蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定实验报告

合集下载

神经干动作电位、传导速度以及不应期的测定

神经干动作电位、传导速度以及不应期的测定
给以刺激,根据其所引起的动作电位的幅值, 来判定神经兴奋性的变化。
不应期
S1
S2
t t1
t2
方法和步骤
➢ 急性动物实验制备蟾蜍 坐骨神经干标本 ▪ 分离坐骨神经干标本, 任氏液保持标本湿润
观察项目
• 记录随刺激强度增强而改变的双向复合动作电位。 • 测量动作电位的传导速度。 • 交换神经干两端的方向,观察复合动作电位变化,原理? • 夹伤神经干观察复合动作电位变化。 • 不应期观测。
区域测量 刺激伪迹
观察项目:动作电位传导的双向性
• 将神经干标本放置方向倒换 • 记录数据 :双相动作电位波形有无变化
双相动作电位幅度有无变化
观察项目:动作电位传导的速度
最大刺 激强度
观察项目:不应期
• 刺激器参数设置 • 细电压 • 双刺激 • 间隔减小 • 程控
实验目的
❖分离蟾蜍的坐骨神经,细胞外记录坐骨神 经干的单相和双相复合动作电位;
❖测定动作电位在神经干上的传导速度 ❖不应期的观察
实验原理-1
❖ 神经细胞(纤维)受到有效刺激(阈刺激,阈上刺激) 后,产生了动作电位,即兴奋,它是“全或无”的;
❖ 神经干由许多不同的神经细胞组成,众多神经细胞动作 电位的组合即形成复合动作电位;
• 动作电位传导速度=( r1-r2 )/ (t2 - t1)
0
实验原理-3
• 在两记录电极间夹伤神经干,双相动作电位变单相动作电 位;在两记录电极前夹伤神经干,动作电位消失;
0
实验原理——4
• 神经干动作电位不应期的观察 • 条件刺激(S1):引起神经兴奋。 • 测试刺激(S2):在前一兴奋过程的不同时相
❖ 复合动作电位能在神经干表面传导,顺序通过两根引导 电极,被记录到双向复合动作电位。

蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定实验报告

蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定实验报告

实验二蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定一、蟾蜍坐骨神经干动作电位引导及传导速度测定实验目的:加强理解兴奋传导的概念,掌握测定神经干动作电位传导速度的方法。

熟悉仪器设备的操作。

实验原理:通过测出示波器上动作电位传导的距离和传导所需的时间,计算传导速度,可以了解神经的兴奋状态。

1.潜伏期法:测量第一个通道动作电位潜伏期的时间t,输入刺激电极到第一个引导电极间的距离s,v=s/t。

2.潜峰法:测量两个通道的动作电位波峰间的时间差和两对引导电极间的距离,v=(s2-s1)/(t2-t1)。

实验步骤:1.制备坐骨神经-腓神经标本,放入神经屏蔽盒。

2.连接仪器,引导动作电位波形。

3.剪裁编辑图形,计算传导速度。

实验结果:1.(见图)2.计算S=10mm,t=0.33ms,v=10mm/0.33ms=33m/s分析讨论:1.我们通过对潜伏期法和潜峰法测定结果的比较,结合神经干的特性进行分析:动作电位的起点本质是神经干中传导速度最快的一类神经纤维传导兴奋到达记录点引起的,潜伏期法测量的速度本质是此类神经纤维的传导速度。

而潜峰法的形成本质是各种神经纤维兴奋相互叠加后最强的部分。

如果采用潜峰法测量,由于“迁延效应”代表的时间不够准确,不能代表神经干的传导速度,故应该采用潜伏期测量才更准确。

2,.兴奋以局部电流的方式沿着神经干表面传导,兴奋传播过程中造成引导电极下电位改变,故可记录到双相动作电位.通过两对引导电极可观察到兴奋由一对引导电极下传至另一对引导电极下所需时间,根据兴奋传播的距离和所需时间即可计算出传导速度.实验结论:本实验中测出神经干动作电位的传导速度为33m/s。

由实验可知,神经纤维在静息状态下受到有效刺激可产生动作电位,同一条神经干中不同的神经纤维兴奋性不完全相同,且在一次兴奋后兴奋性发生改变,兴奋以一定的速度在神经干表面传导,神经兴奋的传导依赖于神经纤维的完整性。

二、兴奋性不应期的测定实验目的:了解测定不应期的方法和原理,并加深对兴奋性在兴奋过程中的变化过程的理解。

生理实验报告!

生理实验报告!

生理实验报告!蟾蜍坐骨神经干动作电位的引导、传导速度和兴奋不应期的测定【实验目的】1. 观察蟾蜍坐骨神经动作电位的基本波形,加深理解兴奋传导的概念,理解可兴奋性在兴奋过程中的变化过程;2. 进一步掌握坐骨神经—腓神经标本的制备方法与引导动作电位的方法;3. 进一步熟悉实验室里仪器设备的操作。

【实验原理】1. 神经干动作电位是神经兴奋的客观标志。

当神经受到有效刺激时,处于兴奋部位的膜外电位负于静息部位,当动作电位通过后,兴奋处的膜外电位又恢复到静息时的水平。

神经干兴奋过程所发生的这种膜电位变化称神经复合动作单位。

如果将两个引导电极置于神经干表面时(双极引导),动作电位将先后通过两个引导电极,可记录到两个相反的电位偏转波形,称为双向动作电位;2. 神经纤维兴奋的标志是产生一个可传播的动作电位。

测定神经干上的神经冲动的传导速度,可以了解神经的兴奋状态。

在示波器上测量动作电位传导一定距离所耗费的时间,便可计算出兴奋的传导速度;3. 神经与肌肉等可兴奋组织的兴奋性在一次兴奋过程中可发生一系列变化,及绝对不应期、相对不应期、超常期和低常期,组织的兴奋性才可恢复。

为了测定神经干在兴奋过程中的兴奋性变化,可用双刺激法检查刺激引起的兴奋阙值和电位变化,即可观察到神经组织兴奋性的变化过程。

【实验对象】蟾蜍【实验器材】蛙类手术器械,BL-410生物信号记录分析系统,神经屏蔽盒,任氏液(林格液)等。

【实验步骤】制备蟾蜍坐骨神经-腓神经标本,并放入神经屏蔽盒内;(一)双相动作电位1.打开BL-410?实验项目?神经肌肉实验?神经干动作电位引导?记录出双相动作电位;2.由小到大改变刺激强度,记录阈强度和最大刺激强度;3.观察双相动作电位波形,测量最适刺激强度时的潜伏期、时程和波幅; (二)引导出最大刺激强度时的动作电位波形1.BL-410仪器操作:实验项目?神经肌肉实验?神经干动作电位传导速度测定?输入两电极之间的距离分别用潜伏期法和潜峰法测量其传导速度;2.潜伏期法:测量第一个通道动作电位潜伏期的时间(t),输入刺激电极到第一个引导电极间的距离(S),屏幕右上角显示传导速度和根据速度的公式计算传导速度:v=S/t;3.潜峰法:测量两个通道电位的动作电位的波峰间的时间差,为(t2-t1),测量并输入两对引导电极间的距离为(S2-S1),屏幕右上角显示传导速度和用公式计算传导速度:v=(S2-S1)/(t2-t1)。

动物生理实验报告

动物生理实验报告

实验名称:蟾蜍坐骨神经干复合动作电位(CAP)的测定实验目的:1. 确定蟾蜍坐骨神经干复合动作电位(CAP)的临界值和最大值。

2. 测定蟾蜍坐骨神经干CAP的传导速度。

3. 确定蟾蜍坐骨神经干CAP的不应期(相对不应期和绝对不应期)。

实验材料:1. 实验动物:蟾蜍(Bufo bufo gargarizans)2. 实验器材:生物信号采集系统RM6240,刺激电极,记录电极,接地电极,标本盒,手术器械,剪刀,镊子,刀片,生理盐水,酒精棉球等。

实验方法:1. 蟾蜍坐骨神经标本的制作:- 双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经。

- 游离大腿肌肉之间的坐骨神经干及其下行到小腿的两个分支:胫神经和腓神经。

- 三段结扎,剪去无关分支后离体。

- 注意保持神经湿润。

2. 神经标本的连接:- 将神经搭于标本盒内,保证神经与电极充分接触。

- 中枢端接触刺激电极S1和S2,外周端接触记录电极R1-R2,之间接触接地电极。

3. 刺激输出线的连接:- 刺激输出线两夹子分别连接标本盒的刺激电极S1和S2。

- 插头接生物信号采集系统RM6240的刺激输出插口。

4. 信号输入线的连接:- 信号输入倒显得红色和绿色夹子分别连接记录电极(绿色夹子在前,引导出正向波形,即出现的第一个波峰向上)。

- 黑色夹子连接接地电极,插头接通道1。

5. 实验步骤:- 设置刺激参数:刺激频率、刺激强度、时间间隔等。

- 记录蟾蜍坐骨神经干复合动作电位(CAP)的波形。

- 逐渐增加刺激强度,观察CAP波形的变化。

- 确定CAP的临界值和最大值。

- 逐渐增加刺激强度,观察CAP传导速度的变化。

- 确定CAP的传导速度。

- 逐渐增加刺激强度,观察CAP不应期的变化。

- 确定CAP的相对不应期和绝对不应期。

实验结果:1. CAP临界值和最大值:- 当刺激强度为1.0 mA时,CAP的临界值为0.6 mV。

- 当刺激强度为1.5 mA时,CAP的最大值为1.2 mV。

【2017年整理】蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定

【2017年整理】蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定

人体机能学实验报告姓名张立鑫2010221460 专业临床二系年级2010级班次4班赵文韬2010221470 日期2011年9月14日郑维金2010221473钟原2010221475【实验名称】蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定【实验目的】加深理解兴奋传导的概念,掌握测定神经干动作电位传导速度的方法。

熟悉仪器设备的操作。

【实验对象】蟾蜍【实验药品和器材】蛙类手术器械,BL-410生物信号记录分析系统,神经屏蔽盒,任氏液等。

【实验步骤及方法】(详见书P57.P58)1.坐骨神经—腓神经标本的制备。

2.将标本放入神经屏蔽盒,(注意刺激电极端为神经干的中枢端)。

3.仪器连接。

4.BL-410的操作。

【实验结果】1.神经干动作电位的引导2.坐骨神经干动作电位传导速度V=(S2-S1)/(t2-t1)实验测得两对引导电极之间的距离为1.6cm,两个通道的动作电位波峰间的时间差为0.60ms。

计算得到传导速度V=26.7m/s3.二次刺激在兴奋周期之后相对不应期受到二次刺激绝对不应期受到二次刺激二次刺激没有出现相应的动作电位。

【实验结论】实验测得两对引导电极之间的距离为1.6cm,两个通道的动作电位波峰间的时间差为0.60ms。

计算得到传导速度V=26.7m/s【讨论与分析】1.神经干不能太干也不能太湿,剥离完整后在任氏液体中稳定15分钟左右,取出用滤纸吸干周围的任氏液。

2.神经干放置在引导电极上时,尽量拉直,不能使它下垂或斜向放置,以免影响神经干长度测量准确性。

3.神经干要尽可能长,两个引导电极之间的距离越远,测量的传导速度就越准确。

运动与健康题目:体育锻炼对运动系统的影响指导老师:欧阳靜仁班级:热能092班姓名:林灿雄学号:200910814223摘要:这篇文章通过对人体运动系统组成的介绍,以及体育锻炼对运动系统的作用和影响的一点点描述,给平时不重视锻炼的人说明了体育锻炼的好处,希望能够有更多的人重视体育锻炼。

神经干动作实验报告

神经干动作实验报告

一、实验目的1. 了解神经干动作电位的基本原理和传导过程;2. 掌握神经干动作电位传导速度和不应期的测定方法;3. 分析神经干动作电位在不同条件下的变化规律。

二、实验原理神经干动作电位是指神经纤维在受到刺激时,产生的一系列电生理现象。

当神经纤维膜电位达到一定阈值时,钠离子内流,产生动作电位,进而引起邻近神经纤维的兴奋和传导。

本实验通过观察和测量神经干动作电位,了解其传导速度和不应期等参数。

三、实验材料1. 实验动物:蟾蜍;2. 实验器材:坐骨神经干标本、任氏液、刺激器、示波器、记录仪、玻璃分针、粗剪刀、眼科剪、眼科镊、培养皿、烧杯、滴管、蛙毁髓探针、BL-420N系统;3. 实验药品:2%普鲁卡因。

四、实验方法1. 制备坐骨神经干标本:将蟾蜍麻醉后,解剖出坐骨神经干,置于任氏液中,用玻璃分针轻轻挑起,去除周围组织;2. 安装电极:将刺激电极和记录电极分别固定在坐骨神经干的两端,连接BL-420N系统;3. 刺激和记录:启动刺激器,给予坐骨神经干一定强度的刺激,观察示波器上的波形,记录动作电位传导速度和不应期;4. 重复实验:改变刺激强度,重复实验,观察动作电位传导速度和不应期的变化规律。

五、实验结果1. 动作电位传导速度:在实验条件下,坐骨神经干动作电位传导速度约为15.2 m/s;2. 不应期:在实验条件下,坐骨神经干动作电位不应期约为0.5 ms;3. 刺激强度与传导速度的关系:随着刺激强度的增加,动作电位传导速度逐渐增加,但增加幅度逐渐减小;4. 刺激强度与不应期的关系:随着刺激强度的增加,动作电位不应期逐渐延长。

六、实验讨论1. 神经干动作电位传导速度的测定原理:神经干动作电位传导速度的测定原理是,通过测量动作电位在神经干上的传播距离和时间,计算出传导速度;2. 不应期的产生原因:神经干动作电位不应期的产生原因是,神经纤维在兴奋时,膜电位处于超极化状态,此时钠离子内流受到抑制,导致动作电位不能立即产生;3. 刺激强度与传导速度、不应期的关系:刺激强度与传导速度呈正相关,但并非线性关系;刺激强度与不应期呈正相关。

蟾蜍坐骨神经干动作电位的引导 (自动保存的)

蟾蜍坐骨神经干动作电位的引导 (自动保存的)

蟾蜍坐骨神经干动作电位的引导、传导速度和兴奋性不应期的测定一、实验目的1、熟悉仪器设备的操作。

2、掌握神经干动作电位的引导及传导速度的测定方法。

3、测定神经干不应期,理解可兴奋组织的兴奋性在兴奋过程中的变化过程。

二、实验原理1、将两个引导电极置于神经干表面时,动作电位将先后通过两个电极引导处,可记录到电位偏转波形。

2、在示波器上测量动作电位传导一定距离所耗费的时间,可计算出兴奋的传导速度。

3、神经与肌肉等可兴奋组织的兴奋性在一次兴奋过程中可发生一系列变化,即绝对不应期、相对不应期、超常期和低常期,组织的兴奋性才逐渐恢复。

可先给一个条件刺激以引起兴奋,然后再用另一检验性刺激在前一兴奋的不同时相给予刺激,检查神经对检验性刺激反应的兴奋阈值以及所引起的动作程度,即可观察到神经组织兴奋性的变化过程。

三、实验对象:蟾蜍。

四、实验器材:蛙类手术器械,BL-410生物信号记录分析系统,神经屏蔽盒,任氏夜等。

五、实验步骤1、制备蟾蜍坐骨神经干标本(1)脊髓捣毁法处死蟾蜍,剪除躯干上部和内脏,注意勿损伤到坐骨神经,仅留下下后肢、骶骨、脊柱和坐骨神经。

(2)剥皮:握住脊柱断面(不要触碰神经),剥掉蟾蜍的皮肤。

(3)游离坐骨神经:沿脊柱一侧用玻璃探针分离坐骨神经,将其结扎并剪断。

再将坐骨神经大腿部分从坐骨神经沟中游离出来,将坐骨神经一直游离到腘窝处。

(4)游离腓神经,在此过程中动作要轻,切勿损伤神经。

2、仪器连接。

3、实验观察。

六、实验结果1、测量阈值。

能引起动作电位的最小刺激强度,称为刺激的阈值。

由实验统计可知,该坐骨神经干的阈值为0.300V,但是,该图中的波形不是怎么稳定,这可能与实验样本制作的质量有关。

2、(1)(2)(3)(4)图(1)为潜峰法测得的神经干动作电位的传导速度,两个通道的动作电位波峰的时间差为t2-t1=0.6ms,两对引导电极间的距离为S2-S1=1.8cm.屏幕上显示的传导速度为28.3m/s,利用公式计算的传导速度v=(S2-S1)/(t2-t1)=30m/s.图(2)为双相动作电位图。

实验一神经干动作电位的引导,兴奋传导速度及不应期的测定

实验一神经干动作电位的引导,兴奋传导速度及不应期的测定

神经干动作电位、传导速度及不应期的测定【目的和原理】神经纤维的兴奋表现为动作电位的产生和传导,神经纤维上传导的动作电位通常称为神经冲动。

在神经细胞外表面,已兴奋部位带“负电”,未兴奋部位带“正电”,用引导电极引导出此电位差,输入到示波器,则可记录到动作电位的波形。

本实验用细胞外记录法,可引导出坐骨神经的复合动作电位。

神经纤维兴奋的标志是产生一个可以传导的动作电位,它依局部电流或跳跃传导的方式沿神经纤维传导。

其传导速度取决于神经纤维的直径、内阻、有无髓鞘等因素,可用电生理学方法来记录和测量。

神经纤维在一次兴奋过程中,其兴奋性可发生周期性变化,包括绝对不应期、相对不应期、超常期和低常期。

本实验主要目的是学习电生理仪器的使用方法,掌握离体神经干动作电位的细胞外记录法及其基本波形的判断和测量。

掌握神经干动作电位传导速度及其不应期的测定方法,通过调整条件刺激和测试刺激之间的时间间隔,来测定坐骨神经干的绝对不应期。

【实验对象】蟾蜍或蛙。

【实验器材和药品】蛙类手术器械一套、电子刺激器、示波器(或计算机实时分析系统)、神经屏蔽盒、任氏液。

【实验步骤】1.制备坐骨神经——胫、腓神经标本操作方法详见3.8。

2.连接装置(见图8-1-1)。

3.准备仪器:(1)刺激器:调节刺激器各项参数:刺激方式连续刺激,频率16Hz,刺激强度0.5v,波宽0.1ms。

调节延迟使动作电位的图像位于示波器荧光屏的中央。

(2)示波器:灵敏度:1~2mv/cm,扫描速度:1~2ms/cm,引导电极输入到示波器的“AC”端,双边输入,刺激器的“同步输出”接示波器“外触发输入”,触发选择设置为“同步触发”。

4.观察项目:图8-1-1 神经干动作电位引导装置图(1)测量单、双相动作电位的潜伏期、时程和振幅,填入下表:(2)测算动作电位的传导速度:V=S/△t (米/秒)式中:S为R1到R3的神经干长度,以米为单位。

t为上、下线动作电位起点的时间差,以秒为单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定
一、蟾蜍坐骨神经干动作电位引导及传导速度测定
实验目的:加强理解兴奋传导的概念,掌握测定神经干动作电位传导速度的方法。

熟悉仪器设备的操作。

实验原理:通过测出示波器上动作电位传导的距离和传导所需的时间,计算传导速度,可以了解神经的兴奋状态。

1.潜伏期法:测量第一个通道动作电位潜伏期的时间t,输入刺激电极到第一个引导电极间的距离s,v=s/t。

2.潜峰法:测量两个通道的动作电位波峰间的时间差和两对引导电极间的距离,v=(s2-s1)/(t2-t1)。

实验步骤:1.制备坐骨神经-腓神经标本,放入神经屏蔽盒。

2.连接仪器,引导动作电位波形。

3.剪裁编辑图形,计算传导速度。

实验结果:1.(见图)
2.计算
S=10mm,t=0.33ms,v=10mm/0.33ms=33m/s
分析讨论:
1.我们通过对潜伏期法和潜峰法测定结果的比较,结合神经干的特性进行分析:动作电位的起点本质是神经干中传导速度最快的一类神经纤维传导兴奋到达记录点引起的,潜伏期法测量的速度本质是此类神经纤维的传导速度。

而潜峰法的形成本质是各种神经纤维兴奋相互叠加后最强的部分。

如果采用潜峰法
测量,由于“迁延效应”代表的时间不够准确,不能代表神经干的传导速度,故应该采用潜伏期测量才更准确。

2,.兴奋以局部电流的方式沿着神经干表面传导,兴奋传播过程中造成引导电极下电位改变,故可记录到双相动作电位.通过两对引导电极可观察到兴奋由一对引导电极下传至另一对引导电极下所需时间,根据兴奋传播的距离和所需时间即可计算出传导速度.
实验结论:本实验中测出神经干动作电位的传导速度为33m/s。

由实验可知,神经纤维在静息状态下受到有效刺激可产生动作电位,同一条神经干中不同的神经纤维兴奋性不完全相同,且在一次兴奋后兴奋性发生改变,兴奋以一定的速度在神经干表面传导,神经兴奋的传导依赖于神经纤维的完整性。

二、兴奋性不应期的测定
实验目的:了解测定不应期的方法和原理,并加深对兴奋性在兴奋过程中的变化过程的理解。

实验原理:神经纤维受到适宜刺激后,产生兴奋,即动作电位。

一次兴奋产生后,必须经绝对不应期、相对不应期、超常期等变化后,兴奋性才能恢复。

本实验中先给一个条件刺激,再用另一个检验刺激在兴奋的不同时期给予刺
激,检查神经对检验性刺激反应的兴奋阈值及所引起动作电位的幅度。

即可观察到神经组织兴奋性的变化过程。

实验步骤:
1.制备坐骨神经-腓神经标本,并浸在任氏液中,待其兴奋性稳定后实验。

2.连接仪器,设置实验参数,观察并测量神经干的不应期。

实验结果:(见图)
分析讨论:
1.刺激引起组织兴奋必须在三方面达一定值,即一定的刺激强度,一定刺激持续时间及强度/时间变化率,本实验固定时间和强度/时间变化率,用连续两次同样的刺激作用神经干,观察第二次刺激能刚好能引起动作电位产生的时间即为绝对不应期,第二次刺激刚好能引起相同大小的动作电位则可测出相对不应期.
2.一条神经干中有无数条神经纤维,每条神经纤维的直径和长度不同,膜特性也不完全一样,故兴奋性不同,阈值各异,而本实验记录到的双相动作电位是神经干中各条神经纤维动作电位的复合表现,故随着刺激强度的增大双相动作电位幅度也增大.
3.神经纤维传导兴奋需要神经具有生理完整性,即结构和功能完整,
4.神经干结扎棉线不要留得太长,以免引起干扰信号,调整接地电极的位置可减小刺激伪迹的干扰作用,如果实验中未能引导出动作电位曲线,可检查以下项目::(1)坐骨神经干在分离过程中是否损伤(2)刺激电极的极性是否接反(3)引导电极是否接上或神经标本是否与引导电极接触良好(4)记录系统灵敏度是否调到一定大小。

实验结论:兴奋性的不应期包括绝对不应期、相对不应期、超常期、低常期。

相关文档
最新文档