数字信号处理电子教案 (6)

合集下载

(完整word版)《数字信号处理》课程教学大纲

(完整word版)《数字信号处理》课程教学大纲

课程编号15102308《数字信号处理》教学大纲Digital Signal Processing一、课程基本信息二、本课程的性质、目的和任务《数字信号处理》课程是信息工程本科专业必修课,它是在学生学完了高等数学、概率论、线性代数、复变函数、信号与系统等课程后,进一步为学习专业知识打基础的课程。

本课程将通过讲课、练习使学生建立“数字信号处理”的基本概念,掌握数字信号处理基本分析方法和分析工具,为从事通信、信息或信号处理等方面的研究工作打下基础。

三、教学基本要求1、通过对本课程的教学,使学生系统地掌握数字信号处理的基本原理和基本分析方法,能建立基本的数字信号处理模型。

2、要求学生学会运用数字信号处理的两个主要工具:快速傅立叶变换(FFT)与数字滤波器,为后续数字技术方面课程的学习打下理论基础。

3、学生应具有初步的算法分析和运用MA TLAB编程的能力。

四、本课程与其他课程的联系与分工本课程的基础课程为《高等数学》、《概率论》、《线性代数》、《复变函数》、《信号与系统》等课程,同时又为《图像处理与模式识别》等课程的学习打下基础。

五、教学方法与手段教师讲授和学生自学相结合,讲练结合,采用多媒体教学手段为主,重点难点辅以板书。

六、考核方式与成绩评定办法本课程采用平时作业、期末考试综合评定的方法。

其中平时作业成绩占40%,期末考试成绩占60%。

七、使用教材及参考书目【使用教材】吴镇扬编,《数字信号处理》,高等教育出版社,2004年9月第一版。

【参考书目】1、姚天任,江太辉编,《数字信号处理》(第二版),华中科技大学出版社,2000年版。

2、程佩青著,《数字信号处理教程》(第二版),清华大学出版社出版,2001年版。

3、丁玉美,高西全编著,《数字信号处理》,西安电子科技大学出版社,2001年版。

4、胡广书编,《数字信号处理——理论、算法与实现》,清华大学出版社,2004年版。

5、Alan V. Oppenheim, Ronald W. Schafer,《Digital Signal Processing》,Prentice-Hall Inc, 1975.八、课程结构和学时分配九、教学内容绪论(1学时)【教学目标】1. 了解:什么是数字信号处理,与传统的模拟技术相比存在哪些特点。

数字信号处理教案

数字信号处理教案

数字信号处理教案数字信号处理教案课程特点:本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。

本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。

课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。

本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。

这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。

论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。

因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。

鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。

课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。

基本掌握了课堂教学内容后, 再去做作业。

在学习中, 要养成多想问题的习惯。

课堂讲授方法:1. 关于教材: 《数字信号处理》作者丁玉美高西全西安电子科技大学出版社2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。

.3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述.4. 要求、辅导及考试:a. 学习方法: 适应大学的学习方法, 尽快进入角色。

数字信号处理第六、七章教案

数字信号处理第六、七章教案

教案(第23次课2学时)一、授课题目第六章无限脉冲响应数字滤波器的设计§6.4 用双线性变换法设计IIR数字低通滤波器§6.5 数字高通滤波器的设计二、教学目的和要求掌握用双线性变换法设计IIR数字低通滤波器;掌握利用低通滤波器设计数字高通滤波器的方法。

三、教学重点和难点用双线性变换法设计IIR数字低通滤波器;利用低通滤波器设计数字高通滤波器。

四、教学过程(包含教学内容、教学方法、辅助手段、板书、学时分配等)复习:本章主要介绍无限脉冲响应数字滤波器的设计。

无限脉冲响应数字滤波器的特点是单位脉冲响应是无限长的,这主要是由于它的系统函数中含有反馈,即差分方程中含y(n-i)项。

对于无限脉冲响应数字滤波器我们主要是利用技术已经非常成熟的模拟滤波器的设计进行的,由于我们这本书主要是讨论具有单调下降的幅频特性的滤波器的设计,所以我们介绍了具有单调下降特性的巴特沃斯模拟滤波器的设计。

掌握了它之后,利用模拟滤波器进行设计,只要找出频率以及系统函数之间的关系,就可以设计出需要的数字滤波器。

由于它是借助模拟滤波器进行的,所以他保留了一些典型模拟滤波器优良的幅度特性,但涉及种植考虑复读特性,没考虑相位特性,所设计的滤波器一般是某种确定的非线性相位特性。

我们一般用到的是脉冲响应不变法和双线性变换法来设计无限脉冲响应数字滤波器。

上节课中我们介绍了双线性变换法设计数字滤波器。

设计时我们只需要先利用频率之间的关系将我们要设计的数字滤波器的技术指标转换为对应的模拟滤波器的技术指标,之后利用我们之前讲的模拟滤波器的设计,求出模拟滤波器的系统函数,然后利用系统函数之间的关系得到数字滤波器的系统函数。

脉冲响应不变法进行设计时,模拟滤波器的系统函数Ha (s )与数字滤波器的系统函数H(z)之间的关系是 若∑=-=N i ii s s A s H 1a )(,则对应的数字滤波器的系统函数为 ∑=--=N i T s i z A z H i 11e1)(,即H a(s )的极点si 映射到z 平面的极点为T s i e ,系数A i 不变。

《数字信号处理》教案

《数字信号处理》教案

《数字信号处理》教案第一章:绪论1.1 课程介绍理解数字信号处理的基本概念了解数字信号处理的发展历程明确数字信号处理的应用领域1.2 信号的概念与分类定义信号、模拟信号和数字信号掌握信号的分类和特点理解信号的采样与量化过程1.3 数字信号处理的基本算法掌握离散傅里叶变换(DFT)了解快速傅里叶变换(FFT)学习Z变换及其应用第二章:离散时间信号与系统2.1 离散时间信号理解离散时间信号的定义熟悉离散时间信号的表示方法掌握离散时间信号的运算2.2 离散时间系统定义离散时间系统及其特性学习线性时不变(LTI)系统的性质了解离散时间系统的响应2.3 离散时间系统的性质掌握系统的稳定性、因果性和线性学习时域和频域特性分析方法第三章:离散傅里叶变换3.1 离散傅里叶变换(DFT)推导DFT的数学表达式理解DFT的性质和特点熟悉DFT的应用领域3.2 快速傅里叶变换(FFT)介绍FFT的基本概念掌握FFT的计算步骤学习FFT的应用实例3.3 离散傅里叶变换的局限性探讨DFT在处理非周期信号时的局限性了解基于DFT的信号处理方法第四章:数字滤波器设计4.1 滤波器的基本概念理解滤波器的定义和分类熟悉滤波器的特性指标学习滤波器的设计方法4.2 数字滤波器的设计方法掌握常见数字滤波器的设计算法学习IIR和FIR滤波器的区别与联系了解自适应滤波器的设计方法4.3 数字滤波器的应用探讨数字滤波器在信号处理领域的应用学习滤波器在通信、语音处理等领域的应用实例第五章:数字信号处理实现5.1 数字信号处理器(DSP)概述了解DSP的定义和发展历程熟悉DSP的特点和应用领域5.2 常用DSP芯片介绍学习TMS320系列DSP芯片的结构和性能了解其他常用DSP芯片的特点和应用5.3 DSP编程与实现掌握DSP编程的基本方法学习DSP算法实现和优化技巧探讨DSP在实际应用中的问题与解决方案第六章:数字信号处理的应用领域6.1 通信系统中的应用理解数字信号处理在通信系统中的重要性学习调制解调、信道编码和解码等通信技术探讨数字信号处理在无线通信和光通信中的应用6.2 音频信号处理熟悉音频信号处理的基本概念和算法学习音频压缩、回声消除和噪声抑制等技术了解数字信号处理在音乐合成和音频效果处理中的应用6.3 图像处理与视频压缩掌握数字图像处理的基本原理和方法学习图像滤波、边缘检测和图像压缩等技术探讨数字信号处理在视频处理和多媒体通信中的应用第七章:数字信号处理工具与软件7.1 MATLAB在数字信号处理中的应用学习MATLAB的基本操作和编程方法熟悉MATLAB中的信号处理工具箱和函数掌握利用MATLAB进行数字信号处理实验和分析的方法7.2 其他数字信号处理工具和软件了解常用的数字信号处理工具和软件,如Python、Octave等学习这些工具和软件的特点和应用实例探讨数字信号处理工具和软件的选择与使用第八章:数字信号处理实验与实践8.1 数字信号处理实验概述明确实验目的和要求学习实验原理和方法掌握实验数据的采集和处理8.2 常用数字信号处理实验完成离散信号与系统、离散傅里叶变换、数字滤波器设计等实验8.3 数字信号处理实验设备与工具熟悉实验设备的结构和操作方法学习实验工具的使用技巧和安全注意事项第九章:数字信号处理的发展趋势9.1 与数字信号处理探讨技术在数字信号处理中的应用学习深度学习、神经网络等算法在信号处理领域的应用实例9.2 物联网与数字信号处理理解物联网技术与数字信号处理的关系学习数字信号处理在物联网中的应用,如传感器信号处理、无线通信等9.3 边缘计算与数字信号处理了解边缘计算的概念和应用场景探讨数字信号处理在边缘计算中的作用和挑战10.1 课程回顾梳理本门课程的主要内容和知识点10.2 数字信号处理在未来的发展展望数字信号处理技术在各个领域的应用前景探讨数字信号处理技术的发展趋势和挑战10.3 课程考核与评价明确课程考核方式和评价标准鼓励学生积极参与课堂讨论和实践活动,提高综合素质重点和难点解析重点一:信号的概念与分类信号的定义和分类是理解数字信号处理的基础,需要重点关注。

数字信号处理教案

数字信号处理教案

数字信号处理教案第一章:数字信号处理概述1.1 数字信号处理的基本概念了解数字信号处理的定义和特点理解信号的分类和数字信号的优势1.2 数字信号处理的发展历程了解数字信号处理的发展历程和重要事件理解数字信号处理技术在各领域的应用1.3 数字信号处理的基本算法掌握离散傅里叶变换(DFT)和快速傅里叶变换(FFT)了解数字滤波器的设计方法和应用第二章:离散时间信号处理2.1 离散时间信号的基本概念了解离散时间信号的定义和表示方法理解离散时间信号的采样和恢复原理2.2 离散时间信号的运算掌握离散时间信号的加减乘除运算理解离散时间信号的卷积运算2.3 离散时间系统的特性了解离散时间系统的稳态响应和暂态响应理解离散时间系统的频率响应和时域响应第三章:离散傅里叶变换3.1 离散傅里叶变换的基本概念了解离散傅里叶变换的定义和性质理解离散傅里叶变换的应用领域3.2 快速傅里叶变换算法掌握快速傅里叶变换的基本原理和实现方法理解快速傅里叶变换的优缺点和应用3.3 离散傅里叶变换的应用了解离散傅里叶变换在信号分析、处理和识别中的应用掌握离散傅里叶变换在图像处理中的应用第四章:数字滤波器设计4.1 数字滤波器的基本概念了解数字滤波器的定义和分类理解数字滤波器的设计目标和要求4.2 数字滤波器的设计方法掌握常用数字滤波器的设计方法和步骤理解数字滤波器的逼近方法和性能指标4.3 数字滤波器的应用了解数字滤波器在信号处理、通信和音视频处理等领域的应用掌握数字滤波器在实际应用中的优化和实现方法第五章:数字信号处理在通信系统的应用5.1 通信系统的基本概念了解通信系统的定义和分类理解通信系统的基本组成和信号传输过程5.2 数字信号处理在通信系统的应用掌握数字信号处理技术在调制解调、信号检测和信道编码等环节的应用理解数字信号处理技术在现代通信系统中的重要作用5.3 数字信号处理技术在无线通信中的应用了解无线通信系统的基本原理和关键技术掌握数字信号处理技术在无线通信系统中的应用和优势第六章:数字信号处理在音频处理中的应用6.1 音频处理的基本概念了解音频信号的特性及其处理需求理解数字音频处理的优势和应用场景6.2 数字音频信号处理技术掌握数字音频信号的采样与量化过程学习数字音频信号的压缩、编辑和效果处理方法6.3 音频信号处理实例分析分析数字音频处理在音乐合成、声音合成和音频恢复等领域的应用案例探讨音频信号处理技术在实际应用中的优化和限制第七章:数字信号处理在图像处理中的应用7.1 图像处理的基本概念了解图像信号的特性及其处理需求理解数字图像处理的优势和应用场景7.2 数字图像处理技术掌握数字图像的表示、转换和增强方法学习图像分割、特征提取和模式识别等高级处理技术7.3 图像处理实例分析分析数字图像处理在图像压缩、图像恢复和计算机视觉等领域的应用案例探讨图像处理技术在实际应用中的优化和限制第八章:数字信号处理在视频处理中的应用8.1 视频处理的基本概念了解视频信号的特性及其处理需求理解数字视频处理的优势和应用场景8.2 数字视频信号处理技术掌握数字视频信号的采集、编码和压缩方法学习视频信号的编辑、特效处理和质量评估技术8.3 视频处理实例分析分析数字视频处理在视频通信、视频编辑和虚拟现实等领域的应用案例探讨视频处理技术在实际应用中的优化和限制第九章:数字信号处理在通信系统中的应用(续)9.1 无线通信系统中的数字信号处理了解无线通信系统的挑战和数字信号处理解决方案掌握无线通信中常用的调制解调技术和信号检测方法9.2 信号处理在现代通信系统中的应用学习信号处理在4G/5G移动通信、卫星通信和物联网等领域的应用探讨通信系统中信号处理的挑战和发展趋势9.3 通信系统中的信号处理实践分析通信系统中信号处理算法的实际应用案例了解通信系统中的信号处理技术在实际工程中的应用和优化第十章:数字信号处理在工程实践中的应用10.1 数字信号处理工具和软件熟悉常用的数字信号处理工具和软件,如MATLAB、Python和信号处理专用硬件学习如何选择合适的工具和软件进行数字信号处理任务10.2 数字信号处理在实际项目中的应用分析数字信号处理在实际工程项目中的案例,如音频处理、图像识别和通信系统探讨数字信号处理在工程实践中的挑战和解决方案10.3 数字信号处理的实验和实践介绍数字信号处理的实验方法和实践技巧学习如何进行数字信号处理的实验设计和结果分析第十一章:数字信号处理的实现方法11.1 数字信号处理硬件实现了解数字信号处理硬件实现的基本概念和方法掌握FPGA、ASIC等硬件实现数字信号处理的优势和限制11.2 数字信号处理软件实现熟悉数字信号处理软件实现的基本概念和方法学习数字信号处理软件实现中的编程技术和算法优化11.3 混合信号处理实现方法了解混合信号处理实现的基本概念和方法探讨混合信号处理在实际应用中的优势和挑战第十二章:数字信号处理的优化方法12.1 数字信号处理优化概述了解数字信号处理优化的目标和方法理解数字信号处理优化在实际应用中的重要性12.2 数字信号处理的算法优化掌握数字信号处理常用算法的优化方法和技术学习算法优化在提高数字信号处理性能方面的应用12.3 数字信号处理的系统优化熟悉数字信号处理系统优化的基本概念和方法探讨系统优化在提高数字信号处理性能方面的作用和限制第十三章:数字信号处理的仿真与验证13.1 数字信号处理的仿真方法了解数字信号处理仿真的基本概念和方法掌握数字信号处理仿真工具的使用和仿真过程的设置13.2 数字信号处理的验证方法熟悉数字信号处理验证的基本概念和方法学习验证过程在确保数字信号处理算法正确性和性能方面的作用13.3 数字信号处理的仿真与验证实践分析数字信号处理仿真与验证的实际案例探讨仿真与验证在数字信号处理算法开发和优化方面的应用和限制第十四章:数字信号处理的应用案例分析14.1 数字信号处理在通信系统的应用案例分析数字信号处理在无线通信、卫星通信和光纤通信等领域的应用案例探讨通信系统中数字信号处理技术的挑战和发展趋势14.2 数字信号处理在音频和图像处理的应用案例分析数字信号处理在音频压缩、音频合成、图像增强和图像识别等领域的应用案例探讨音频和图像处理中数字信号处理技术的挑战和发展趋势14.3 数字信号处理在其他领域的应用案例分析数字信号处理在医疗成像、地震勘探和生物信息学等领域的应用案例探讨这些领域中数字信号处理技术的挑战和发展趋势第十五章:数字信号处理的发展趋势与展望15.1 数字信号处理技术的发展趋势了解数字信号处理技术的发展趋势和未来方向探讨新兴领域如、物联网和自动驾驶对数字信号处理技术的影响15.2 数字信号处理在未来的挑战分析数字信号处理在未来的挑战和问题探讨应对这些挑战的方法和策略15.3 数字信号处理的展望展望数字信号处理技术在未来社会的应用和发展激发对数字信号处理技术的兴趣和热情重点和难点解析本文主要介绍了数字信号处理的基本概念、算法、实现方法和应用案例等内容。

《数字信号处理》教案

《数字信号处理》教案

《数字信号处理》教学大纲课程类型:专业课总学时:通信工程专业70;信息工程专业64讲课学时:通信工程专业60;信息工程专业54实践学时:通信工程专业10;信息工程专业10一、课程的目的与任务本课程讲授数字信号处理的基本理论和基本分析方法,并且进行理论与算法的实践。

要求学生掌握离散时间信号与系统的基本理论,掌握离散时间系统的时域分析与 Z变换及离散傅立叶变换和快速傅里叶变换的理论计算法;掌握IIR和FIR数字滤波器的结构、理论和设计方法,为学生毕业后从事数字技术及其工程应用提供必要的训练。

二、课程有关说明《数字信号处理》是通信工程专业和信息工程专业的专业课,课程的内容包括:线性时不变离散时间系统的基础知识、数学模型(差分方程)及其求解,Z变换,离散傅立叶变换(DFT)理论及应用,快速傅立叶变换(FFT),无限长单位脉冲响应(IIR)数字滤波器设计,有限长单位脉冲响应(FIR)数字滤波器设计等内容。

除了理论教学外,还配有一定数量的上机实验。

数字信号处理在理论上所涉及的范围及其广泛。

高等数学、随机过程、复变函数等都是其数学基本工具。

电路理论、信号与系统等是其理论基础。

其算法及实现(硬件和软件)与计算机学科和微电子技术密不可分。

学生应该认真学习以上的知识,更好地掌握数字信号处理的基本理论、算法和实现技能。

主要教学方式:教师主讲,答疑、课堂讨论为辅,并结合实验教学。

考核评分方式:闭卷考试三、教学内容绪论(2学时)本章应掌握:数字信号处理的基本概念。

熟悉:数字信号处理系统的基本组成。

了解:数字信号处理的学科概貌、学科特点、实际应用、发展方向和实现方法。

第一章时域离散信号和时域离散系统(4学时)第一节时域离散信号本节应掌握:序列的运算,即移位、翻褶、和、积、累加、差分、时间尺度变换、卷积和等;序列的周期性。

熟悉:几种常用序列,即单位抽样序列、单位阶跃序列、矩形序列、实指数序列、复指数序列、正弦序列。

了解:用单位抽样序列来表示任意序列。

数字信号处理教案

数字信号处理教案

数字信号处理教案一、教学目标通过本节课的学习,学生应能够:1. 理解数字信号处理的基本概念和原理;2. 掌握数字信号处理的基本方法和技术;3. 能够运用数字信号处理技术解决实际问题;4. 培养学生的分析问题和解决问题的能力。

二、教学内容本节课将包括以下内容:1. 数字信号处理的概念和基本原理;2. 数字信号处理的基本方法和技术;3. 滤波器设计和滤波器应用;4. 快速傅里叶变换及其应用;5. 数字信号处理在实际中的应用案例。

三、教学过程1. 导入(5分钟)通过提问和回顾上一节课内容的方式,引导学生回忆数字信号处理的基本概念和原理。

2. 知识讲解(25分钟)详细介绍数字信号处理的基本概念、原理和基本方法。

重点讲解滤波器的设计和应用,以及快速傅里叶变换及其在频谱分析中的应用。

3. 案例分析(30分钟)选择一些实际案例,如音频信号处理、图像处理等,通过案例分析的方式,让学生了解数字信号处理在实际中的应用。

引导学生分析问题并提出解决方案。

4. 实验操作(40分钟)组织学生进行实验操作,如使用MATLAB软件进行数字信号处理仿真实验。

通过实验操作,巩固学生对数字信号处理方法的理解,并锻炼学生的实际操作能力。

5. 总结与展望(10分钟)结合本节课的内容,向学生总结数字信号处理的基本概念和方法,强调数字信号处理的重要性和应用前景。

展望未来数字信号处理领域的发展趋势。

四、教学评价1. 观察学生的课堂表现,包括回答问题的准确性和参与讨论的主动性。

2. 批改学生的实验报告,评价学生对数字信号处理方法的理解和实际操作能力。

五、拓展阅读以下是一些推荐的拓展阅读材料,学生可根据自己的兴趣选择进行阅读:1. 数字信号处理导论2. 数字信号处理原理与应用3. 数字信号处理实验与设计请注意,本教案仅供参考,请根据具体教学需求进行适当调整和修改。

教师可以根据学生的实际情况和学科特点进行教学内容的具体选择和深化。

数字信号处理教案

数字信号处理教案

石河子大学教案二OO六——二OO七学年第二学期注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页注:课后记包括学生课堂纪律、教学内容完成情况及教学体会等。

第页年月日年月日友情提示:方案范本是经验性极强的领域,本范文无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
滤波器的性能要求往往以频率响应的幅度特性的允许误差来表征。以低 通滤波器为例,如图6.l所示 。
H (e j )
1
1 a1
频率响应有通带、
过渡带及阻带三 个范围(而不是 理想的陡截止的 通带、阻带两个 范围)。
通 带
a2





0
c
st
图6.1 理想低通滤波器逼近的误差容限
4
在通带内,幅度响应以最大误差 a1 逼近于1,即
(6.6) (6.7)
所以又有
(e
j
)
1 2j
ln
H (e j ) H *(e j )
1 2j
ln
H (e j ) H (e j )
1 H(z)
2
j
ln
H
( z 1 )
z e
j
(6.8)
12
3.群延迟响应
滤波器平均 延迟的一个
度量
定义为相位对角频率的导数的负值,即 (e c
(6.1)
在阻带内,幅度响应以误差小于 。
a2
而逼近于零,即
H (e j ) 2,
st
(6.2)
其中 c ,st 分别为通带截止频率和阻带截止频率,它们都是
数字域频率。为了逼近理想低通滤波器特性,还必须有一个
非零宽度(st c )的过渡带,在这个过渡带内的频率响应平
同样可化为
(6.11)
(e
j
)
Im
d
ln[H
dz
(z)]
dz
d
z e j
d ln[H (z)]
Im jz
dz
ze j
Re
z
d dz
ln[H
(
z)]
ze
j
Re z
dH (z) dz
1
H
(
z
)
z
e
j
(6.12)
14
设计IIR数字滤波器一般有以下两种方法:
(1) 先设计一个合适的模拟滤波器,然后变换成 满足预定指标的数字滤波器。 (2) 计算机辅助设计法。
就是满足共轭对称条件。
10
零极点情况:
1、 若z re ji是H (z)的极点,则z 1 e ji是H (z1)的极点。 r
2、又由于H(z) 的有理表达式中各系数为实数,因而,零
极点必然都以共扼对形式出现,故z 必re有 ji
z 和1r e ji
两极点存在,所以H (z)H (z1) 的极点既是共轭的,又
第6章 无限长单位脉冲响应(IIR) 数字滤波器的设计方法
1
6.1 引言 6.2 常用模拟低通滤波器的设计方法 6.3 脉冲响应不变法设计IIR数字滤波器 6.4 双线性变换法设计IIR数字滤波器 6.5 原型变换
2
6.1 引言
数字滤波器的设计一般包括: (1) 按照任务的要求,确定滤波器的性能要求; (2) 用一个因果稳定的离散线性时不变系统的系统函数去逼近这一性能 要求; (3) 利用有限精度算法来实现这个系统函数; (4) 实际的技术实现,包括采用通用计算机软件或专用数字滤波器硬件 来实现,或用采用专用的或通用的数字信号处理器来实现。
O
H (e jω )
O
H (e jω )
O
H (e jω )
O
2
ω
2
ω
2
ω
2
ω
2
ω
图6.2 各种数字滤波器的理想幅度频率响应
8
数字滤波器的技术要求:
滤波器的频率响应: H (e j ) H (e j ) e j ( j)
H (e j ) 为幅频特性:表示信号通过该滤波器后各频 率成分的衰减情况。
H (e j0 )
2 20 lg H (e jst ) 20 lg H (e jst ) 20 lg2
(6.4)
式 中 , 假 定 |H(ej0)|=1( 已 被 归 一 化 ) 。 例 如 |H(ejω)| 在c 处 满 足 |H(ejc)|=0.707,则1 =3 dB;在st处满足|H(ejst)|=0.001,则 2=60 dB。
15
6.2 常用模拟低通滤波器的设计方法
常用的模拟原型滤波器有巴特沃思(Butterworth)滤波器、 切比雪夫(Chebyshev)滤波器、椭圆(Ellipse)滤波器、贝塞尔 (Bessel)滤波器等。
这些典型的滤波器各有特点:巴特沃思滤波器具有单调下降 的幅频特性;切比雪夫滤波器的幅频特性在通带或者在阻带有波 动,可以提高选择性;贝塞尔滤波器通带内有较好的线性相位特 性;椭圆滤波器的选择性相对前三种是最好的, 但在通带和阻带内 均为等波纹幅频特性。
16
Ha ( jΩ)
低通
o
Ha ( jΩ)
高通
o
Ha ( jΩ)
带通
o
Ha ( jΩ)
是以单位圆镜像对称的。
11
2.相位响应 由于H (e j ) 是复数,可表示成
H (e j ) H (e j ) e j (ej ) Re[H (e j )] j Im[H (e j )]
所以 由于
(e
j
)
arctan
Im[H Re[H
(e (e
j j
)] )]
H * (e j ) H (e j ) e j (e j )
6
数字滤波器按频率特性划分也有低通、高通、带通、带阻、 全通等类型,如图6.2所示。
s sT 2 fsT 2
fs fs
2 ,
(
fs
1) T
s 2 是折叠频率。按照奈奎斯特抽样定理,频率特
性只能限于 s 2 范围。
7
低通 带通 高通 带阻 全通
H (e jω )
O
H (e jω )
滑地从通带下降到阻带。
5
虽然给出了通带的容限1 及阻带的容限2 ,但是,在具体技
术指标中往往使用通带允许的最大衰减(波纹)1 和阻带应达到
的最小衰减
2描述, 1及
的定义分别为:
2
H (e j0 )
1 20 lg H (e jc ) 20 lg H (e jc ) 20 lg(1 1)
(6.3)
( j)为相频特性:反映各频率成分通过滤波器后在 时间上的延时情况。
9
1.幅度平方响应
幅度平方响应定义为
H (e j ) 2 H (e j )H *(e j ) H (e j )H (e j ) H (z)H (z1)
ze j
(6.5)
这里由于脉冲响应为实函数,故满H足*(e j ) H (e j ) , 也
可以化为
(6.9)
(e j ) d (z) dz
jz d (z)
(6.10)
dz d ze j
dz ze j
由于
ln[H (e j )] ln H (e j ) j (e j )
13
所以
(e j ) Im ln[H (e j )]
因而又有
(e
j
)
Im
d
d
ln[H (e j )]
相关文档
最新文档