ∈,3(,1)(1,)x ∈-∞-+∞U ,求证:||1a >.
23.已知32()f x ax bx cx =++在区间[01],上是增函数,在区间(0)(1)-+,,,∞∞上是减函数,又1322
f ⎛⎫
'= ⎪⎝⎭. (Ⅰ)求()f x 的解析式;
(Ⅱ)若在区间[0](0)m m >,上恒有()f x x ≤成立,求m 的取值范围.
24.已知函数32
()2f x x ax bx =+++与直线450x y -+=切于点P (1-,1). (Ⅰ)求实数,a b 的值;
(Ⅱ)若0x >时,不等式2()22f x mx x ≥-+恒成立,求实数m 的取值范围.
27.已知函数()32f x x ax bx c =+++,在(-∞,-1),(2,+∞)上单调递增,在(-1,2)上单调递减,当且仅
当x>4时,()()245f x x x g x >-+=.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数y m =与函数f(x)、g(x)的图象共有3个交点,求m 的取值范围.。