勾股定理2
广义勾股定理 (2)

广义勾股定理张祖华平阴县职业教育中心山东平阴 250400摘要:本文进一步推广了数学通报上的勾股定理,给出了非直角三角形下的勾股定理,该定理涵盖了勾股定理,进一步涵盖了余弦定理。
关键词:勾股定理相似欧几里得十大公式在初中数学教学中,勾股定理自三角形内角和定理以来,以大宗师手法极其简洁地阐明了直角三角形三边关系,深具形式美与内容美的统一性。
国际数学大师华罗庚有一段名言:“数与形,本是相倚依,焉能分作两边飞。
数无形时少直觉,形无数时难入微。
数形结合百般好,隔离分家万事休。
切莫忘…”。
而勾股定理开辟了数形结合百般好的先河。
勾股定理的定义参阅下图:据百度百科介绍,勾股定理有下述意义:1.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;2.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;3.勾股定理是中学数学四大思想之一—数形结合思想的璀璨瑰宝.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用.1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。
【1】公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。
古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。
【2】勾股定理又为初中数学的重点之一,是高中数学不可或缺的一块宝物,譬如余弦定理,又如两点间的距离公式,或如三角函数的定义公式,无一不与之息息相关。
对于该定理,古代伟大的几何学家欧几里得发现了名垂千古的欧几里得证法。
著名学者张劲松给出了一个更为简洁的证明【3】。
本文在文献【3】【4】【5】【6】的基础上进一步推广了勾股定理,给出了非直角三角形下的勾股定理,该定理涵盖了勾股定理。
在上图中,与文献【3】构造方法相同,不妨设边c对应角最大,在c边上截取长度为b的线段,然后做C角的等角变换,易得a2 +bc +bx –cx =c2以上即为广义勾股定理,当x=b时即为勾股定理,当x取特定值时,即为余弦定理。
八年级上预科四讲-勾股定理的应用二

BD 2 CD 2 2 AD 2 。
16、如图,有一块塑料矩形模板 ABCD,长为 8cm,宽为 4cm,将你手中足够大的直角三角板 PHF 的直角顶点 P 落在 AD 边上(不与 A、D 重合),在 AD 上适当移动三角 板顶点 P:能否使你的三角板两直角边分别通过点 B 与
点 C?若能,(1) 求 BP+CP 的值(2) 请你求出这时 AP 的长。
17.在 Rt△ABC 中,∠C=90°,若 a:b=3:4,c=20,
则 a=
,b=
.
18.如图,在△ABC 中,AB=AC,AD 是△ABC 的角
平分线,若 BC=10,AD=12,则 AC=
.
19.如图,已知四边形 ABCD 中,AB=20cm,BC=15cm,CD=7cm,AD=24cm,
4
底面的直径。一蚂蚁从点 A 出发,沿着圆柱的侧面爬行到点 C,试
求出爬行的最短路程。
C
3)、如图,有一个圆柱体,底面周长为 20 ㎝,高 AB 为 10 ㎝,在
圆柱的下底面 A 点处有一只蚂蚁,它想绕圆柱体侧面一周爬行到
它的顶端 C 点处,那么它所行走的路程是多少?
4)、如图,假如这是一个圆柱体的玻璃杯, AD 是杯底直径,C 是 A 杯口一点,其他已知条件不变,蚂蚁从外部点 A 处爬到杯子的内 壁到达高 CD 的中点 E 处,最短该走多远呢?(杯子的厚度不计) 5)、为筹备迎新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,
(A)11
(B)10
(C)9
(D)8
5. 若三角形三边长为 a、b、c,且满足等式 (a b)2 c 2 2ab ,则此三角形是( ).
鲁教版(五四制)七年级上册3.1探索勾股定理(二) 优质教案

课题鲁教版七年级数学(上)第三章 1.探索勾股定理(二)作者及工作单位教材分析《探索勾股定理》是鲁教版七年级上册第三章第一节,本节有二课时,本课是第二课时,主要内容是探索勾股定理的证明。
勾股定理是直角三角形三边之间的一种美妙关系,将数与形密切联系起来,在几何学中占有非常重要的位置。
同时勾股定理在生产、生活中也有很大的用途。
勾股定理是反映自然界基本规律的一条重要的结论,它有着广泛的应用,通过对勾股定理的学习,学生将在原有的基础上对直角三角形有进一步的认识和理解。
同时在勾股定理的探索中,让学生发展合情推理能力,为以后的学习打下基础。
因为勾股定理的出现,使数学从单一的纯计算进入了几何图形的证明,所以为了让学生感受数形结合这一数学思想,让学生亲自动手,互相协作,因此引入了“等积法”证明勾股定理。
学情分析学生经历了一年的初中学习,具备了一定的归纳、总结、类比、转化以及数学表达的能力,对现实生活中的数学知识充满了强烈的好奇心与探究欲,并能在老师的指导下通过小组成员间的互助合作,发表自己的见解。
另外,在学本节课时,通过前置知识的学习,学生对直角三角形有了初步的认识,并能从直观把握直角三角形的一些特征,为此在授课时要抓住学生的这些特点,激发学生学习数学的兴趣,建立他们的自信心,为学生空间观念的发展、数学活动经验的积累、个性的发挥提供机会。
教学目标知识与技能:1. 掌握勾股定理,初步理解割补拼接的面积证法.通过动手实践理解勾股定理的证明过程。
2. 能利用勾股定理进行简单的几何计算 过程与方法:通过实践、猜想、拼图、证明等操作深刻感受数学知识的发生发展过程 情感、态度、价值观:通过对勾股定理的历史介绍及交流,让学生体会它的文化价值,提高学习数学的兴趣和信心。
教学重点和难点重点:掌握勾股定理的内容及其初步应用 难点:勾股定理的证明教学过程教学环节教师活动学生活动和预设学生活动 设计意图一、 设情景问题, 引入课题1.名言激趣:数学是上帝用来书写宇宙的文字。
17.1 勾股定理(2)勾股定理的应用 参考解析

17.1 勾股定理第2课时勾股定理的应用课前预习1.应用勾股定理的前提条件是在直角三角形中.如果三角形不是直角三角形,要先构建直角三角形,再利用勾股定理求未知边的长.2.利用勾股定理可以解决与直角三角形有关的计算和证明,其主要应用如下:(1)已知直角三角形的任意两边求第三边;(2)已知直角三角形的任意一边,确定另外两边的关系;(3)证明包含平方关系的几何问题;(4)构造方程(或方程组)计算有关线段的长.3.一般地,n为正整数),通常是利用勾股定理作图.课堂练习知识点1 勾股定理的实际应用1.如图,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=___2___.2.【核心素养·数学抽象】如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要___7___米.3.(教材改编)如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑___0.5___米.【解析】在Rt△ACB中,根据勾股定理,得AC=22-=2.在2.5 1.5AB CB-=22Rt△ECD中,根据勾股定理,得CE=22-=1.5.∴AE=AC -ED CD2.52-=22CE=2-1.5=0.5.即滑竿顶端A下滑0.5米.故答案为0.5.4.如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度﹒于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线未端刚好接触地面.请你帮小旭求出风筝距离地面的高度AB.解:根据题意,得AC=AB+1,BC=5米.在Rt△ABC中,BC2+AB2=(1+AB)2.解得AB=12(米).答:风筝距离地面的高度AB 为12米.5.放学以后,小东和晓晓从学校分手,分别沿东南方向和西南方向回家,若小东和晓晓行走的速度都是40米/分钟,小东用15分钟到家,晓晓用20分钟到家,求小东和晓晓家的直线距离.解:根据题意作图,由图可知△ABO是直角三角形,OA=40×20=800(米),OB=40×15=600(米).在Rt△OAB中,根据勾股定理,得(米).答:小东和晓晓家的直线距离为1 000米.知识点2 在数轴上表示无理数6.(2020玉溪红塔区期末)如图,数轴上的点A表示的数是-2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为(C).7.用直尺和圆规在如图所示的数轴上作出表示解:∵32+22=13,3和2的直角三角形的斜边长.∴课时作业练基础1.如图是由4个边长为1的正方形构成的“田字格”,只用没有刻度的直尺在这___8___条.30°,则以它的腰长为边2.有一个面积为的正方形的面积为___20___.3.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树顶飞到另一棵树的树顶,小鸟至少飞行(B)A.8米B.10米C.12米D.14米4.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1,图2,推开双门,双门间隙C,D的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10 寸),则AB的长是(C)A.50.5寸B.52寸C.101寸D.104寸5.(2020盘龙区期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为 1.5米,则小巷的宽为(C)A.2.5米B.2.6米C.2.7米D.2.8米【解析】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B2,∴BD2+1.52=6.25.∴BD2=4.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.故选C.6.如图,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标在(B)A.-3和-2之间B.-4和-3之间C.-5和-4之间D.-6和-5之间7.如图,在边长为1的正方形网格中,△ABC的三边a,b,c的大小关系是(B)A.c<b<aB.c<a<bC.a<c<bD.a<b<c8.(教材改编)小明拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿的长和门的高. 解:根据题意作图,由图可知AD=4尺.设门高AB为x尺,则竹竿的长BD为(x+1)尺.在Rt△ABD中,由勾股定理得AB2+AD2=BD2,即x2+42=(x+1)2,解得x=7.5.则x+1=8.5.答:竹竿的长为8.5尺,门高为7.5尺.9.【核心素养·数学抽象】一根直立的旗杆AB长 8 m,一阵大风吹过,旗杆从C点处折断,顶部(B)着地,离杆脚(A)4 m,如图.工人在修复的过程中,发现在折断点C的下面1.25 m 的D处,有一明显伤痕,如果下次大风将旗杆从D 处刮断,则杆脚周围多大范围内有被砸伤的危险?解:在Rt △ABC 中,设AC 的长为x m ,则BC 的长为(8-x )m.根据勾股定理,得AC 2+AB 2=BC 2,即x 2+42=(8-x )2.解得x=3,即AC=3.当从点D 处折断时,AD=AC-CD=3-1.25=1.75,∴BD=8-1.75=6.25.∴AB=3675.125.62222=-=-AD BD =6 (m ).答:杆脚周围6 m 范围内有被砸伤的危险.10.如图,铁路上A ,B 两站(视为直线上的两点)相距25 km ,DA ⊥AB 于点A ,CB ⊥AB 于点B ,DA=15 km ,CB=10 km ,现要在铁路上建设一个土特产收购站E ,使得C ,D 两村到收购站E 的距离相等,则收购站E 应建在距离A 站多少km 处?解:∵C ,D 两村到E 点的距离相等,∴CE=DE.在Rt △DAE 和Rt △CBE 中,根据勾股定理,得DE 2=AD 2+AE 2,CE 2=BE 2+BC 2,∴AD 2+AE 2=BE 2+BC 2.设AE=x km ,则BE=(25-x )km.x 2+152=(25-x)2+102.解得x=10.答:收购站E 应建在距离A 站10 km 处.提能力11.如图,小正方形的边长为1,连接小正方形的三个顶点,可得△ABC ,则BC 边上的高是( A )A.223 B.1055 C.553 D.554【解析】由图形,根据勾股定理可得ABC 的面积为2×2-12×1×1-12×1×2-12×1×2=4-12-2=32,再根据△ABC 面积的不同计算方法得32=12BC 边上的高.故选A. 12.有一辆装满货物的卡车,高5 m ,宽3.2 m (货物的顶部是水平的),要通过如图所示的截面的上半部分是半圆,下半部分是长方形的隧道,已知半圆的直径为4 m ,长方形竖直的一条边长是4.6 m.这辆卡车能否通过此隧道?请说明理由.解:能通过. 理由如下:如图,设O 为半圆的圆心,AB 为半圆的直径,在OB 上截取OE=3.2÷2=1.6(m ),过点E 作EF ⊥AB 交半圆于点F ,连接OF.在Rt △OEF 中,OF 2=OE 2+EF 2,即22=1.62+EF 2,解得EF=1.2 m.因为1.2+4.6=5.8(m )>5 m ,所以这辆卡车能通过此隧道.。
第3章《勾股定理》 :3.1 勾股定理(2)(含答案)

23 .据我国古代《周髀算经》记载,公元前 1120 年商高对周公说,将一根直尺 折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等 于五.后人概括为“勾三,股四,弦五”. (1)观察:3,4,5;5,12,13;7,24,25;„,发现这些勾股数的勾都是奇 数, 且从 3 起就没有间断过. 计算 1 1 1 1 (9-1) 、 (9+1) 与 (25-1) 、 (25+1) , 2 2 2 2
17 . 如图所示, 折叠长方形的一边 AD, 使点 D 落在边 BC 的点 F 处, 已知 AB=8cm, BC=10cm,则 EC 的长为 cm.
18 . 如图,在 Rt△ABC 中,∠ACB=90°,AC<BC,D 为 AB 的中点,DE 交 AC 于 点 E,DF 交 BC 于点 F,且 DE⊥DF,过 A 作 AG∥BC 交 FD 的延长线于点 G. (1)求证:AG=BF; (2)若 AE=9,BF=18,求线段 EF 的长.
6 .小明将一幅三角板如图所示摆放在一起,发现只要知道其中一边的长就可以 求出其它各边的长,若已知 CD=2,求 AC 的长.
7.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,D 为 AB 边 上一点,求证: (1)△ACE≌△BCD; (2)AD2+DB2=DE2.
8 .如图,把矩形纸片 ABCD 沿 EF 折叠,使点 B 落在边 AD 上的点 B′处,点 A 落 在点 A′处; (1)求证:B′E=BF; (2)设 AE=a,AB=b,BF=c,试猜想 a,b,c 之间的一种关系,并给予证明.
S = l (3)说出(2)中结论成立的理由. (2)如果 a+b-c=m, 观察上表猜想:
八年级数学人教版下册勾股定理勾股定理2

数学来源于 生活,勾股定理 的应用在生活中 无处不在……
D
C
A
B
1m
2m
人教版八年级数学 下册
17.1 勾股定理
第2课时 勾股定理在实际生活中的应用
学习目标
1. 会运用勾股定理求线段长及解决简单的实际问 题。
2.能从实际问题中抽象出直角三角形这一几何模 型,利用勾股定理建立已知边与未知边长度之间的联 系,并进一步求出未知边长。
B3
解:由题意知有三种展开
方法,如图.由勾股定理得
B1
高三数学复习中的几个注意点
AB12 =102 +(6+8)2 =296,
4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
B AB = 8 +(10+6) =320, 29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
D
C
B
A
课 结堂
总
同学们,本节课你收获了什么?
课后作业 1.整理本节知识点 2.选做题: 同步检测题
一只蚂蚁,想到B点去吃可口的食物。
由题意可知:AC=6千米,BC=8千米
距离及路径最短问题
检测目标
1.若等腰三角形中相等的两边长为 10cm,第三边长为16 cm,那么第三边上的
高为 ( D)
A. 12 cm B. 10 cm C. 8 cm D. 6 cm
检测目标
2.如图,在边长为1个单位长度的小正方形组成
由飞题机意 在可空知中:水平AC飞=6行千,米某,一B时C=刻8刚千好米飞到一个男孩头顶上方3千米处,过了20秒,C飞机距离这个男?孩头顶5千米.
鲁教版(五四制)七年级数学上册 《探索勾股定理(2)》参考课件2优秀课件PPT

如图,梯形由三个直角三角形组合而
成,利用面积公式,列出代数关系式,
得 1(ab)(ba)21ab1c2.
2
22
化简,得 a2 b2 c2.
a
bc c
a b
第一种类型:
方法三 据传是当年毕达哥拉斯发现勾股定理时做出的证明。
将4个全等的直角三角形拼成边长 为 (a + b) 的 正 方 形 ABCD , 使 中 间 留 下 边长c的一个正方形洞.画出正方形 ABCD.移动三角形至图2所示的位置中,
第三种类型:
A
方法三:意大利文 艺复兴时代的著名
a
画家达·芬奇对勾
股定理进行了研究。 B
F
c
O
b
C
E
D
A
a
B
F
O
Cb D E
A′ F′
B′
E′ C′
D′
Ⅰ
Ⅱ
Ⅰ
Ⅱ
例 我方侦察兵小王在距离东西向公路400m处侦查,发现
一辆敌方汽车在公路上疾驶。他赶紧拿出红外测距仪,测得
汽车与他相距400m。10s后,汽车与他相距500m。你能帮
小结反思
我最大的收获; 我表现较好的方面; 我学会了哪些知识; 我还有哪些疑惑……
课后作业
1.课本随堂练习 2.阅读课本“读一读 ” 3.习题 3.2
知识拓展
(1) 勾股定理是联系数学中数与形的第一定理。
(2) 勾股定理反映了自然界基本规律,有文明的宇宙“人”都 应该认识它,因而勾股定理图被建议作为与“外星人”联系 的信号。
(3)勾股定理导致不可通约量的发现,引发第一次数学危机。
(4)勾股定理公式是第一个不定方程,为不定方程的解 题程序树立了一个范式。
勾股定理知识讲解2

全章要点勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边2、勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13勾股定理的逆定理::如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
3、勾股定理的作用:(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为n的线段例题讲解例1.△ABC中,AB=AC=25cm,高AD=20cm,则BC= ,S△ABC= 。
解:30cm,300cm2例2.△ABC中,若∠A=2∠B=3∠C,AC=32cm,则∠A= 度,∠B= 度,∠C= 度,BC= ,S△ABC= 。
解:90,60,30,4,23例3.△ABC 中,∠C=90°,AB=4,BC=32,CD ⊥AB 于D ,则AC= ,CD= ,BD= ,AD= ,S △ABC = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
160 128
2
2
= 96(米)
图 19.2.9
答:从点A穿过湖到点B有96米.
1.如图,小方格都是边长为1的正方形, 求四边形ABCD的面积与周长.
5
3 2
2 5
13
2.假期中,王强和同学到某海岛上去探宝旅游, 按照探宝图(如图),他们登陆后先往东走8 千米,又往北走2千米,遇到障碍后又往西走3 千米,再折向北走到6千米处往东一拐,仅走1 千米就找到宝藏,问登陆点A到宝藏点B的直线 距离是多少千米? 过点B作BC⊥AC于C
即:在Rt△ABC中,∠C=90°
c2 = a2 + b2
1 C2 = (a+b)2 – 4· ab = a2 + b2 2
例2 如图19.2.9,为了求出湖两岸的A、B两点之间 的距离,一个观测者在点C设桩,使三角形ABC恰 好为直角三角形.通过测量,得到AC长160米, BC长128米.问从点A穿过湖到点B有多远?
解:在Rt△ABC中,∠ACB=90° AC=6,BC=8
AC BC AB = 2 2 = 6 8 =10(千米) 答:登陆点A到宝藏点B的直线 距离是10千米。
2 2
C
d1 d2
d3
S1=S2+S3
复习:对于任意的直角三角形, 如果它的两条直角边分别为a、b, 斜边为c,那么一定有
a2+b2=c2
c
b
a
勾股定理
直角三角形两直角边的平方 和等于斜边的平方.
勾股定理揭示了直角三角形三边之间的关系.
1 2 2 1 S梯形= (a+b)(a+b) = (a +b )+ ab 2 2 1 2 1 1 2 S梯形 = c +2 · ab = c +ab 2 2 2