【教案】 一般角的三角函数值(3)

合集下载

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。

任意角的三角函数的定义教案

任意角的三角函数的定义教案

教 案课题:《任意角的正弦函数、余弦函数、和正切函数》教学目标:1.掌握任意角的三角函数的定义;2.任意角的三角函数和锐角的三角函数的联系和区别;3.理解角的三角函数值与角终边上点的位置无关;4.正弦函数、余弦函数、正切函数的定义域;5.已知角α终边上一点,会求角α的各三角函数值。

教学重点:1. 任意角的三角函数的定义;2. 运用任意角的三角函数的定义求函数值。

教学难点:理解角的三角函数值与角终边上点的位置无关;教学方法:1. 情境教学法;2. 问题驱动教学法。

教学过程:一、 复习引入(情境1)前面我们学习了角的概念的推广,通过推广,使角动了起来,同时把角的范围也突破了0度和360度的界限,角可为任意大小。

这节课我们要研究的问题是任意角的三角函数。

初中阶段我们学习了锐角的三角函数。

【问题1】在直角三角形中,锐角的三角函数是怎样定义的?(学生回答)【问题2】如图,在R t △ABC 中,求sin α,cos α,tan α。

(学生口答)sin α= cos α=tan α=二、 新授知识【目标一】任意角的三角函数的定义是什么?【情境二】事实上,锐角的三角函数定义,可以看作是在角的锐角的一边上任取一点,构造一个直角三角形,用直角三角形的边之比来定义。

我们可以看出,取的点不同,所构造的三角形的大小也不一样。

α的各三角函数值与所构造的三角形的A CB α sin BC AB α=cos AC AB α=tan BC AC α=3 4 535443大小有关吗?(无关,由三角形相似的性质可以得到。

)【情境三】角的概念推广之后,角可以是任意大小,把角放在直角三角形中定义它的三角函数显然已经达不到要求,必须寻求一种新的方法!前面我跟同学们暗示过:今后在研究任意角的相关时,我们常常把角放在坐标系里进行研究!【问题四】任意角在坐标系中是如何放置的?(学生回答)将角的顶点放在原点,始边与x轴正半轴重合。

角的终边可能会落在某一象限内,也可能在坐标轴上。

九年级数学上册 20.2 30°、45°、60°角的三角函数值教案 北京课改版(2021学年)

九年级数学上册 20.2 30°、45°、60°角的三角函数值教案 北京课改版(2021学年)

九年级数学上册20.2 30°、45°、60°角的三角函数值教案(新版)北京课改版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册20.2 30°、45°、60°角的三角函数值教案(新版)北京课改版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册20.2 30°、45°、60°角的三角函数值教案(新版)北京课改版的全部内容。

20.230°,45°,60°角的三角函数值一、教学目标1.通过探索,理解同角三角函数的关系。

(难点)2。

能够掌握互余两角三角函数的关系及特殊角的三角函数值。

(重点)3.运用所学的知识解决实际的问题。

二、课时安排1课时三、教学重点能够掌握互余两角三角函数的关系及特殊角的三角函数值。

四、教学难点通过探索,理解同角三角函数的关系.五、教学过程(一)导入新课当你走进公园游乐场,看到小孩荡秋千的情景,秋千时高时低,你是不是很想知道秋千摆至最高位置和其摆至最低位置的高度差是多少?如图所示,一个小孩荡秋千,秋千链子的长度为2。

5m,当秋千向两边摆动时,摆角恰好为60°,且两边摆动的角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差(结果精确到0。

01m)(二)讲授新课活动1:小组合作1.锐角三角函数的定义直角三角形中边与角的关系:锐角三角函数。

2.在直角三角形中,若一个锐角确定,那么这个角的对边,斜边和邻边之间的比值也随之确定。

sinA=a/c,cosA=b/c,sinB=b/c, cosB=a/c3。

三角函数的定义教案

三角函数的定义教案

三角函数的定义教案使学生理解并掌握三角函数线的作法,能利用三角函数线解决一些简单问题. 2.培养学生分析、探索、归纳和类比的能力,以及形象思维能力。

下面是我给大家整理的三角函数的定义教案5篇,希望大家能有所收获!三角函数的定义教案1教学准备教学目标1、知识与技能(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。

2、过程与方法通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。

3、情感态度与价值观通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。

教学重难点重点:感受周期现象的存在,会判断是否为周期现象。

难点:周期函数概念的理解,以及简单的应用。

教学工具投影仪教学过程【创设情境,揭示课题】同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。

众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。

再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。

所以,我们这节课要研究的主要内容就是周期现象与周期函数。

(板书课题)【探究新知】1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。

请你举出生活中存在周期现象的例子。

(单摆运动、四季变化等)(板书:一、我们生活中的周期现象)2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:①如何理解“散点图”?②图1-1中横坐标和纵坐标分别表示什么?③如何理解图1-1中的“H/m”和“t/h”?④对于周期函数的定义,你的理解是怎样?以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x 必须是定义域内的任意值;f(x+T)=f(x)。

三角函数教案优秀3篇

三角函数教案优秀3篇

三角函数教案优秀3篇角函数教学设计篇一教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。

锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。

研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。

本章内容与已学#39;相似三角形#39;#39;勾股定理#39;等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。

学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。

难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。

至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。

第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力。

情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。

重难点:1.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实。

2.难点与关键:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。

30度45度60度角的三角函数值教案

30度45度60度角的三角函数值教案

30度45度60度角的三角函数值教案教案:30度,45度,60度角的三角函数值教学目标:1.理解三角函数的定义和意义;2.掌握30度、45度、60度角的正弦、余弦和正切值;3.了解三角函数在解决实际问题中的应用。

教学准备:1.三角函数表;2.视频或幻灯片展示素材。

教学步骤:第一步:引入(10分钟)1.绘制一个单位圆,并解释三角函数的概念,正弦、余弦和正切的定义。

2.引导学生思考为何要用度数计量角度。

第二步:正弦、余弦和正切的定义(20分钟)1.指导学生参考三角函数表,让他们发现30度、45度、60度角的特殊性。

2.解释正弦、余弦和正切的定义,并引导学生计算出这些角度的三角函数值。

第三步:讨论特殊角的三角函数值(30分钟)1.引导学生思考三角函数在特殊角度上的取值,并整理出有关30度、45度、60度角的三角函数值。

2.通过视频或幻灯片展示特殊角的三角函数值,帮助学生更好地理解和记忆。

第四步:解决实际问题(30分钟)1.提供一些实际问题,让学生应用特殊角的三角函数值解决问题,例如船上的倾斜角度、射击运动中的角度问题等。

2.引导学生思考如何将实际问题转化为三角函数的问题,并找到相应的三角函数值进行计算。

第五步:巩固练习与总结(10分钟)1.提供一些练习题,让学生巩固30度、45度、60度角的三角函数值的计算。

2.总结本节课的内容,让学生分享自己的收获和困惑。

教学扩展:1.引导学生进一步思考三角函数值的变化规律,例如正弦和余弦的周期性。

2.引导学生通过计算机软件或在线资源,探索其他特殊角的三角函数值。

教学评价与反思:1.练习题的完成情况;2.学生对特殊角三角函数值的掌握程度;3.学生对实际问题解决的能力。

总结:通过本节课的学习,学生了解了30度、45度、60度角的三角函数值,并学会了如何利用特殊角的三角函数值解决实际问题。

同时,也引导学生思考三角函数值的定义和变化规律,培养了学生的数学思维和解决问题的能力。

30°,45°,60°角的三角函数值教案(完美版)

30°,45°,60°角的三角函数值教案(完美版)

:麦群超度数.2.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【过程与方法】1.培养学生把实际问题转化为数学问题的能力.2.培养学生观察、比较、分析、概括的能力.【情感、态度与价值观】经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性,感受数学说理的必要性、说理过程的严谨性,养成科学、严谨的学习态度. 重点难点 【重点】30°、45°、60°角的三角函数值. 【难点】 与特殊角的三角函数值有关的计算. 教学进程 一、复习巩固教师多媒体课件出示:如图所示:在Rt △ABC 中,∠C=90°.(1)a 、b 、c 三者之间的关系是 ; (2)sinA= ,cosA= , tanA= ;sinB= ,cosB= , tanB= .(3)若∠A=30°,则= . 学生回答.二、共同探究,获取新知学生讨论,交流想法.生:我们组设计的方案如下:让一位同学拿着三角尺站在一个适当的位置B处,这位同学拿起三角尺,使她的视线恰好和斜边重合且过树梢C点,30°角的邻边和水平方向平行,用卷尺测出AB的长度、BE的长度,因为DE=AB,所以只需在Rt△CDA中求出CD的长度即可.师:在Rt△ACD中,∠CAD=30°,AD=BE,BE是已知的,设BE=a米,则AD=a米,如何求CD呢?生:含30°角的直角三角形有一个非常重要的性质:30°的角所对的直角边等于斜边的一半,即AC=2CD,根据勾股定理,得(2CD)2=CD2+a2.解得,CD=a.则树的高度即可求出.师:我们前面学习了三角函数的定义,如果一个角的大小确定,那么它的正切、正弦、余弦值也随之确定,如果能求出30°角的正切值,在上图中,tan30°==,则CD=atan30°,岂不简单!你能求出30°角的三个三角函数值吗?2.讲授新课.(1)探索30°、45°、60°角的三角函数值.师:观察一副三角尺,其中有几个锐角?它们分别等于多少度?生:一副三角尺中有四个锐角,它们分别是30°、60°、45°、45°.师:sin30°等于多少呢?你是怎样得到的?与同伴交流.生:sin30°=.sin30°表示在直角三角形中,30°角的对边与斜边的比值,与直角三角形的大小无关.我们不妨设30°角所对的边长为a(如图所示),根据“直网友可以在线阅读和下载这些文档让每个人平等地提升自我By :麦群超生:cos30°=2323=a a .tan30°=33313==a a . 师:我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?生:求60°角的三角函数值可以利用求30°角的三角函数值的三角形.因为30°角的对边和邻边分别是60°角的邻边和对边.利用上图,很容易求得sin60°=2323=a a ,cos60°=212=a a ,tan60°=33=a a .师生共同分析:我们一起来求45°角的三角函数值.含45°角的直角三角形是等腰直角三角形.如图,设其中一条直角边为a,则另一条直角边也为a,斜边为a.由此可求得sin45°=22212==a a, cos45°=22212==aa, tan45°=aa=1. 教师多媒体课件出示:三角函数 角度α sin αcos αtan α30° 21 23 33 45°22221By :麦群超要能够根据30°、45°、60°角的三角函数值说出相应的锐角的大小.为了帮助大家记忆,我们观察表格中函数值的特点.先看第一列30°、45°、60°角的正弦值,你能发现什么规律呢?生:30°、45°、60°角的正弦值分母都为2,分子从小到大分别为、、,随着角度的增大,正弦值在逐渐增大.师:再来看第二列的函数值,有何特点呢?生:第二列是30°、45°、60角的余弦值,它们的分母也都是2,而分子从小到大分别为、、,余弦值随角度的增大而减小.师:第三列呢?生:第三列是30°、45°、60°角的正切值,首先45°角是等腰直角三角形中的一个锐角,所以tan45°=1比较特殊.师:很好!掌握了上述规律,记忆就方便多了.下面同桌之间可互相检查一下对30°、45°、60°角的三角函数值的记忆情况.相信同学们一定会做得很棒!(2)进一步探究锐角的三角函数值. 如图,在Rt △ABC 中,∠C=90°.∵sinA=c a ,cosA=c b,sinB=c b ,cosB=ca ,∴sinA=cosB,cosA=sinB. ∵∠A+∠B=90°, ∴∠B=90-∠A,即 sinA=cosB=cos(90°-∠A), cosA=sinB=sin(90°-∠A).任意一个锐角的正(余)弦值,等于它的余角的余(正)弦值. 三、例题讲解,巩固新知【例1】 计算:网友可以在线阅读和下载这些文档让每个人平等By (sin60°)2,cos 260°表示(cos60°)2;教师找两生板演,其余同学在下面做,然后集体订正得到:解:(1)sin30°+cos45°=21+22=221 ;(2)sin 260°+cos 260°-tan45° =(23)2+(21)2-1 =43+41-1 =0.【例2】 一个小孩荡秋千,秋千链子的长度为2.5 m,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m) 分析:引导学生自己根据题意画出示意图,培养学生把实际问题转化为数学问题的能力.解:根据题意(如图)可知, ∠BOD=60°,OB=OA=OD=2.5 m,∠AOD=21×60°=30°,∴OC=OD ·cos30° =2.5×23≈2.165(m). ∴AC=2.5-2.165≈0.34(m).所以,最高位置与最低位置的高度差约为0.34 m. 四、随堂练习【答案】B2.下列各式中,正确的是( )A.sin20°+sin55°=sin75°B.tan80°-tan50°=tan30°C.2cos60°=1D.cos60°-cos30°=cos30°【答案】C 3.计算:(1)sin60°-tan45°; (2)cos60°+tan60°;(3)sin45°+sin60°-2cos45°.【答案】(1)原式=23-1=223-; (2)原式=21+3=223+;(3)原式=22+23-2×22=223-. 7.某商场有一自动扶梯,其倾斜角为30°,高为7 m.扶梯的长度是多少?【答案】扶梯的长度为=︒30sin 7=14(m),所以扶梯的长度为14 m.五、课堂小结本节课总结如下:1.探索30°、45°、60°角的三角函数值. sin30°=21,sin45°=22,sin60°=23;cos30°=23,cos45°=22,cos60°=21;教学反思本节课的教学中,课堂环节设置齐全,能很好地贯彻执行理解教育,对理解教育的教育模式把控较好;课堂中学生分组很好,能给学生构建一个宽松、和谐的学习环境和氛围;课件制作很好,能很好的配合指导自学书的使用,提高了课堂的效率;学生积极参与,学习积极性较高;课堂习题的设置有梯度,题目能面向全体学生.。

30度45度60度角的三角函数值教案

30度45度60度角的三角函数值教案

30度45度60度角的三角函数值教案教案:30度,45度,60度角的三角函数值一、教学目标:1.了解和掌握30度,45度,60度角的三角函数值;2.能够灵活运用三角函数值求解实际问题。

二、教学重点和难点:1.掌握30度,45度,60度角的正弦、余弦和正切函数值;2.能够运用三角函数值求解实际问题,拓展思维。

三、教学过程:1.导入(5分钟):通过问题导入,激发学生对三角函数值求解的兴趣。

例如:一棵高大的树离我们有多远?我们应该如何用三角函数值来求解?2.概念解释(10分钟):介绍正弦、余弦、正切的基本概念和定义。

并通过图示解释三角函数值的意义。

3.认识30度、45度、60度角(15分钟):通过正三角形的边长关系引导学生认识30度、45度、60度角的特殊性质,并指导学生观察和推理三角函数值的规律。

4.求解30度、45度、60度角的三角函数值(20分钟):讲解和推导30度、45度、60度角的正弦、余弦、正切函数值,并给予大量的例题训练以巩固。

5.实际应用(20分钟):通过生活中实际问题的引入,让学生运用三角函数值去解决实际问题。

例如:人站在一座山的底部,仰望山顶的高度为100米,那么他离山脚有多远?6.综合运用(20分钟):设计综合运用的练习题,通过多种角度的综合运用,激发学生的思维能力和创造力。

7.拓展思维(10分钟):给予拓展思维问题,引导学生运用已学的知识去解决较为复杂的问题。

8.总结(10分钟):对本堂课所学内容进行总结,并强调重点、难点。

四、教学反思:1.教学过程中,通过问题导入和实际应用,有效激发了学生的学习兴趣,提高了学习的积极性;2.在教学中采用了多种教学方式,例如图示、例题训练以及实际应用和拓展思维问题,使学生能够更加深入理解并运用所学知识;3.在课堂中留出了充足的时间给学生思考和解决问题,有利于培养学生的创造思维和实际运用能力;4.教师在讲解过程中要注重引导学生发现规律和解决问题的思路,培养学生的自主学习能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

28.1.4 一般角的三角函数值
一、教学目标
(一)知识与技能
使学生会查“正弦和余弦表”、“正切和余切表”,即由已知锐角求正弦、余弦、正切、余切值.使学生会根据一个锐角的正弦、余弦、正切、余切值,查出这个锐角的大小.
(二)过程与方法
逐步培养学生观察、比较、分析、概括等逻辑思维能力.
(三)情感态度与价值观
培养学生良好的学习习惯.
二、重、难点
重点:“正弦和余弦表” 、“正切和余切表”的查法.
难点:当角度在0°~90°间变化时,正弦值、余弦值、正切值、余切值随角度变化而变化的规律.
三、教学步骤
(一)明确目标
1.复习提问
1)30°、45°、60°的正弦值和余弦值、正切值和余切值各是多少?请学生口答.
2)任意锐角的正弦(余弦)与它的余角的余弦(正弦)值之间的关系怎样?一个锐角的正切(余切)与其余角的余切(正切)之间具有什么关系.
(二)整体感知
我们已经求出了30°、45°、60°这三个特殊角的正弦值和余弦值、正切值和
余切值,但在生产和科研中还常用到其他锐角的正弦值和余弦值、正切值和余切值,为了使用上的方便,我们把0°—90°间每隔1′的各个角所对应的正弦值和余弦值、正切值和余切值(一般是含有四位有效数字的近似值),列成表格——
正弦和余弦表、正切和余切表.本节课我们来研究如何使用正弦和余弦表、正切和余切表.
(三)重点、难点的学习与目标完成过程
1.“正弦和余弦表”简介
学生已经会查平方表、立方表、平方根表、立方根表,对数学用表的结构与查法有所了解.但正弦和余弦表与其又有所区别,因此首先向学生介绍“正弦和余弦表”.
(1)“正弦和余弦表”的作用是:求锐角的正弦、余弦值,已知锐角的正弦、余弦值,求这个锐角.
2)表中角精确到1′,正弦、余弦值有四位有效数字.
2.请学生观察“正切和余切表”的结构,并用语言加以概括.
答:正切表在76°~90°无修正值,余切表在0°~14°无修正值.其余与正弦和余弦表类似,对于正切值,随角度的增大而增大,随角度的减小而减小,而余切值随角度的增大而减小,随角度的减小而增大.
3.凡表中所查得的值,都用等号,而非“≈”,根据查表所求得的值进行近似计算,结果四舍五入后,一般用约等号“≈”表示.
例1 查表求37°26′的正弦值.
学生在独自查表时,在正弦表顶端的横行里找不到26′,但26′在24′~30′间而靠近24′,比24′多2′,可引导学生注意修正值栏,这样学生可能直接得答案.教师这时可设问“为什么将查得的5加在0.6074的最后一个数位上,而不是0.607
4减去0.0005”.通过引导学生观察思考,得结论:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小).
解:37°24′=0.6074.
角度增2′值增0.0005
37°26′=0.6079.
在查表中,还应引导学生查得:
0°=0,90°=1.
根据正弦值随角度变化规律:当角度从0°增加到90°时,正弦值从0增加到1;当角度从90°减少到0°时,正弦值从1减到0.
可引导学生查得:
0°=1,90°=0.
根据余弦值随角度变化规律知:当角度从0°增加到90°时,余弦值从1减小到0,当角度从90°减小到0°时,余弦值从0增加到1.
例2 已知=0.2974,求锐角A.
学生通过上节课已知锐角查其正弦值和余弦值的经验,完全能独立查得锐角A,但教师应请同学讲解查的过程:从正弦表中找出0.2974,由这个数所在行向左查得17°,由同一数所在列向上查得18′,即0.2974=17°18′,以培养学生语言表达能力.
解:查表得17°18′=0.2974,所以
锐角A=17°18′.
例3 已知=0.7857,求锐角A.
分析:学生在表中找不到0.7857,这时部分学生可能束手无策,但有上节课查表的经验,少数思维较活跃的学生可能会想出办法.这时教师最好让学生讨论,在探讨中寻求办法.这对解决本题会有好处,使学生印象更深,理解更透彻.
若条件许可,应在讨论后请一名学生讲解查表过程:在余弦表中查不到0.7 857.但能找到同它最接近的数0.7859,由这个数所在行向右查得38°,由同一个数向下查得12′,即0.7859=38°12′.但=0.7857,比0.7859小0.0002,这说明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002对应的角度是1′,所以∠A=38°12′+1′=38°13′.
解:查表得38°12′=0.7859,所以:
0.7859=38°12′.
值减0.0002角度增1′
0.7857=38°13′,
即锐角A=38°13′.
例2 查表求下列正切值或余切值.
(1)53°49′;(2)14°32′.
学生有查“正弦和余弦表”的经验,又了解了“正切和余切表”的结构,完全可自行查表.在学生得出答案后,请一名学生讲解“我是怎样查表的”,教师板书:
解:(1)53°48′=1.3663
角度增1′值减0.0008.
53°49′=1.3671;
(2)14°30′=3.867
角度增2′值增0.009.
14°30′=3.858.
在讲解示范例题后,应请学生作一小结:查锐角的正切值类似于查正弦值,应“顺”着查,若使用修正值,则角度增加时,相应的正切值要增加,反之,角度减小时,相应的正切值也减小;查余切表与查余弦表类似,“倒”着查,在使用修正值时,角度增加,就相应地减去修正值,反之,角度减小,就相应地加上修正值.
(四)总结与扩展
1.请学生总结
本节课主要讨论了“正弦和余弦表”、“正切和余切表”的查法.了解正弦值,余弦值,正切值,余切值随角度的变化而变化的规律:当角度在0°~90°间变化时,正弦值、正切值随着角度的增大而增大,随着角度的减小而减小;当角度在0°~90°间变化时,余弦值、余弦值随着角度的增大而减小,随着角度的减小而增大.
2.“正弦和余弦表” 、“正切和余切表”的用处除了已知锐角查其正、余弦(切)值外,还可以已知正、余弦(切)值,求锐角,同学们可以试试看.
四、布置作业。

相关文档
最新文档