一般锐角的三角函数值
《一般锐角的三角函数值》PPT课件

知2-讲
【例3】已知下列锐角三角函数值,用计算器求其相应的 锐角:
(1)sin A=0.516 8(结果精确到0.01°); (2)cos A=0.675 3(结果精确到1″); (3)tan A=0.189(结果精确到1°). 导引:已知锐角三角函数值,利用计算器求锐角的度数
时要注意先按 2nd F 键.
一、启发类
1. 集体力量是强大的,你们小组合作了吗?你能将这个原理应用于生活吗?你的探究目标制定好了吗? 2. 自学结束,请带着疑问与同伴交流。 3. 学习要善于观察,你从这道题中获取了哪些信息? 4. 请把你的想法与同伴交流一下,好吗? 5. 你说的办法很好,还有其他办法吗?看谁想出的解法多? 二、赏识类
1 已知三角函数值,用计算器求锐角A和B:(精确到 1′)
(1)sinA=0.708 3,sinB=0.568 8; (2)cosA=0.829 0,cosB=0.993 1; (3)tanA=0.913 1,tanB=31.80.
(来自教材)
知2-练
2 已知β为锐角,且tan β=3.387,则β约等于
()
A.73°33′
B.73°27′
C.16°27′
D.16°21′
3 在△ABC中,∠C=90°,BC=5,AB=13,用科
学计算器求∠A约等于( )
A.24°38′
B.65°22′
C.67°23′
D.22°37′
知2-练
4 如果∠A为锐角,cos A= 1 ,那么( ) 5
A.0°<∠A<30° B.30°<∠A<45° C.45°<∠A<60° D.60°<∠A<90°
知1-练
锐角三角函数值表课件

锐角a
三角函数 sin a cos a tan a
30°
1 2 3 2
3 3
45°
2 2
2 2
1
60°
3 2
1 2
3
对于sinα与tanα,角度越大,函数值也越大; 对于cosα,角度越大,函数值越小。
米.然后他很快就算出旗杆的高度了。
你想知道小明怎样 算出的吗?
?
1.65米
30°
10米
练习:P83-练习
例3、(1)如图,在Rt△ABC中, ∠C=90°,AB= 6 ,BC= 3。求∠A的度数。
(2)如图,已知圆锥的高AO等于圆锥的底面半 径OB的 3 倍,求α.
A
B
(2)
6
3
A
C
(1)
O B
Q sin A CD 1 CD 1 2 3 3
AC 2
2
A
Q cos A AD 3 AD 3 2 3 3
AC 2
2
D
B
Q tan B CD 3 BD 2
BD
3 2 2 3
AB AD BD 3 2 5
练习
1. 求下列各式的值:
例4 如图,在Rt△ABC中,∠ACB=90度,CD⊥AB于D ,已
知∠B=30度,计算 tan ACD sin BCD 的值。
A D
B
C
例5 如图,在△ABC中,∠A=30度, tanB 3 , AC 2 3,
2
求AB。
C
解:过点C作CD⊥AB于点D
∠A=30度, AC 2 3
(1)1-2 sin30°cos30°
23.一般锐角的三角函数值PPT课件(沪科版)

B C = C D 4 .2 5 .9 (千 米 ), sin C BA sin 45
【方法总结】解决问题的关键是作出辅助线,构造直 角三角形,利用三角函数关系求出有关线段的长.
例4:如图,课外数学小组要测量小山坡上塔的高度 DE,DE所在直线与水平线AN垂直.他们在A处测得塔 尖D的仰角为45°,再沿着射线AN方向前进50米到达B 处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡 顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组 算一算塔高DE大约是多少米 (结果精确到个位).
解:延长DE交AB延长线于点F,则∠DFA=90°.
∵∠A=45°,
∴AF=DF.
设EF=x,
∵tan25.6°= EF ≈0.5,
BF
∴BF=2x,则DF=AF=50+2x,
故tan61.4°=
DF BF
50 2x 2x
=1.8,
解得x≈31.
故DE=DF-EF=50+31×2-31=81(米).
所以,塔高DE大约是81米.
归纳总结
解决此类问题要了解角之间的关系,找到 与已知和未知相关联的直角三角形,当图形中 没有直角三角形时,要通过作高或垂线构造直 角三角形.
巩固练习
1. 已知下列锐角三角函数值,用计算器求其相应 的锐角: (1)sinA=0.627 5,sinB=0.054 7;
∠A=38°51′57″ ∠B=38°8″
初中正弦余弦正切公式

初中正弦余弦正切公式“初中数学必背三角函数公式、三角函数值”主要包括正弦、余弦、正切函数的定义式和关系式,特殊锐角的正弦、余弦、正切值。
一、正弦、余弦、正切的定义假设在直角三角形ABC中,∠C为直角,∠A、∠B、∠C的对边长度分别记为a、b、c,则有(注:初中数学里,三角函数的定义只适用于直角三角形。
):1、锐角A的正弦值、余弦值、正切值的定义式分别如下:(1)∠A的正弦值=∠A的对边:斜边,记作sinA=a/c。
(2)∠A的余弦值=∠A的邻边:斜边,记作cosA=b/c。
(3)∠A的正切值=∠A的对边:∠A的邻边,记作tanA=a/b。
2、锐角B的正弦值、余弦值、正切值的定义式分别如下:(1)∠B的正弦值=∠B的对边:斜边,记作sinB=b/c。
(2)∠B的余弦值=∠B的邻边:斜边,记作cosB=a/c。
(3)∠B的正切值=∠B的对边:∠B的邻边,记作tanB=b/a。
【注】正弦=“对比斜”、余弦=“邻比斜”、正切=“对比邻”。
3、互余的两个角间的正弦、余弦、正切值关系假设在直角三角形ABC中,∠C为直角,则∠A与∠B互余。
通过∠A和∠B的正弦、余弦、正切值的定义式的对比,我们不难发现:∠A的正弦值与∠B的余弦值相等,∠A的余弦值与∠B的正弦值相等,∠A的正切值与∠B的正切值互为倒数。
所以,当∠A与∠B互余时我们有以下3个同时成立的等式关系:(1)sinA=cosB;(2)sinB=cosA;(3)tanA·tanB=1。
二、同角的正弦值、余弦值、正切值间的关系式1、商数关系:tanA=sinA/cosA;tanB=sinB/cosB.2、平方关系:同一个锐角的‘正弦的平方’与‘余弦的平方’的和为1,即(sinA)^2+(cosA)^2=1;(sinB)^2+(cosB)^2=1.3、倒数关系:tanA·cotA=1;tanB·cotB=1.【注】“cotA”称为为∠A的余切,它等于∠A的邻边比上∠A的对边。
锐角的三角函数值

锐角的三角函数值(4)——一般锐角的三角函数值导学目标:会使用计算器求锐角三角函数值,会使用计算器根据锐角三角函数值求对应的锐角。
一自主预习:1.在利用计算器求一个锐角的三角函数值时,应先使计算器设置在”“状态.标志是屏幕上显示 .2.sin-1,cos-1,tan-1键是表示由求锐角度数的功能键3.求sin400的值的按键顺序是什么?4.求值(精确到0.0001)⑴cos34035/⑵tan66015/17//二.合作探究:探究点1:求一个锐角的三角函数值。
我们知道sin300=,那么sin3002/是多少呢?说明:⑴用计算器求一个角的三角函数值时,首先要把计算器设置在“角度”状态下,也就是在计算器的显示屏上出现“DEG”的字样。
⑵在角度单位状态为度的情况下,先输入数据,再按sin,cos,tan键可以直接求出一个角的正弦,余弦,正切值了例1:用计算器求下列各三角函数的值(精确到0.001)⑴sin240⑵tan63027/ ⑶cos18059/27//例2.用计算器求:①sin100,sin200,sin300,……sin900的值.②cos100,cos200,cos300,……,cos900的值.③tan100,tan200,tan300,……,tan900的值.⑵根据所求结果总结:①随角度变化函数值的变化规律。
②同角的正余弦函数值间的关系⑵比较大小:①sin72032/ 620 ; ②cosa cosβ (a<β,a,β为锐角)⑶sin12012/ cos78030探究点二:已知三角函数值求锐角。
例.根据下列条件求∠A 的度数(用度,分,秒表示)⑴cosA=o.6753 ⑵tanA=87.54 ⑶sinA=0.4553说明:计算器中sin-1,cos-1,tan-1,这些键的功能是由正弦值,余弦值,正切值求锐角的度数。
在角度状态为“度“的情况下,求锐角时,先输入数据,再按2ndF键,再按sin-1,cos-1,tan-1键,即可得到相应的角度。
特殊角的三角函数值及用计算器求角的三角函数值

(1)我们要用到科学计算器中的 键: sin cos tan
(2)按键顺序
◆如果锐角恰是整数度数时,以 “求sin18°”为例,按键顺序如下:
按键顺序 显示结果
sin18°
sin 18 sin18
0.309 016 994
∴ sin18°= 0.309 016 994≈0.31
1、用科学计算器求一般锐角的三角函数值:
7
4
=
显示结果
17.30150783
如果再按“度分秒健”就换算成度分 秒, °′″
即∠ α=17o18’5.43”
2.熟练掌握用科学计算器由已知三角函
数值求出相应的锐角.
例如:sin A=0.9816,∠A=
;
cos A=0.8607,∠A=
;
tan A=56.78,∠A=
。
小结 :
1.30°、45°、60°角的三角函数值, 并且进行计算;
(1)m的值;(2)∠A与∠B的度数.
活动4
当锐角A是特殊角时,可以求得这些角的正弦、余 弦、正切值;如果锐角A不是这些特殊角,怎样得 到它的三角函数值呢?
我们可以用计算器来求锐角的三角函数值。 sin37°24′ sin37°23′ cos21°28′ cos38°12′
用科学计算器求一般锐角的三角函数值:
两块三角尺中有几个不同的锐 角?分别求出这几个锐角的正 弦值、余弦值和正切值.
60°
30° 45°
45°
设30°所对的直角边长为a,那么斜边长为2a
另一条直角边长= 2a2 a2 3a
sin 30o a 1 2a 2
30°
cos 30o 3a 3 2a 2
tan 30o a 3 3a 3
锐角三角函数知识点总结

锐角三角形必背知识点1 定义直角三角形中角A的正弦(sin),余弦(cos)和正切(tan)叫做角A的三角函数。
正弦(sin)等于对边比斜边;sinA=a/c余弦(cos)等于邻边比斜边;cosA=b/c正切(tan)等于对边比邻边;tanA=a/b锐角三角函数值的定义方法是在直角三角形中定义的,所以求锐角的三角函数值,要通过构造直角三角形来完成的,即把这个角放到某个直角三角形中。
2 特殊角的三角函数值角度30°45°60°正弦(sin) 1/2 √2/2 √3/2余弦(cos) √3/2 √2/2 1/2正切(tan) √3/3 1 √3(注θ是锐角:0<sinθ<1 0<cosθ<1 tanθ>0)3锐角三角函数值的符号及其变化规律1)锐角三角函数值都是正值。
2)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小);4同角三角函数基本关系式a a a tan cos sin ⋅=5互为余角的三角函数间的关系a a cos )90sin(=-a a sin )90cos(=-6 解直角三角形的基础知识在Rt ABC ∆中, 90=∠C ,A ∠,B ∠,C ∠所对的边分别为a ,b ,c(1) 三边之间的关系:222c b a =+(2) 锐角之间的关系:A ∠+B ∠=C ∠= 90(3) 边角之间的关系:c a A =sin ;c b A =cos ;ba A =tan ; c a B =cos ;c b B =sin ;ab B =tan (4) 面积公式:ch ab S 2121==∆(h 为斜边上的高) 7 解直角三角形的基本类型及其解法如下表:解直角三角形的思路可概括为“有斜(斜边)用弦(正弦、余弦),无斜用切(正切),宁乘勿除,取原避中”。
锐角三角函数。

锐角三角函数。
锐角三角函数是数学中的一个重要概念,它在解决三角函数问题时起着关键作用。
锐角指的是小于90度的角,锐角三角函数包括正弦、余弦和正切三种函数,它们分别表示了锐角三角形中的比例关系。
下面我们将逐一介绍这三种函数的定义和性质。
1. 正弦函数(sine function)正弦函数是锐角三角函数中最常见的一种函数,它表示了锐角三角形中的对边与斜边之间的比例关系。
设锐角为θ,对边长度为a,斜边长度为h,则正弦函数的定义为sinθ = a/h。
正弦函数的取值范围是[-1, 1],当θ为0度时,正弦函数的值为0;当θ为90度时,正弦函数的值为1。
2. 余弦函数(cosine function)余弦函数也是锐角三角函数中常用的一种函数,它表示了锐角三角形中的邻边与斜边之间的比例关系。
设锐角为θ,邻边长度为b,斜边长度为h,则余弦函数的定义为cosθ = b/h。
余弦函数的取值范围也是[-1, 1],当θ为0度时,余弦函数的值为1;当θ为90度时,余弦函数的值为0。
3. 正切函数(tangent function)正切函数是锐角三角函数中最特殊的一种函数,它表示了锐角三角形中的对边与邻边之间的比例关系。
设锐角为θ,对边长度为a,邻边长度为b,则正切函数的定义为tanθ = a/b。
正切函数的取值范围是(-∞, +∞),当θ为0度时,正切函数的值为0;当θ为45度时,正切函数的值为1。
锐角三角函数在数学和物理中有着广泛的应用。
例如,在三角函数的图像中,正弦函数和余弦函数是周期函数,它们的图像呈现出波浪形状,常用于描述周期性的现象;而正切函数则常用于描述角度的变化率,例如在物体运动的分析中。
除了上述三种常见的锐角三角函数外,还有其余的三角函数,如余切函数、正割函数和余割函数,它们的定义和性质与前述三种函数类似,但使用频率相对较低。
在实际问题中,锐角三角函数可以用于解决各种与角度相关的计算和分析问题。
例如,可以利用正弦函数计算在斜面上物体的下滑速度,利用余弦函数计算在斜面上物体的压力分量,利用正切函数计算两个物体之间的相对速度等等。