时间序列的平稳性检验
学术研究中的平稳性检验

学术研究中的平稳性检验摘要:平稳性检验是时间序列数据分析中非常重要的一步,它可以帮助我们确定时间序列数据是否具有稳定性,从而避免由于非平稳数据导致的统计误判。
本文将对平稳性检验的方法、原理和应用进行详细介绍。
一、引言在时间序列数据分析中,平稳性是一个非常重要的概念。
如果一个时间序列数据是平稳的,那么我们就可以对其进行一系列的统计分析和预测。
反之,如果一个时间序列数据是非平稳的,那么我们就需要采取一些措施来消除其非平稳性,否则会导致统计误判和预测误差。
因此,平稳性检验是时间序列数据分析中非常重要的一步。
二、平稳性检验的方法1.单位根检验(Augmented Dickey-Fuller Test)单位根检验是一种常用的平稳性检验方法,它可以通过建立时间序列数据的回归模型来检验其是否具有单位根。
如果回归模型的系数不显著,则说明该时间序列数据是平稳的;反之,如果回归模型的系数显著,则说明该时间序列数据是非平稳的。
常用的单位根检验方法有ADF检验和PP检验等。
2.协整检验(Cointegration Test)协整检验是一种用于检验两个或多个非平稳时间序列数据之间是否存在长期均衡关系的统计方法。
如果两个或多个时间序列数据之间存在协整关系,那么它们之间就可以建立回归模型进行分析和预测。
常用的协整检验方法有Kao检验和Johansen检验等。
三、平稳性检验的原理平稳性检验的原理是利用时间序列数据的特性进行分析。
在统计学中,平稳时间序列是指其均值、方差和自相关系数都是常数,也就是说,该时间序列数据具有稳定性。
如果一个时间序列数据是非平稳的,那么它的统计特性就会发生变化,从而影响统计分析和预测的准确性。
因此,在进行时间序列数据分析之前,必须对数据进行平稳性检验,以确保数据的稳定性和可靠性。
四、平稳性检验的应用1.经济领域中的应用在经济学中,平稳性检验被广泛应用于各种经济指标的时间序列数据分析中。
例如,通货膨胀率、失业率、国内生产总值等指标都是常用的经济指标,它们的变化趋势往往受到多种因素的影响。
时间序列的平稳性及其检验

19
伪回归spurious regression
如果时间序列是有趋势的,那么一定是非平稳 的,从而采用OLS估计的t检验和F检验就是无 效的。
两个具有相同趋势的时间序列即便毫无关系, 在回归时也可能得到很高的显著性和复判定系 数 出现伪回归时,一种处理办法是加入趋势变量, 另一种办法是把非平稳的序列平稳化
时间序列分析模型:解释时间序列自身的变化 规律和相互联系的数学表达式
确定性的时间序列模型 随机时间序列模型
3
随机过程与随机序列
设T 为某个时间集,对t T,取xt为随机变量, 对于该随机变量的全体 xt , t T 当取T 为连续集,如T (, )或T [0, )
1000.0 900.0 800.0
GDP指数(1978=100)
700.0 600.0 500.0 400.0 300.0 200.0 100.0 0.0
年份
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03
8
说 明
自然科学领域中的许多时间序列常常是 平稳的。如工业生产中对液面、压力、 温度的控制过程,某地的气温变化过程, 某地100年的水文资料,单位时间内路口 通过的车辆数过程等。 但经济领域中多数宏观经济时间序列却 都是非平稳的。如一个国家的年GDP序 列,年投资序列,年进出口序列等。
9
时间序列模型的例子
22
时间序列模型不同于经典计量模 型的两个特点
⑴ 这种建模方法不以经济理论为依据, 而是依据变量自身的变化规律,利用外 推机制描述时间序列的变化。 ⑵ 明确考虑时间序列的非平稳性。如果 时间序列非平稳,建立模型之前应先通 过差分把它变换成平稳的时间序列,再 考虑建模问题。
平稳序列检验方法

平稳序列检验方法平稳序列检验是判断一个时间序列是否具有平稳性的方法。
平稳序列是指序列的统计特性在时间上不发生变化,即均值、方差和自协方差与时间无关。
判断一个序列是否平稳很重要,因为只有平稳序列才能进行许多经济和统计分析。
平稳序列检验方法主要有单位根检验、ADF检验和KPSS检验等。
单位根检验是最常用的平稳序列检验方法之一,其基本思想是判断一个序列是否具有单位根。
单位根的存在意味着序列是非平稳的。
ADF检验是单位根检验的一种常用方法,它是在一个线性回归模型的基础上构建的。
具体而言,假设要检验的序列为Yt,则在ADF检验中,我们构建以下的回归模型:Yt = α+ β*t + γ*Yt-1 + δ1(ΔYt-1) + δ2(ΔYt-2) + …+ δp(ΔYt-p) + et其中,ΔYt表示序列的一阶差分,α、β、γ和δ分别是模型中的系数,et是随机误差项。
在ADF检验中,我们假设序列Yt具有单位根,即H0:γ=0,然后通过假设检验来判断是否拒绝原假设。
如果在检验的过程中发现γ显著不等于0,则拒绝原假设,即序列Yt是平稳的。
ADF检验的统计量是基于t统计量计算的,一般会提供临界值用于判断统计量的显著性。
如果统计量的值小于临界值,则拒绝原假设,序列是平稳的。
除了ADF检验外,还有KPSS检验也是一种用于判断平稳序列的方法。
与ADF 检验不同的是,KPSS检验是在原假设下进行的,即假设序列是平稳的。
KPSS检验的原假设是H0:序列是平稳的,备择假设是H1:序列是非平稳的。
具体而言,KPSS检验是基于单位根检验的思想,即检验序列的观测值是否围绕一个常数进行波动。
如果序列的波动围绕一个常数,则序列是平稳的;如果波动围绕着一个随时间增长的函数,则序列是非平稳的。
KPSS检验的统计量也是基于t统计量计算的,一般会提供临界值用于判断统计量的显著性。
如果统计量的值大于临界值,则拒绝原假设,序列是非平稳的。
除了单位根检验,还有一些其他的平稳序列检验方法,如Ljung-Box检验和ARCH检验等。
时序预测中的时间序列平稳性检验方法详解(六)

时序预测中的时间序列平稳性检验方法详解时序预测是指根据已有的时间序列数据,通过建立数学模型来预测未来的趋势和变化规律。
而在进行时序预测时,首先需要对时间序列数据进行平稳性检验,以确保模型的准确性和可靠性。
本文将就时序预测中的时间序列平稳性检验方法进行详细的介绍。
一、简介时间序列是指按时间先后顺序排列而成的一组数据。
在实际应用中,时间序列数据往往受到各种因素的影响,如季节性、趋势性和周期性等。
而平稳性是指时间序列数据在一定时期内的均值和方差保持不变,即不存在明显的趋势和周期性。
二、平稳性检验方法1. 统计图检验法统计图检验法是通过绘制时间序列数据的统计图来观察其均值和方差是否随时间发生显著变化。
常用的统计图包括简单折线图、散点图和自相关图等。
通过观察这些统计图,可以初步判断时间序列数据是否具有平稳性。
2. 单位根检验法单位根检验法是通过检验时间序列数据中是否存在单位根来判断其平稳性。
常用的单位根检验方法包括ADF检验(Augmented Dickey-Fuller Test)和PP检验(Phillips-Perron Test)。
这些检验方法可以进一步验证时间序列数据的平稳性,对于非平稳时间序列数据的处理具有重要意义。
3. 傅立叶变换法傅立叶变换法是通过将时间序列数据转换到频域来观察其频谱分布。
通过分析频谱图,可以判断时间序列数据是否存在明显的周期性和趋势性,从而验证其平稳性。
4. 平稳性转化法平稳性转化法是通过对时间序列数据进行差分、对数变换或者其他数学变换来消除其非平稳性。
通过对原始数据进行适当的变换,可以使其满足平稳性的要求,从而方便后续的建模和预测。
5. 检验法比较综合利用多种平稳性检验方法可以更加全面地评估时间序列数据的平稳性。
不同的检验方法具有不同的优缺点,结合多种方法进行比较可以更加准确地判断时间序列数据的平稳性。
三、实例分析为了更好地理解时间序列平稳性检验方法的应用,我们以某股票价格的时间序列数据为例进行分析。
时间序列分析中的平稳性与非平稳性

时间序列分析中的平稳性与非平稳性时间序列分析是一种用来研究时间数据的统计方法,它可以揭示出时间序列数据的模式和趋势,并预测未来的发展。
在进行时间序列分析时,我们经常会遇到平稳性和非平稳性的问题,本文将重点讨论这两个概念及其在时间序列分析中的重要性。
1. 什么是平稳性?平稳性是指时间序列在统计特性上具有不变性,即其均值和方差不随时间的推移而发生改变。
具体而言,平稳时间序列的均值在时间维度上是稳定的,方差也不会随时间变化而增加或减小。
此外,平稳时间序列的自协方差只与时间间隔有关,而与特定时间点无关。
2. 平稳性的判断方法为了判断一个时间序列是否具有平稳性,我们可以使用一些统计检验方法。
常见的方法有ADF检验(Augmented Dickey-Fuller test)、KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin test)等。
ADF检验通常用于检验平稳性,其原假设是时间序列具有单位根(非平稳),如果检验结果拒绝了原假设,则可以得出时间序列是平稳的结论。
3. 非平稳性的表现形式非平稳性的时间序列可能会呈现出明显的趋势、季节性或周期性变化。
趋势是时间序列长期的、持续的上升或下降,季节性是指时间序列在特定时间点上出现的周期性波动,周期性是指时间序列存在长期的、不规则的上升或下降。
4. 非平稳性的处理方法如果时间序列是非平稳的,我们需要对其进行处理,以使其具备平稳性。
常见的处理方法有差分法、对数变换等。
差分法可以通过计算相邻时间点的差值来消除趋势和季节性,对数变换则可以通过对时间序列取对数来减少其波动性。
5. 平稳性的重要性平稳性在时间序列分析中非常重要,具有以下几个方面的意义: - 简化模型:平稳时间序列的统计特性稳定,可以简化模型的建立和预测。
- 降低误差:平稳时间序列的随机误差具有恒定的方差,使得模型的预测更准确。
- 提高可靠性:基于平稳时间序列建立的模型具有更好的可靠性和稳定性,可以更好地应对未来的变化。
时间序列中的时间序列平稳性检验

时间序列中的时间序列平稳性检验时间序列平稳性是时间序列分析中的重要概念,对时间序列模型和预测有着重要的影响。
时间序列平稳性指的是时间序列中各时点的特征均匀分布、稳定不变,不随时间而发生显著变化的性质。
本文将介绍时间序列平稳性检验的相关理论与方法。
一、时间序列平稳性检验的基本理论在进行时间序列分析前,需要先确定该时间序列是否具有平稳性。
时间序列平稳性则是指时间序列中各时点的特征均匀分布、稳定不变,不随时间而发生显著变化,比如说均值、方差、自相关系数等都不应该与时间有关。
若时间序列不具有平稳性,则其分析结果会受到时间变量的影响,预测结果也不够准确。
对于时间序列平稳性的检验,主要考虑3个方面,即序列的均值、序列的方差、序列的自相关。
时间序列平稳性检验的基本理论是根据大数定理和中心极限定理进行的。
在此基础上,常用的做法是,检验序列均值是否随时间变化而变化、检验方差是否随时间变化而变化、检验自相关系数是否与时间有关。
二、时间序列平稳性检验的方法1.图示法:通过绘制时间序列图、自相关图、偏自相关图可以直观地了解时间序列的平稳性。
时间序列图是反映序列随时间变化时的整体变化趋势的图形;自相关图表达的是序列在不同时滞下的线性相关程度,若相关系数呈现规律性或趋势性,则序列不平稳;偏自相关图是用来判断序列是否具有趋势或季节性,若序列的偏自相关系数在超过置信度时突破界限,则序列不具有平稳性。
2.计量经济学检验法:常用的计量经济学检验法有DF检验、ADF检验、KPSS检验等,其中ADF检验最为常用。
ADF检验分为一般ADF检验、增广ADF检验、阶数选择ADF检验等,在跨期比较和模型选择方面有效,而且误判率较低。
3.波动函数法:通过测量时间序列各部分的波动函数,从而判断序列是否平稳。
包括周期波动函数法、空间波动函数法等。
周期波动函数法是通过加权平均数对序列进行周期性处理,得到波动函数,然后计算波动函数的标准偏差,以此来判断序列平稳性;空间波动函数法则是通过空间均方差来判断时间序列的平稳性。
时序预测中的时间序列平稳性检验方法详解(Ⅲ)

时序预测中的时间序列平稳性检验方法详解时间序列分析在各个领域都有着广泛的应用,如经济学、气象学、医学等。
而时间序列平稳性检验是时间序列分析中的重要一环,它可以帮助我们确认时间序列数据是否稳定,从而选择合适的模型进行预测。
本文将详细介绍时间序列平稳性检验的方法和原理。
一、平稳性的定义在进行时间序列分析时,我们通常假设时间序列是平稳的。
平稳性是指时间序列在统计特性上的稳定性,即均值和方差在时间上都是恒定的。
如果时间序列不满足平稳性的要求,将会导致预测结果不准确。
因此,平稳性检验在时间序列分析中至关重要。
二、时间序列平稳性的检验方法1. 直观法直观法是最简单的一种检验方法,它通过观察时间序列的均值和方差是否随时间变化而确定序列的平稳性。
如果均值和方差不随时间变化,则可以初步认定序列是平稳的。
然而,直观法往往不够准确,因为很难只通过肉眼观察就确定序列的平稳性。
2. 统计方法在统计方法中,有许多用于时间序列平稳性检验的经典方法,如ADF检验、PP检验、KPSS检验等。
这些方法都是通过建立统计模型,对序列的均值和方差进行检验,从而判断序列的平稳性。
ADF检验(Augmented Dickey-Fuller Test)是最常用的一种检验方法,它的原假设是时间序列具有单位根(非平稳),备择假设是时间序列是平稳的。
通过对序列进行单位根检验,ADF检验可以判断序列的平稳性。
如果p值小于显著性水平(通常为),则拒绝原假设,认为序列是平稳的。
PP检验(Phillips-Perron Test)是另一种常用的单位根检验方法,它与ADF检验类似,也是通过检验序列的单位根来判断序列的平稳性。
与ADF检验的区别在于PP检验对序列的自相关结构和序列长度的敏感性较低。
KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin Test)则是一种反向的检验方法,它的原假设是序列是平稳的,备择假设是序列具有单位根。
时间序列的平稳性检验方法比较论文素材

时间序列的平稳性检验方法比较论文素材时间序列的平稳性检验方法比较时间序列分析是一种广泛应用于经济学、金融学、统计学等领域的统计分析方法,它的核心是对时间序列数据进行建模和预测。
在进行时间序列分析之前,需要对时间序列数据的平稳性进行检验,因为只有平稳的时间序列数据才能有效地应用各种统计模型进行分析和预测。
平稳性是指时间序列数据在统计属性上没有显著变化的特性,包括均值、方差和自相关性等。
在实际应用中,常常需要对时间序列数据进行平稳性检验,以确定是否满足时间序列分析的基本假设。
本文将对几种常用的时间序列平稳性检验方法进行比较,包括ADF 检验、PP检验、KPSS检验以及DF-GLS检验等。
1. ADF检验(Augmented Dickey-Fuller Test)ADF检验是一种常用的单位根检验方法,它的原假设是时间序列数据存在单位根,即非平稳。
如果根据ADF检验的结果拒绝原假设,则可以认为时间序列数据是平稳的。
ADF检验的步骤包括选择合适的滞后阶数、构建广义差分模型、计算ADF统计量以及对统计量进行显著性检验等。
根据ADF检验的结果,可以得到一个关于平稳性的显著性水平,比如5%或10%的显著水平。
2. PP检验(Phillips-Perron Test)PP检验是另一种常用的单位根检验方法,它与ADF检验类似,但在计算ADF统计量时使用了修正项,使得统计量的分布更具鲁棒性。
PP检验的原假设和拒绝原假设与ADF检验相同。
与ADF检验相比,PP检验提供了更强的鲁棒性和准确性,特别适用于样本量较小或存在异方差性的情况。
3. KPSS检验(Kwiatkowski–Phillips–Schmidt–Shin Test)与ADF检验和PP检验不同,KPSS检验的原假设是时间序列数据是平稳的,即不存在单位根。
如果根据KPSS检验的结果拒绝原假设,则可以认为时间序列数据是非平稳的。
KPSS检验的步骤包括选择合适的滞后阶数、构建局部线性趋势模型、计算KPSS统计量以及对统计量进行显著性检验等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由式(11.2.7)两边各减去yt-1,得到
yt – yt-1 = ρyt-1 – yt-1 + ut
即
Δyt = δyt-1 + ut (11.2.10)
(11.2.10)式中差分Δyt = yt – yt-1 ,δ = ρ – 1 。 绝大多数经济变量的时间序列相关系数ρ都取正
值且小于1,因此,假设(11.2.9)可以改写为:
就是带趋势项的随机游走过程。
(二)单位根检验的基本思想
在(11.2.6)式中,若α = 0,则式(11.2.6)可以
写成:
yt = ρyt-1 + ut
(11.2.7)
式(11.2.7)称为一阶自回归过程,记作AR(1),可以
证明当| ρ | <1时是平稳的,否则是非平稳的。
AR(1)过程也可以写成算符形式:
§11.2时间序列的平稳性检验 由于大多数宏观经济变量,如GDP、消费总额、 货币供应量M2等的时间序列都不是平稳的,随 着 时间的位移而持续地增长,也就是说有一种增 长 趋势的特征。但是当经济出现突发性振荡(如 石 油价格猛增、或金融危机等)后,受到冲击的 这
若呈现随机游走状态,一方面如果还是用OLS进 行回归,这时会导致伪回归(这是因为随机游走 不是有限方差,高斯-马尔可夫定理不再成立, OLS估计的参数不再是一致的)。另一方面,由 于这种冲击对变量的影响不会在短期内消失,所 以随机游走状态也可能是持久的,所以对变量的 平稳性的检验有着极其重要的意义。
(11.2.5)
(11.2.5)式成为一个带趋势项的随机游走过程。
以上三种情况,其数据生成过程都可以概括写成如
下形式:
yt = α + ρyt-1 + ut
(11.2.6)
当α = 0,ρ =1时,式(11.2.6)就是随机游走过程;
当α =μ,ρ =1时,式(11.2.6)就是带飘移项的随
机游走过程;当α =μ+ βt,ρ =1时,式(11.2.6)
图11.2.1 y 的散点图
二、利用样本自相关函数进行稳定性判断 不同时间序列具有不同形式的自相关函数,因此可以 从时间序列的自相关函数的图形来判断时间序列的 稳定性。
在实际应用中,采用样本自相关函数来判断时间 序列是否为平稳过程。 一般地,由样本数据计算出样本自相关函数
T k
( yt y)(ytk y)
ˆ 1 T Vˆ (ˆ )
或
T
ˆ Vˆ (ˆ)
(11.2.12)
(11.2.12)式中 Vˆ (ˆ ) 和 Vˆ (ˆ)分别为参数估计量
ˆ 和 ˆ 的方差估计值。
但是,这里的问题是(11.2.12)式中的统计量Tρ和 Tδ 不服从t分布,而是一个非标准的非对称的分布, 它具有Dickey-Fuller(1979)提出的分布(简称DF分布) ,相应的检验就是我们下面要介绍的著名的Dickey -Fuller(简称DF)检验。
(1-ρL)yt = ut
(11.2.8)
yt平稳的条件是特征方程1-ρz = 0 根的绝对值大于1。
显然,此方程仅有一个根 z = 1/ρ,由 | z | >1, 知平
稳性要求 | ρ | < 1 。
因此,检验 yt 的平稳性的原假设和备择假设为 H0: | ρ| ≥ 1 ;H1: | ρ | <1 (11.2.9)
ˆ k t1
T
(
yt
y
)2
t 1
(11.2.1)
当k逐渐增大时,迅速衰减,则认为该序列是平稳的;
如果它衰减非常缓慢,则认为该序列是非平稳的。
三、单位根检验(Dickey-Fuller — DF检验)
(一)单位根过程
单位根过程是较随机游走更为一般的非平稳过程,
假定有增长趋势的变量 yt 的数据生成过程可写成:
(1-L) yt = α + ut
(11.2.2)
其中ut是平稳过程,α可取不同的值,L 是滞后算
子Lyt = yt-1。由于其特征方程
1- z = 0有一个单位根 z = 1,所以称(11.2.2)式为单
位根过程。根据α取值不同,单位根过程可以有以
下三种不同形式:
1.当α = 0 时,(11.2.2) 可写成
一、利用散点图判断平稳性
利用时间序列的散点图判断平稳性,是一种最简单 的方法。首先画出该时间序列的散点图,然后观察 散点是否是围绕其均值上下波动的曲线,如果是的 话,可以判断该时间序列是一个平稳时间序列。否 则的话,该时间序列是非平稳的。
例如,时间序列{yt , t = 1,2, …},观测点在其均值水平 线上下波动,如图11.2.1所示,则可以认为该样本来 自平稳序列{yt , t = 1,2, …}。
yt = yt-1 + ut
(11.2.3)
(11.2.3)式成为一个纯随机游走过程。
2. 当α = μ 时,(11.2.2)式可写成
yt = μ + yt-1 + ut
(11.2.4)
(14.2.4)式成为一个带飘移的随机游走过程。
3. 当 α = μ + βt 时,(11.2.2)式可写成
yt = μ + βt + yt-1 + ut
(三)DF检验 (Dickey-Fuller Test) 1.DF检验 DF检验的具体作法是用传统方法计算出的参数的T— 统计量,不与t 分布临界值比较而是改成DF分布临界 值表。
DF检验的具体做法如下:
第一步:对式
Δyt = δyt-1 + ut
H0:δ = 0 ;H1:δ < 0 (11.2.11) 当δ = 0 时,原假设H0为真,则相应的随机过程为 是非平稳的。可以看出,非平稳性问题或单位根问
题,可以表序列 yt 的非平稳性的问题 简化成在模型(11.2.7)中,检验回归参数ρ = 1是 否成立,或者在模型(11.2.10)中,检验回归参数 δ = 0是否成立。按照以前参数检验的做法,我们可 以分别用两个t检验进行: