电流电压互感器额定二次容量计算方法

合集下载

电流互感器和电压互感器容量,准确级,互感器负载计算

电流互感器和电压互感器容量,准确级,互感器负载计算

电流互感器和电压互感器容量,准确级,互感器负载计算Q:互感器容量是什么?A:互感器容量即额定输出、二次额定负荷,在额定二次电压或电流下及接有额定负荷时,互感器所供给二次电路的视在功率(在规定功率因数下的伏安数)。

电压互感器容量国家标准规定的标准值为:10、15、25、30、50、75、100、150、200、250、300、400、500VA。

电流互感器容量国家标准规定的标准值为:1、2.5、3.75、5、7.5、10、15、20、25、30、40、50、60、80、100VA。

Q:互感器准确等级是什么?A:互感器的误差限值标准,表示它在规定使用条件下的比值差和相位差保持在规定的限值以内。

比值差:互感器在测量中由于实际变比与额定变比不相等所引入的误差。

相位差:一次电压相量或电流相量与二次电压相量或电流相量的相位差。

电压互感器的准确级:a、计量用为0.2级或0.5级。

b、测量用为0.2、0.5、1.0或3.0级。

c、保护用为3P或6P级d、0.5&3P、0.5(3P)准确级,表示二次只有1个绕组,这个绕组既要满足0.5级的要求,又要满足3P级的要求。

测量用电压互感器的电压误关和相位差限值:保护用电压互感器的电压误关和相位差限值电流互感器的准确级:a、测量级有0.2S、0.2、0.5S、0.5、1、3、5。

b、对于保护级,我们经常见到的是5P( )、10P( ),其中5和10代表复合误差,P代表保护用,P后面的数字代表准确限值系数,5、10、15、20、30、40。

测量用电流互感器的比值差和相位差限值(0.1-1级):保护用P级和PR级保护用电流互感器的误差限值:Q:互感器负载如何计算?A:(1)电压互感器负载计算:因电压互感器二次负载,一般仅考虑所计表计电压回路的总阻抗,导线电阻及接触电阻相对于表计阻抗常可以忽略,故各相电压互感器额定二次容量,可根据本计量点各相所接电能表电压回路的总功耗,来确定电压互感器所接的实际二次负载。

(完整版)电流互感器二次容量的计算及选择

(完整版)电流互感器二次容量的计算及选择

电流互感器容量选择电流互感器の容量,主要是根据电流互感器使用の二次负载大小来定,电流互感器の二次负载主要和其二次接线の长度和负载有关。

一般来说二次线路长の,要求の容量要大一些;二次线路短の,容量可选の小一点。

电流互感器の容量一般有5VA-50VA,对于短线路可选5VA,一般稍长の选20VA或30VA,特殊情况可选の更大一些。

电流互感器容量の选择要复合实际の要求,不是越大越好,只有选择の二次容量大小接近实际の二次负荷时,电流互感器の精度才较高,容量偏大或偏小都会影响测量精度。

考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器の距离了,如果测量单元是在距离较远の综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上の,则选5VA 或10VA就可以满足要求。

建议按三个方面综合考虑:1、根据负荷电流の大小选择变比,一般按照60-80の%额定电流选择比较理想;2、计量用の互感器就选精确度高点(0.5级足矣),测量用の可以更低点;3、根据配电柜の布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式の固定支撑问题一直做の不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组の电流互感器一定要把闲置の二次接线端用铜芯线牢固の短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类の保护元件;3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷,即使接错线了造成の危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。

电流互感器二次容量の计算及选择1 引言电流互感器在电力系统中起着重要の作用,电流互感器の工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用の电流,并将二次系统与高电压隔离。

它不仅保证了人身和设备の安全,也使仪表和继电器の制造简单化、标准化,提高了经济效益。

常规电流互感器和电压互感器参数选择及计算

常规电流互感器和电压互感器参数选择及计算

1.概述 电流互感器类型及性能:
• 分为两大类:1)测量用;2)保护用 • 测量用电流互感器 -重点考核正常运行时的准确性能 • 保护用电流互感器 -重点考核系统短路时的准确性能 a) 对称短路电流下的稳态性能 b) 短路电流偏移(有直流分量)和/或 有剩磁时的暂态性能
1.概述
• 电流误差(比值差),相位差 ຫໍສະໝຸດ 定输出(容量) ( CT额定负载)
额定电阻性负荷
对TP级电流互感器,当额定二次电流为1A时,以表示的额定电 阻性负荷标准值在下列数值中选取: 2.5、5、7.5、10、15。对额定二 次电流不是1A的电流互感器,上列值按电流平方的反比进行换算。
简述
保护用电流互感器的准确限值系数(P)(二次专业复核)
3 电流互感器的选择和配置要求
电流互感器的配置应符合以下要求: DL/T 5136



1. 电流互感器的类型、二次绕组的数量与准确等级应满足继电保 护自动装臵和测量表计的要求。 2. 保护用电流互感器的配臵应避免出现主保护的死区。保护接入 电流互感器二次绕组的分配,应注意避免当一套保护停用时,出 现电流互感器内部故障时的保护死区;双重化保护的电流互感器 应采用不同的二次绕组。 3. 保护用电流互感器的配臵应避免出现电流互感器内部故障时扩 大故障范围。 4. 对中性点直接接地系统,可按三相配臵;对中性点非直接接地 系统,依具体要求可按两相或三相配臵。
2 相关的国际标准、国标及行标 暂不细及二次各专业相关标准 太多
GB 1208-2006 电流互感器(eqv IEC 60044-1:2003 ) GB 16847-1997 保护用电流互感器暂态特性技术要求 (idt IEC 60044-6: 1992) IEC 60044-1 :2003 电流互感器 第一号修改单 GB 1207-2006 电磁式电压互感器(eqv IEC 60044-2:2003) GB 4703-2007电容式电压互感器(已作废) DL/T 725-2000 电力用电流互感器订货技术条件 DL/T 726-2000 电力用电压互感器订货技术条件 英国标准 BS 3938:1973 电流互感器规范 IEEE Std C57.13-2008: 仪表用互感器要求 IEEE Std C37.110-2007: 保护用电流互感器应用导则 及IEEE C37.110 Corri 1-2010保护用电流互感器应用导则 勘误表1:等式18和等式19的 更正 DL/T 5136 火力发电厂、变电站二次接线设计技术规程 DL/T 866 电流互感器和电压互感器选择及计算导则

变压器一二次额定电流计算口诀

变压器一二次额定电流计算口诀

变压器一、二次额定电流计算口诀容量处电流,系数相乘求。

六千零点一,十千点零六。

低压流好算,容量一倍半。

说明:通常我们说变压器多大,是指额定容量而言,如何通过容量很快算出变压器一、二次额定电流?口诀说明了只要用变压器容量数(千伏安数)乘以系数,便可得出额定电流A。

“6 千乘零点1,10千乘点零6”是指一次电压为6 千伏的三相变压器,它的一次额定电流为容量数乘0.1 ,即千伏安数乘0.1 。

一次电压为10 千伏的三相变压器,一次额定电流为容量数乘0.06 ,即千伏安数乘0.06 。

以上两种变压的二次侧(低压侧)额定电流皆为千伏安数乘 1.5 ,这就是“低压流好算,容量一倍半”的意思。

导线载流量的计算口诀, 评论导线的载流量与导线截面有关,也与导线的材料、型号、敷设方法以及环境温度等有关,影响的因素较多,计算也较复杂。

各种导线的载流量通常可以从手册中查找。

但利用口诀再配合一些简单的心算,便可直接算出,不必查表。

1.口诀铝芯绝缘线载流量与截面的倍数关系10 下五,100 上二,25 、35,四、三界,.70 、95,两倍半。

穿管、温度,八、九折。

裸线加一半。

铜线升级算。

2.说明口诀对各种截面的载流量(安)不是直接指出的,而是用截面乘上一定的倍数来表示。

为此将我国常用导线标称截面(平方毫米)排列如下:1、1.5、2.5、4、6、10、16、25、35、50、70、95、120、150、185 …(1)第一句口诀指出铝芯绝缘线载流量(安)、可按截面的倍数来计算。

口诀中的阿拉伯数码表示导线截面(平方毫米),汉字数字表示倍数。

把口诀的截面与倍数关系排列起来如下:1 〜10 16、25 35、50 70、95 120 以上五倍四倍三倍二倍半二倍倍。

“ 100 上二”(读百上二)是指截面100 以上的载流量是截面数值的二倍。

截面为25 与35 是四倍和三倍的分界处。

这就是口诀“25 、35 ,四三界”。

而截面70、95 则为二点五倍。

电压互感器二次绕组数量和容量的确定

电压互感器二次绕组数量和容量的确定

0概述电压互感器是一种将系统的一次电压按一定比例缩小为要求的二次电压,供测量仪表、继电保护和自动装置使用的设备。

电压互感器的选择,除按系统电压、环境条件选择其一次电压、绝缘水平、爬电距离、结构型式外,尚应按供电负荷要求,确定二次绕组的准确等级、数量和容量。

1电压互感器准确级的选择1.1测量用电压互感器的准确级测量用电压互感器的准确等级应与测量仪表的准确等级相匹配,见表1。

表1测量仪表与配套的电压互感器准确等级仪表准确级互感器准确级0.50.51.00.51.51.02.51.00.5级指数字式仪表等级1.2微机监控系统用电压互感器的准确级微机监控系统用电压互感器的准确级没有明文规定,建议用0.5级。

1.3电能计量用电压互感器的准确级。

电能计量装置按计量对象的重要程度和计量电能的多少分为五类。

(1)Ⅰ类电能计量装置月平均用电量500万kWh及以上或变压器容量为10000kVA及以上的高压计费用户、200MW及以上发电机、发电企业上网电量、电网经营企业之间的电量交换点、省级电网经营企业与其供电企业的供电关口计量点的电能计量装置。

(2)Ⅱ类电能计量装置月平均用电量100万kWh及以上或变压器容量为2000kVA及以上的高压计费用户、100MW及以上发电机、供电企业之间的电量交换点的电能计量装置。

(3)Ⅲ类电能计量装置月平均用电量10万kWh及以上或变压器容量为315kVA及以上的计费用户、100MW以下发电压互感器二次绕组数量和容量的确定TheSelectionoftheNumberandCapacityoftheVoltageTransformerSecondaryWindings张善芝,徐卫东,于青(山东电力工程咨询院,山东济南250013)摘要:为提高电力工程设计质量,合理选择电压互感器,统计分析了影响选择电压互感器二次绕组的准确等级、数量和容量的因素,范围10kV~500kV电压等级的线路和变压器。

电流互感器设计与计算

电流互感器设计与计算

电流互感器设计与计算电流互感器(Current Transformer,简称CT)是一种用于测量和保护电力系统中电流的装置。

它通过将高电压侧的电流转换成低电压侧的电流,使得电流测量和保护设备能够安全可靠地使用。

在电流互感器的设计中,主要考虑以下几个方面:一是额定电流的选择,即根据实际需求确定电流互感器的额定一次电流。

一般情况下,电流互感器的额定一次电流应根据所测量的电流范围来确定,一般选择在被测电流的60%~120%范围内。

二是磁路设计,即通过设计合适的磁路结构,使得电流互感器能够满足测量和保护的要求。

常见的磁路结构有环形磁路和磁链式磁路,设计时需要考虑磁路的饱和和磁通分布等因素。

三是绕组设计,即通过设计合适的绕组结构和参数,使得电流互感器能够实现理想的变比和相位误差。

绕组设计需要考虑绕组的匝数、铜导体的断面积和长度等因素。

对于电流互感器的计算,主要包括变比计算和额定一次电流计算。

变比计算是根据所需的额定一次电流和二次电流来确定电流互感器的变比。

变比计算公式为变比=二次电流/额定一次电流。

例如,如果所需的额定一次电流为1000A,二次电流为5A,则变比为5/1000=1/200。

额定一次电流计算是根据电流互感器的额定二次电流和变比来确定其额定一次电流。

额定一次电流计算公式为额定一次电流=二次电流/变比。

例如,如果电流互感器的额定二次电流为5A,变比为1/200,则额定一次电流为5/(1/200)=1000A。

除了变比和额定一次电流的计算,还需要考虑电流互感器的负荷和准确度等参数。

负荷是指电流互感器在额定一次电流下的阻抗大小,一般以VA为单位。

负荷的选择应根据所需的测量和保护精度来确定。

准确度是指电流互感器的测量误差,一般以百分比形式表示。

准确度的选择应根据具体应用场景和精度要求来确定。

电流互感器的设计和计算是一个综合考虑多个因素的过程,包括额定电流的选择、磁路设计、绕组设计等。

通过合理的设计和准确的计算,可以实现电流互感器的可靠工作和精确测量。

电流互感器二次负载的计算及选择

电流互感器二次负载的计算及选择

电流互感器二次负载的计算及选择1.电流互感器简介互感器就是将电力网络中的大电流、高电压这些高电平的电力参数按比例变换成低电平的参数或信号,以供测量仪器仪表、继电保护和其他类似仪器使用的变压器。

而电流互感器是用一种将大电流按照一定的变比变换成小电流的仪器,当电流互感器用于电路时,可作电流、电能、功率测量和继电保护及自动化设备的辅助装置,它将大电流变换成小电流——现在在厂站中大多变换成1A 的电流,供给二次回路测量仪表和继电保护等设备用,从而保证测量仪表及其他装置的安全,并使其便于工作。

目前用于敞开式的超高压变电站中的油浸式电流互感器,有电容型结构和链型 2 种。

电容型结构的主绝缘由若干串联的电容屏(多为铝箔与半导体纸)与绝缘纸组成;链型结构的是将一次绕组与绕有二次绕组的环状铁心交叉后形成“ 8”字形,一、二次绕组分开绝缘,并与铁心一起浸入有绝缘油的瓷套内。

油浸式电流互感器通常装有隔膜或金属膨胀器,使油与空气隔离,防止绝缘受潮与氧化。

为防止瓷套炸裂的危险,以硅橡胶伞裙代替瓷套的六氟化硫()气体绝缘的电流互感器也已开始投入运行。

2.电流互感器的特点1)电流互器的二次回路中所串的负载一般是电流表以及继电器等元件中的电流线圈,阻抗一般不大,因此,电流互感器的正常运行情况相当于二次侧短路的变压器运行状态。

2)电流互感器的一次电流是由电网输送的负载决定的,在一定的条件(下文会提到)下,二次侧的电流大小是由一起起主导作用。

3)电流互感器中,当二次回路的负载阻抗发生变化时,会影响二次电动势。

因为,电流互感器的二次回路是闭合的,在某一定值的一次电流作用下,感应二次电流的大小决定于二次回路中的阻抗,当二次阻抗值较大时,二次电流会相应地减小,一次电流中,用来平衡二次电流的分量也就随之变小,作用于励磁回路的电流分量增多,造成二次电动势升高。

相反地,当二次阻抗变小时,感应的二次电流增大,一次电流中用于平衡二次电流的分量就大,作用于励磁回路的电流分量减小,二次电动势因此降低。

浅谈电流互感器的误差和二次负载的计算

浅谈电流互感器的误差和二次负载的计算

浅谈电流互感器的误差和二次负载的计算摘要:电流互感器是电力系统中非常重要的一次设备,掌握其误差特性及二次负载的计算,对设计人员来说至关重要,本文分析了电流互感器误差产生的原因以及分别对测量电流互感器、保护电流互感器二次负载进行了计算。

关键词:电流互感器、误差、二次负载、计算1、电流互感器的误差电流互感器是用来将一次系统的大电流按比例变换为二次系统的小电流,以满足测量、监控、保护及自动装置等的需要,并将一、二次设备安全隔离,使高、低压回路不存在电的联系的一种常见的电气设备。

测量误差是指电流互感器的二次输出量I2与其归算二次侧的一次输入量I1’的大小不相等,幅角不相同所造成的差值,因此测量误差分为数值(变比)误差和相位(角度)误差两种。

产生测量误差的原因一是电流互感器本身造成的,二是运行和使用条件造成的。

电流互感器本身造成的测量误差是由于电流互感器有励磁电流Ie存在,而Ie是输入电流的一部分,它不传到二次侧,故形成变比误差,Ie除在铁芯中产生磁通外,尚产生铁芯损耗,包括涡流损失和磁滞损失,Ie所流经的励磁支流是一个呈电感性的支路,Ie和I2不同相位,这是造成角度误差的主要原因。

运行和使用中造成的测量误差过大是电流互感器铁芯饱和和二次负载过大所致。

故为保证电流互感器工作在误差范围内,在不改变其本身固有特性的情况下,作为设计人员来说,根据实际情况,选择适当的电流互感器二次容量尤为重要,以下介绍二次负载容量的计算。

2、测量电流互感器二次负载容量的计算为了保证测量仪表的准确度,互感器的准确度级不得低于所供测量仪表的准确度级。

电流互感器的一定准确等级是与一定的负荷容量S2相对应的。

当接入负荷(仪表继电器等)的容量超过互感器准确级规定的容量Se2时,电流互感器的准确级将要下降,即测量误差增大。

因此,为了保证测量的准确度,互感器二次侧所接负荷容量S2应小于互感器准确度级所规定的额定容量Se2。

,即应满足:Se2≥S2即Se2≥I22Z2 (1)由上式可知,二次负荷容量与二次阻抗有着直接关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附录C 电流互感器额定二次容量计算方法
电流互感器实际二次负荷(计算负荷)按公式(1)计算:
2222()I n jx l jx m k S I K R K Z R =+∑+ (1)
2nI S =K ×2I S
电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。

l L
R A ρ= (2)
式中:
2I S ——电流互感器实际二次负荷(计算负荷),VA
2nI
S ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择1.5~3
A ——二次回路导线截面, 2mm
ρ——铜导电率,257m /mm )ρ=Ω,(•
L ——二次回路导线单根长度,m
l R ——二次回路导线电阻,Ω
jx K ——二次回路导线接触系数,分相接法为2,,星形接法为1; 2
jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入
90,其余为1。

2n
I ——电流互感器二次额定电流,A ,一般为5A 或1A 。

m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为0.05Ω,三相机械表选择0.15Ω。

m
Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之
和。

k R ——二次回路接头接触电阻,一般取0.05~0.1
根据上述的设定,以二次额定电流为5A ,分相接法,4 mm ²的电缆长100米,本计量点接入2个三相电子表为例,
222221.5()
21001.55(
120.050.1)57440I n jx l jx m k S I K R K Z R =+∑+⨯⨯⨯+⨯⨯+⨯ = =(VA)
取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。

而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为:
222221.5()
11005(
120.050.1)574I n jx l jx m k S I K R K Z R =+∑+⨯⨯⨯+⨯⨯+⨯ =1.5 =24(VA)
取30VA 。

附录D 电压互感器额定二次容量选择方法
电压互感器的实际二次负载按公式(3)计算:
22Y n U S U =2 (3)
因电压互感器二次容量,一般仅考虑所计表计电压回路的总阻抗,导线电阻及接触电阻相对于表计阻抗常可以忽略,故各相电压互感器额定二次容量,可根据本计量点各相所接电能表电压回路的总功耗,来确定电压互感器所接的实际二次负载。

2U b
S S =∑ (4) b S ——电能表单相电压回路功耗
根据目前国内外电能表技术参数,单相电压回路的平均功耗参考值如下所示:。

相关文档
最新文档