11电磁感应知识清单
初中物理电磁感应知识点总结

初中物理电磁感应知识点总结一、电磁感应现象1、定义:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生电流,这种现象叫做电磁感应,产生的电流叫做感应电流。
2、产生条件:(1)闭合电路;(2)一部分导体;(3)做切割磁感线运动。
需要注意的是,这三个条件缺一不可。
如果电路不闭合,只会产生感应电压,而不会有感应电流。
3、能的转化:在电磁感应现象中,机械能转化为电能。
例如,当我们手摇发电机时,通过转动把手,使导体在磁场中做切割磁感线运动,从而产生电能,此时就是将机械能转化为电能。
二、感应电流的方向1、影响因素:感应电流的方向与导体切割磁感线的运动方向和磁场方向有关。
2、右手定则:伸开右手,使大拇指与其余四指垂直,并且都跟手掌在同一个平面内,让磁感线垂直穿过手心,大拇指指向导体运动的方向,那么其余四指所指的方向就是感应电流的方向。
这个定则可以帮助我们快速判断感应电流的方向。
例如,当导体向右运动,磁场方向向上时,根据右手定则,我们可以判断出感应电流的方向是向前的。
三、发电机1、原理:发电机是根据电磁感应原理制成的。
2、构造:主要由定子(固定不动的部分)和转子(能够转动的部分)组成。
定子一般是磁极,转子一般是线圈。
当转子在磁场中转动时,就会产生感应电流。
3、能量转化:发电机工作时,将机械能转化为电能。
大型的发电机通常采用线圈不动、磁极旋转的方式来发电,这样可以产生更强、更稳定的电流。
四、电动机1、原理:电动机是利用通电导体在磁场中受到力的作用而运动的原理制成的。
2、构造:主要由定子、转子和换向器组成。
定子一般是磁极,转子一般是线圈。
换向器的作用是当线圈转过平衡位置时,自动改变线圈中的电流方向,使线圈能够持续转动。
3、能量转化:电动机工作时,将电能转化为机械能。
在日常生活中,我们使用的电风扇、洗衣机等电器,其内部都有电动机。
五、电磁感应的应用1、动圈式话筒:它是把声音的振动转化为电流的变化。
当声音使膜片振动时,与膜片相连的线圈在磁场中做切割磁感线运动,从而产生随声音变化的电流。
高考物理第十一章电磁感应知识点

高考物理第十一章电磁感应知识点高考物理第十一章电磁感应知识点其实,高考物理并不是很难,关键在于公式的总结和运用,还有对知识点的掌握。
物理第十一章电磁感应就是其中重要的环节。
下面是店铺为大家精心推荐的电磁感应的重点,希望能够对您有所帮助。
电磁感应必背知识点一、磁通量:设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度B和平面面积S的乘积叫磁通量;1、计算式:φ=BS(B⊥S)2、推论:B不垂直S时,φ=BSsinθ3、磁通量的国际单位:韦伯,wb;4、磁通量与穿过闭合回路的磁感线条数成正比;5、磁通量是标量,但有正负之分;二、电磁感应:穿过闭合回路的磁通量发生变化,闭合回路中就有感应电流产生,这种现象叫电磁感应现象,产生的电流叫感应电流;注:判断有无感应电流的方法:1、闭合回路;2、磁通量发生变化;三、感应电动势:在电磁感应现象中产生的电动势;四、磁通量的变化率:等于磁通量的变化量和所用时间的比值; △φ/t1、磁通量的变化率是表示磁通量的变化快慢的.物理量;2、磁通量的变化率由磁通量的变化量和时间共同决定;3、磁通量变化率大,感应电动势就大;五、法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比;1、定义式:E=n△φ/△t(只能求平均感应电动势);2、推论; E=BLVsinaθ(适用导体切割磁感线,求瞬时感应电动势,平均感应电动势)(1)V⊥L,L⊥B, θ为V与B间的夹角;(2) V⊥B,L⊥B, θ为V与L间的夹角(3) V⊥B,L⊥V, θ为B与L间的夹角3、穿过线圈的磁通量大,感应电动势不一定大;4、磁通量的变化量大,感应电动势不一定大;5、有感应电流就一定有感应电动势;有感应电动势,不一定有感应电流;六、右手定则(判断感应电流的方向):伸开右手,让大拇指和其余四指共面、且相互垂直,把右手放入磁场中,让磁感线垂直穿过手心,大拇指指向导体运动方向,四指指向感应电流的方向。
电磁感应高中物理知识点

电磁感应高中物理知识点1. 电磁感应的基本概念电磁感应是指当导体相对于磁场运动或磁场的强度发生变化时,会在导体中产生感应电动势和感应电流的现象。
电磁感应是电磁学的重要基础,具有广泛的应用。
2. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的重要定律。
它的表达式为:感应电动势的大小与导体中磁场的变化率成正比。
3. 磁通量和磁感应强度磁通量表示磁场穿过某个面积的数量,用符号Φ表示,单位为韦伯(Wb)。
磁感应强度表示单位面积上的磁通量,用符号B表示,单位为特斯拉(T)。
4. 楞次定律和楞次圈定律楞次定律是描述电磁感应中电流方向的定律。
根据楞次定律,感应电流会产生一个磁场,其方向与原磁场相反。
楞次圈定律是描述电磁感应中感应电动势的方向的定律。
根据楞次圈定律,感应电动势的方向使得感应电流产生一个磁场,其磁场的方向与原磁场相反。
5. 弗莱明右手定则弗莱明右手定则是判断电流在磁场中受力方向的定则。
根据该定则,当右手大拇指指向电流方向,四指指向磁场方向时,手掌所指方向就是电流受力方向。
6. 涡流和涡流损耗涡流是指在导体中由于磁场的变化而产生的感应电流。
涡流会在导体内部产生能量损耗,称为涡流损耗。
涡流损耗的大小与导体特性、磁场强度、频率等因素有关。
7. 互感和自感互感是指两个或多个线圈之间由于磁场的相互作用而产生感应电动势的现象。
互感的大小与线圈的匝数、磁场强度等因素有关。
自感是指线圈中自身磁场变化所产生的感应电动势。
自感的大小与线圈的匝数、磁场强度等因素有关。
8. 电磁感应的应用电磁感应在生活和工业中有广泛的应用,如变压器、电动机、发电机、电磁感应炉等。
它们的原理都是利用电磁感应现象。
以上是电磁感应的高中物理知识点的简要介绍。
电磁感应是电磁学中的重要概念,对于理解电磁现象和应用具有重要意义。
希望这份文档能对你有所帮助!。
高中物理:电磁感应知识点归纳

高中物理:电磁感应知识点归纳一、电磁感应的发现1.“电生磁”的发现奥斯特实验的启迪:丹麦物理学家奥斯特发现电流能使小磁针偏转,即电流的磁效应2.“磁生电”的发现(1)电磁感应现象的发现法拉第根据他的实验,将产生感应电流的原因分成五类:①变化的电流;②变化的磁场;③运动中的恒定电流;④运动中的磁铁;⑤运动中的导线。
(2)电磁感应的发现使人们找到了“磁生电”的条件,开辟了人类的电气化时代。
二、感应电流产生的条件1. 探究实验实验一:导体在磁场中做切割磁感线的运动实验二:通过闭合回路的磁场发生变化2. 感应电流产生的条件:穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生三、感应电动势1. 定义:由电磁感应产生的电动势,叫感应电动势。
产生电动势的那部分导体相当于电源。
2. 产生条件:只要穿过电路的磁通量发生变化,无论电路是否闭合,电路中都会有感应电动势。
3. 方向判断:在内电路中,感应电动势的方向是由电源的负极指向电源的正极,跟内电路中的电流的方向一致。
产生感应电动势的那部分导体相当于电源。
【关键一点】感应电流的产生需要电路闭合,而感应电动势的产生电路不一定需要闭合四、法拉第电磁感应定律1. 定律内容:感应电动势的大小,跟穿过这个电路的磁通量的变化率成正比。
2. 表达式:说明:①式中N为线圈匝数,是磁通量的变化率,注意它与磁通量以及磁通量的变化量的区别。
②E与无关,成正比③在图像中为斜率,所以斜率的意义为感应电动势五、导体切割磁感线时产生的电动势公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度.图中有效长度分别为:甲图:l=cdsin β(容易错算成l=absin β).乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,沿v2方向运动时,l=0;沿v3方向运动时,l=R.六、右手定则1. 内容:将右手手掌伸平,使大拇指与其余并拢的四指垂直,并与手掌在同一平面内,让磁感线从手心穿入,大拇指指向导体运动方向,这时四指的指向就是感应电流的方向,也就是感应电动势的方向2. 适用情况:导体切割磁感线产生感应电流七、楞次定律1.内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
高中物理电磁感应知识点归纳

电磁感应学问点总结一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。
(2)由电磁感应现象产生的电流,叫做感应电流。
物理模型上下移动导线AB,不产生感应电流左右移动导线AB,产生感应电流缘由:闭合回路磁感线通过面积发生改变不管是N级还是S级向下插入,都会产生感应电流,抽出也会产生,唯独磁铁停止在线圈力不会产生缘由闭合电路磁场B发生改变开关闭合、开关断开、开关闭合,快速滑动变阻器,只要线圈A中电流发生改变,线圈B就有感应电流二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。
....中磁通量发生改变2、产生感应电流的常见状况.(1)线圈在磁场中转动。
(法拉第电动机)(2)闭合电路一部分导线运动(切割磁感线)。
(3)磁场强度B改变或有效面积S改变。
(比如有电流产生的磁场,电流大小改变或者开关断开)3、对“磁通量改变”需留意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。
(2)“运动不肯定切割,切割不肯定生电”。
导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生改变。
三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的改变。
(2)“阻碍”的含义.从阻碍磁通量的改变理解为:当磁通量增大时,会阻碍磁通量增大,当磁通量减小时,会阻碍磁通量减小。
从阻碍相对运动理解为:阻碍相对运动是“阻碍”的又一种体现,表现在“近斥远吸,来拒去留”。
(3)“阻碍”的作用.楞次定律中的“阻碍”作用,正是能的转化和守恒定律的反映,在克服这种阻碍的过程中,其他形式的能转化成电能。
(4)“阻碍”的形式.1.阻碍原磁通量的改变,即“增反减同”。
2.阻碍相对运动,即“来拒去留”。
3. 使线圈面积有扩大或缩小的趋势,即“增缩减扩”。
知识清单-电磁感应篇

知识清单-电磁感应篇知识点1、磁通量1.概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S与B的乘积。
2.公式:Φ=BS。
3.单位:1 Wb=1T·m2。
4.公式的适用条件(1)匀强磁场;(2)磁感线的方向与平面垂直,即B⊥S。
5.磁通量的意义磁通量可以理解为穿过某一面积的磁感线的条数。
知识点2、电磁感应现象1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象。
2.产生感应电流的条件(1)条件:穿过闭合电路的磁通量发生变化。
(2)特例:闭合电路的一部分导体在磁场内做切割磁感线运动。
3.产生电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合,则产生感应电流;如果回路不闭合,那么只有感应电动势,而无感应电流。
知识点3、楞次定律知识点4、法拉第电磁感应定律1.感应电动势(1)概念:在电磁感应现象中产生的电动势。
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。
2.法拉第电磁感应定律(1)内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。
(2)公式:E=n ΔΦΔt,其中n为线圈匝数。
(3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I=ER+r。
3.导体切割磁感线的情形(1)若B、l、v相互垂直,则E=Bl v。
(2)v∥B时,E=0。
知识点5、自感、涡流1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感。
(2)自感电动势①定义:在自感现象中产生的感应电动势叫做自感电动势。
②表达式:E=L ΔI Δt。
(3)自感系数L①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关。
②单位:亨利(H),1 mH=10-3 H,1 μH=10-6 H。
2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的漩涡所以叫涡流。
电磁感应基础知识

电磁感应基础知识总结【基础知识梳理】一、电磁感应现象1.磁通量(1)概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S和B的乘积。
(2)公式:①二坠。
(3)单位:1Wb=1T・m2。
(4)物理意义:相当于穿过某一面积的磁感线的条数。
2.电磁感应现象(1)电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象。
(2)产生感应电流的条件①条件:穿过闭合电路的磁通量发生变化。
②特【典例】闭合电路的一部分导体在磁场内做切割磁感线的运动。
(3)产生电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只产生感应电动势,而不产生感应电流。
(4)能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能。
二、楞次定律1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:适用于一切回路磁通量变化的情况。
(3)楞次定律中“阻碍”的含义£SAAt2.右手定则(1) 内容① 磁感线穿入右手手心。
② 大拇指指向导体运动的方向。
③ 其余四指指向感应电流的方向。
(2) 适用范围:适用于部分导体切割磁感线。
三、法拉第电磁感应定律的理解和应用1.感应电动势(1) 概念:在电磁感应现象中产生的电动势。
(2) 产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
⑶方向判断:感应电动势的方向用楞次定律或右手定则判断。
2.法拉第电磁感应定律⑴内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。
A ①(2) 公式:E=njt ,其中n 为线圈匝数。
E(3) 感应电流与感应电动势的关系:遵守闭合电路欧姆定律,即1=越。
3.磁通量变化通常有三种方式 (1) 磁感应强度B 不变,垂直于磁场的回路面积发生变化,此时E=nB-(2) 垂直于磁场的回路面积不变,磁感应强度发生变化,此时E=nA^S ,其中普是B —t图象的斜率。
电磁感应知识点

电磁感应知识点1、磁通量:磁感应强度B与垂直于B的面积S的乘积。
单位:适用条件:匀强磁场,面积为有效面积2、磁感应强度B:垂直穿过单位面积的磁感应的条数。
单位:3、电磁感应现象:注:(1)产生感应电流的条件:①闭合电路②磁通量发生变化4、感应电流的方向的判断:右手定则(伸开右手,让磁感线垂直通过掌心,拇指指向导体运动方向,四指的指向即为电流方向)5、楞次定律:感应电流产生的磁场总要阻碍引起感应电流的磁通量的变化注:(1)闭合导体回路中,磁通量的变化是产生感应电流的原因,而感应电流的磁场又是产生感应磁场的原因,感应磁场是产生阻碍作用的原因(2)应用楞次定律判断感应电流的的方向:一般步骤①明确引起感应电流的原磁场的方向分布及其空间分布,用磁感线表示出来②分析穿过闭合电路的磁通是增还是减③增反减同(3)阻碍特点:阻碍但不阻止6、法拉第电磁感应定律:电路中感应电动势的大小跟穿过这一电路的磁通量的变化成正比7、感应电动势大小的计算8、自感现象:由于导体本身的电流变化而产生的电磁感应现象注;(1)产生原因:导体自身电流变化,引起磁通量的变化(2)自感电动势:在自感现象中产生的电动势。
作用:阻碍线圈中原来电流的变化(E= )(3)自感系数:由线圈本身的因素决定,线圈越长,单位长度匝数越多,截面积越大,加有铁芯,自感系数越大,阻碍作用越强9、几种定则应用的区别:(1)安培定则:运动的电荷或则电流产生的磁场(2)左手定则:磁场对运动电荷、电流的作用力的方向(3)右手定则:部分导体切割磁感线运动所产生的电流方向(4)楞次定律:闭合电路磁通量的变化所产生的感应电流方向10、涡流:11、电磁感应现象的应用:①电路问题②受力问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十一电磁感应知识清单1.磁通量(1)概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S与B的乘积.(2)公式:Φ=BS.适用条件:①匀强磁场.②S为垂直磁场的有效面积.(3)磁通量是标量(填“标量”或“矢量”).(4)磁通量的意义:①磁通量可以理解为穿过某一面积的磁感线的条数.②同一线圈平面,当它跟磁场方向垂直时,磁通量最大;当它跟磁场方向平行时,磁通量为零;当正向穿过线圈平面的磁感线条数和反向穿过的一样多时,磁通量为零.2.判断电磁感应现象是否发生的一般流程3.楞次定律推论的应用楞次定律中“阻碍”的含义可以推广为:感应电流的效果总是阻碍引起感应电流的原因,列表说明如下:B减小,线圈扩张4.右手定则:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心垂直进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向.如右图所示.5.法拉第电磁感应定律6.有效长度问题7.导体转动切割磁感线×××××8. 二次电磁感应问题9. 感应电量问题推导过程:q =I Δt ;E =n ΔΦΔt ;I =总R E 推导出:q =n 总R ΔΦ结论:通过回路截面的电荷量q 仅与n 、ΔΦ和回路总电阻R 总有关,与时间长短无关。
10.电磁感应中电路知识的关系图11.能量转化及焦耳热的求法12.电磁感应中的力电综合问题13.14.两个特殊位置的特点(1)线圈平面与中性面重合时,S ⊥B ,Φ最大,ΔΦΔt =0,e =0,i =0,电流方向发生改变.(2)线圈平面与中性面垂直时,S ∥B ,Φ=0,ΔΦΔt 最大,e 最大,i 最大,电流方向不改变.15.正弦式交流电的几种其它产生形式16.有效值与转轴无关 与形状无关 始终有电流,注意有效面积 半周无电流0 e /Ve’m -e’T /2 Tt/0 e /e m -e mT /2Tt/e /V e m -e mT /2Tt/Babcd ωBa bcdωBωBa bcd ωRT I T R I T RI 2222122=+有效值22221I I I += RT I T R I 2202)2(= 有效值2I I =RT I T R I T R I 22221323=+ 有效值322221I I I +=17.变压器动态变化问题 滑片P 下滑 方法副线圈看作理想电源假设匝数比为1,输入恒定电压,R 1看作内阻电压表 V 1、V 2读数不变;V 3读数变小 V 1、V 2、V 3读数都变小电流表 A 1、A 2读数都变大,I 1/I 2=ΔI 1/ΔI 2=n 2/n 1比值不变A 1、A 2、A 3读数都变大,A 4读数变小18.原线圈串联电阻问题 电压关系:U 0=U 1+U 2 ;U 1U 2=n 1n 2电流关系:I 1I 2=n 2n 1电压与电流:U 1=I 1R 1;U 2=I 2R 2 联立可得U 0=I 1R 1+I 1(n 1n 2)2R 219.几种常用的变压器 (1)自耦变压器——调压变压器线圈甲中把整个线圈作原线圈,取一部分为副线圈,可以降低电压;图乙中把一部分作原线圈,把整个线圈作副线圈,可以升高电压。
(2)互感器⎩⎪⎨⎪⎧电压互感器:用来把高电压变成低电压.电流互感器:用来把大电流变成小电流.20.电能的输送远距离高压输电的几个基本关系(以图为例)(1)功率关系P 1=P 2,P 3=P 4,P 2=P 损+P 3。
(2)电压、电流关系U 1U 2=n 1n 2=I 2I 1,U 3U 4=n 3n 4=I 4I 3,U 2=U 线+U 3,I 2=I 3=I 线。
(3)输电电流I 线=P 2U 2=P 3U 3=U 2-U 3r。
(4)输电导线上损失的电功率P 损=U 线I 线=I 线2r =(P 2U 2)2r 。
二、选择题21.[2017·江苏卷] 如图所示,两个单匝线圈a、b的半径分别为r和2r.圆形匀强磁场B的边缘恰好与a线圈重合,则穿过a、b两线圈的磁通量之比为()A.1∶1 B.1∶2 C.1∶4 D.4∶122.[2017·全国卷Ⅲ] 如图所示,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直.金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面.现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是()A.PQRS中沿顺时针方向,T中沿逆时针方向B.PQRS中沿顺时针方向,T中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向23.[2017·全国卷Ⅰ] 扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是()图1 A B C D24.(多选)如图所示,在匀强磁场中放有平行金属导轨,它与大线圈M 相连接,要使小导线圈N 获得顺时针方向的感应电流,则放在金属导轨上的金属棒ab 的运动情况是(两线圈共面放置)( )A .向右匀速运动B .向左加速运动C .向右减速运动D .向右加速运动25.如图4所示是法拉第制作的世界上第一台发电机的模型原理图。
把一个半径为r 的铜盘放在磁感应强度大小为B 的匀强磁场中,使磁感线水平向右垂直穿过铜盘,铜盘安装在水平的铜轴上,两块铜片C 、D 分别与转动轴和铜盘的边缘接触,G 为灵敏电流表。
现使铜盘按照图示方向以角速度ω匀速转动,则下列说法中正确的是( )图4A .C 点电势一定高于D 点电势B .圆盘中产生的感应电动势大小为12Bωr 2C .电流表中的电流方向为由a 到bD .若铜盘不转动,使所加磁场磁感应强度均匀增大,在铜盘中可以产生涡旋电流 26.如图1所示,两块水平放置的金属板距离为d ,用导线、开关K 与一个n 匝的线圈连接,线圈置于方向竖直向上的均匀变化的磁场B 中.两板间放一台小型压力传感器,压力传感器上表面绝缘,在其上表面静止放置一个质量为m 、电荷量为q 的带正电小球.K 没有闭合时传感器有示数,K 闭合时传感器示数变为原来的一半.则线圈中磁场B 的变化情况和磁通量的变化率分别为( )A .正在增强,ΔΦΔt =mgd 2qB .正在增强,ΔΦΔt =mgd 2nqC .正在减弱,ΔΦΔt =mgd 2qD .正在减弱,ΔΦΔt =mgd 2nq27.(2015·海南单科·2)如图6,空间有一匀强磁场,一直金属棒与磁感应强度方向垂直,当它以速度v 沿与棒和磁感应强度都垂直的方向运动时,棒两端的感应电动势大小为ε;将此棒弯成两段长度相等且相互垂直的折线,置于与磁感应强度垂直的平面内,当它沿两段折线夹角平分线的方向以速度v 运动时,棒两端的感应电动势大小为ε′.则 ε′ε等于( ) A.12 B.22C .1 D. 228.(多选)(09年山东卷)如图11所示,一导线弯成半径为a 的半圆形闭合回路.虚线边界MN 右侧有磁感应强度为B 的匀强磁场,方向垂直于回路所在的平面.回路以速度v 向右匀速进入磁场,直径CD 始终与MN 垂直.从D 点到达边界开始到C 点进入磁场为止.下列结论正确的是( )A .感应电流方向不变B .CD 段直导线始终不受安培力C .感应电动势最大值E m =BavD .感应电动势平均值E =14πBav 29.如图,由某种粗细均匀的总电阻为3R 的金属条制成的矩形线框abcd ,固定在水平面内且处于方向竖直向下的匀强磁场B 中.一接入电路电阻为R 的导体棒PQ ,在水平拉力作用下沿ab 、dc 以速度v 匀速滑动,滑动过程PQ 始终与ab 垂直,且与线框接触良好,不计摩擦.在PQ 从靠近ad 处向bc 滑动的过程中( )A .PQ 中电流先增大后减小B .PQ 两端电压先减小后增大C .PQ 上拉力的功率先减小后增大D .线框消耗的电功率先减小后增大30.(多选)如图10所示的电路中,L 为一个自感系数很大、直流电阻不计的线圈,D 1、D 2是两个完全相同的灯泡,E 是一内阻不计的电源.t =0时刻,闭合开关S ,经过一段时间后,电路达到稳定,t 1时刻断开开关S.I 1、I 2分别表示通过灯泡D 1和D 2的电流,规定图中箭头所示的方向为电流正方向,以下各图中能定性描述电流I 随时间t 变化关系的是( )图1031.如图5所示,一边长为l=2a的正方形区域内分布着方向竖直向下、磁感应强度大小为B的匀强磁场。
一边长为a、电阻为R的正方形线框置于磁场左侧,且线框右边与磁场左边界平行,距离为a,现给该正方形线框施加一水平向右的拉力,使其沿直线匀速向右运动,则以下关于线框受到的安培力、产生的感应电流随时间变化的图象正确的是(以水平向左的方向为安培力的正方向,以逆时针方向为电流的正方向)()图532.(2014·锦州一模)矩形导线框abcd放在匀强磁场中,在外力控制下处于静止状态,如图9-3-6甲所示。
磁感线方向与导线框所在平面垂直,磁感应强度B随时间变化的图像如图乙所示。
t=0时刻,磁感应强度的方向垂直导线框平面向里,在0~4 s时间内,导线框ad边所受安培力随时间变化的图像(规定以向左为安培力正方向)可能是下列选项中的()图9-3-6 图9-3-733.如图1,一有界区域内,存在着磁感应强度大小均为B,方向分别垂直于光滑水平桌面向下和向上的匀强磁场,磁场宽度均为L,现有一边长为22L的正方形线框abcd,在外力作用下,保持ac垂直磁场边缘,并以沿x轴正方向的某一速度水平匀速地通过磁场区域,若以逆时针方向为电流正方向,下图中能反映线框中感应电流变化规律的图象是()图134.如图所示,一导体圆环位于纸面内,O为圆心.环内两个圆心角为90°的扇形区域内分别有匀强磁场,两磁场磁感应强度的大小相等,方向相反且均与纸面垂直.导体杆OM可绕O转动,M端通过滑动触点与圆环良好接触.在圆心和圆环间连有电阻R.杆OM以匀角速度ω逆时针转动,t=0时恰好在图示位置.规定从a到b流经电阻R的电流方向为正,圆环和导体杆的电阻忽略不计,则杆从t=0开始转动一周的过程中,电流随ωt变化的图象是()35.(多选)(2017·乐山模拟)如图所示,固定在水平面上的光滑平行金属导轨,间距为L,右端接有阻值为R的电阻,空间存在方向竖直、磁感应强度为B的匀强磁场.质量为m、电阻36.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 37°=0.6)()A.2.5 m/s 1 W B.5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W37.(多选)如图所示,光滑金属导轨AC 、AD 固定在水平面内,并处在方向竖直向下、大小为B 的匀强磁场中.有一质量为m 的导体棒以初速度v 0从某位置开始在导轨上水平向右运动,最终恰好静止在A 点.在运动过程中,导体棒与导轨始终构成等边三角形回路,且通过A 点的总电荷量为Q .已知导体棒与导轨间的接触电阻阻值恒为R ,其余电阻不计.则( )A .该过程中导体棒做匀减速运动B .该过程中接触电阻产生的热量为12mv 20C .开始运动时,导体棒与导轨所构成回路的面积为S =QR B半D .当导体棒的速度为12v 0时,回路中感应电流大小为初始时的一38.(多选)(2008秋•湖南校级月考)如图,在光滑水平面上,有一竖直向下的匀强磁场,分布在宽度为L 的区域内,现有一边长为l (l <L )的正方形闭合导线框以垂直磁场边界的初速度v 1滑进磁场,然后线圈滑出磁场的速度为v 2,设线框滑进磁场的时间为t 1,安接力的冲量为I 1,线框产生的热量为Q 1,线框滑出磁场的时间为t 2,安培力的冲量为I 2,线框产生的热量为Q 2,则有( )A .v 1=v 2B .t 1<t 2C .I 1=I 2D .Q 1>Q 239.(2010安徽高考)如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料、不同粗细的导线绕制(Ⅰ为细导线).两线圈在距磁场上界面h 高处由静止开始自由下落,再进入磁场,最后落到地面.运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界.设线圈Ⅰ、Ⅱ落地时的速度大小分别为v 1、v 2,在磁场中运动时产生的热量分别为Q 1、Q 2.不计空气阻力,则( )A .v 1<v 2,Q 1<Q 2B .v 1=v 2,Q 1=Q 2C .v 1<v 2,Q 1>Q 2D .v 1=v 2,Q 1<Q 240.如图4所示为一交流发电机的原理示意图,其中矩形线圈abcd 的边长ab =cd =L 1,bc =ad =L 2,匝数为n ,线圈的总电阻为r ,线圈在磁感应强度为B 的匀强磁场中绕垂直于磁场的转轴OO ′匀速转动,角速度为ω,线圈两端通过电刷E 、F 与阻值为R 的定值电阻连接。